Skip to main content

Advertisement

Log in

Medical applications of breath hydrogen measurements

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this article, technical developments in breath analysis and its applications in the field of clinical diagnosis and the monitoring of various symptoms, particularly molecular hydrogen in breath, are introduced. First, a brief overview of the current uses of the hydrogen breath test is provided. The principles of the test and how hydrogen can be used as a biomarker for various symptoms, and monitoring microbial metabolism, are introduced. Ten case-study applications of breath hydrogen measurements for which hydrogen exhibits beneficial effects for diagnosis, including the contexts of oxidative stress, gastrointestinal disease, and metabolic disorders, are discussed. The technologies and problems involved in breath hydrogen testing, sampling, pretreatment, and detection in exhaled breath are discussed, and research including current analytical systems and new sensors is focused on in the context of hydrogen detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Risby TH (2005) Current status of clinical breath analysis. In: Amann A, Smith D (eds) Breath analysis for clinical diagnostics and therapeutic monitoring. World Scientific, London, pp 251–267

    Chapter  Google Scholar 

  2. Phillips M, Herrera J, Krishnan S, Zain M, Greenberg J, Cataneo RN (1999) Variation in volatile organic compounds in the breath of normal humans. J Chromatogr B 729:75–88

    Article  CAS  Google Scholar 

  3. Martin AN, Farquar GR, Jones AD, Frank M (2010) Human breath analysis: methods for sample collection and reduction of localized background effects. Anal Bioanal Chem 396:739–750

    Article  CAS  Google Scholar 

  4. Kamm MA, Leonnard-Jones JE (eds) (1991) Gastrointestinal transit. Pathophysiology and pharmacology. Wrightson Biomedical Publishing, Petersfield

    Google Scholar 

  5. Swagerty DL Jr, Walling AD, Klein RM (2002) Lactose intolerance. Am Fam Physician 65:1845–1850

    Google Scholar 

  6. Simrén M, Stotzer PO (2006) Use and abuse of hydrogen breath tests. Gut 55:297–303

    Article  Google Scholar 

  7. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 13:688–694

    Article  CAS  Google Scholar 

  8. Di Stefano M, Corazza GR (2009) Role of hydrogen and methane breath testing in gastrointestinal diseases. Dig Liver Dis Suppl 3:40–43

    Article  Google Scholar 

  9. Cloarec D, Bornet F, Gouilloud S, Barry JL, Salim B, Galmiche JP (1990) Breath hydrogen response to lactulose in healthy subjects: relationship to methane producing status. Gut 31:300–304

    Article  CAS  Google Scholar 

  10. Rumessen JJ, Hamberg O, Gudmand-Høyer E (1989) Influence of orocaecal transit time on hydrogen excretion after carbohydrate malabsorption. Gut 30:811–814

    Article  CAS  Google Scholar 

  11. Urita Y, Watanabe T, Ishihara S, Maeda T, Sasaki Y, Hike K, Miura Y, Nanami T, Arai K, Koshino H, Saito Y, Shimada N, Sugimoto M, Miki K (2008) Breath hydrogen and methane levels in a patient with volvulus of the sigmoid colon. J Breath Res 2:037025. doi:10.1088/1752-7155/2/3/037025

    Article  Google Scholar 

  12. Liu F, Kondo T, Toda F (1992) Measurement of breath hydrogen. Nagoya J Health Phys Fit Sports 15(1):33–37

    Google Scholar 

  13. Kagaya M, Iwata N, Toda Y, Nakae Y, Kondo T (1997) Small bowel transit time and colonic fermentation in young and elderly women. J Gastroenterol 32:453–456

    Article  CAS  Google Scholar 

  14. Chiloiro M, Darconza G, Piccioli E, De Carne M, Clemente C, Riezzo G (2001) Gastric emptying and orocecal transit time in pregnancy. J Gastroenterol 36(8):538–543

    Article  CAS  Google Scholar 

  15. Kagaya M, Iwata M, Toda Y, Nakae Y, Kondo T (1998) Circadian rhythm of breath hydrogen in young women. J Gastroenterol 33(4):472–476

