Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale

Wiley Interdiscip Rev RNA. 2013 Sep-Oct;4(5):473-90. doi: 10.1002/wrna.1172. Epub 2013 May 20.

Abstract

Ribosome profiling or ribo-seq is a new technique that provides genome-wide information on protein synthesis (GWIPS) in vivo. It is based on the deep sequencing of ribosome protected mRNA fragments allowing the measurement of ribosome density along all RNA molecules present in the cell. At the same time, the high resolution of this technique allows detailed analysis of ribosome density on individual RNAs. Since its invention, the ribosome profiling technique has been utilized in a range of studies in both prokaryotic and eukaryotic organisms. Several studies have adapted and refined the original ribosome profiling protocol for studying specific aspects of translation. Ribosome profiling of initiating ribosomes has been used to map sites of translation initiation. These studies revealed the surprisingly complex organization of translation initiation sites in eukaryotes. Multiple initiation sites are responsible for the generation of N-terminally extended and truncated isoforms of known proteins as well as for the translation of numerous open reading frames (ORFs), upstream of protein coding ORFs. Ribosome profiling of elongating ribosomes has been used for measuring differential gene expression at the level of translation, the identification of novel protein coding genes and ribosome pausing. It has also provided data for developing quantitative models of translation. Although only a dozen or so ribosome profiling datasets have been published so far, they have already dramatically changed our understanding of translational control and have led to new hypotheses regarding the origin of protein coding genes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Eukaryotic Cells
  • Gene Expression Profiling / methods*
  • Gene Expression Regulation
  • High-Throughput Nucleotide Sequencing / methods*
  • Prokaryotic Cells
  • Protein Biosynthesis*
  • RNA, Messenger / chemistry*
  • RNA, Messenger / genetics*
  • Ribosomes / metabolism*

Substances

  • RNA, Messenger