    Article  CAS  Google Scholar 

  16. Urita Y, Hike K, Torii N, Kikuchi Y, Sasajima M, Miki K (2002) Efficacy of lactulose plus 13C-acetate breath test in the diagnosis of gastrointestinal motility disorders. J Gastroenterol 37(6):442–448

    Article  CAS  Google Scholar 

  17. Kudlacek S, Freudenthaler O, Weissböeck H, Schneider B, Willvonseder R (2002) Lactose intolerance: a risk factor for reduced bone mineral density and vertebral fractures? J Gastroenterol 37(12):1014–1019

    Article  Google Scholar 

  18. Mitsui T, Kagami H, Kinomoto H, Ito A, Kondo T, Shimaoka K (2003) Small bowel bacterial overgrowth and rice malabsorption in healthy and physically disabled older adults. J Hum Nutr Diet 16(2):119–122

    Article  CAS  Google Scholar 

  19. Sato Y, Kajiyama S, Amano A, Kondo Y, Sasaki T, Handa S, Takahashi R, Fukui M, Hasegawa G, Nakamura N et al (2008) Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice. Biochem Biophys Res Commun 375:346–350

    Article  CAS  Google Scholar 

  20. Li J, Wang C, Zhang JH, Cai JM, Cao YP, Sun XJ (2010) Hydrogen-rich saline improves memory function in a rat model of amyloid-beta-induced Alzheimer’s disease by reduction of oxidative stress. Brain Res 1328:152–161

    Article  CAS  Google Scholar 

  21. Fu Y, Ito M, Fujita Y, Ito M, Ichihara M, Masuda A, Suzuki Y, Maesawa S, Kajita Y, Hirayama M et al (2009) Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson’s disease. Neurosci Lett 453:81–85

    Article  CAS  Google Scholar 

  22. Fujita K, Seike T, Yutsudo N, Ohno M, Yamada H, Yamaguchi H, Sakumi K, Yamakawa Y, Kido MA, Takaki A et al (2009) Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. PLoS One 4:e7247

    Article  Google Scholar 

  23. Ohta S, Nakao A, Ohno K (2011) The 2011 Medical Molecular Hydrogen Symposium: an inaugural symposium of the journal Medical Gas Research. Med Gas Res 1:10–16

    Article  Google Scholar 

  24. Kajiyama S, Hasegawa G, Asano M et al (2008) Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res 28:137–143

    Article  CAS  Google Scholar 

  25. Shimouchi A, Nose K, Yamaguchi M, Ishiguro H, Kondo T (2009) Breath hydrogen produced by ingestion of commercial hydrogen-enriched water and milk. Biomark Insights 4:27–33

    CAS  Google Scholar 

  26. Itoh T, Hirayama M, Yamai K, Goto S, Masafumi Ito M, Ichihara M, Ohno K (2012) Drinking hydrogen-enriched water and intermittent hydrogen gas exposure, but not lactulose or continuous hydrogen gas exposure, prevent 6-hydorxydopamine-induced Parkinson’s disease in rats. Med Gas Res 2:15–18

    Article  Google Scholar 

  27. La Brooy SJ, Male P-J, Beavis AK et al (1983) Assessment of the reproducibility of the lactulose H 2 breath test as a measure of mouth to caecum transit time. Gut 24:893–896

    Article  Google Scholar 

  28. American Thoracic Society, European Respiratory Society (2005) ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med 171:912–930

    Article  Google Scholar 

  29. Cao W, Duan Y (2007) Current status of methods and techniques for breath analysis. Crit Rev Anal Chem 37(1):3–13

    Article  CAS  Google Scholar 

  30. Bunkowski A, Bödeker B, Bader S, Westhoff M, Litterst P, Baumbach JI (2009) MCC/IMS signals in human breath related to sarcoidosis-results of a feasibility study using an automated peak finding procedure. J Breath Res 3(4):046001

    Article  CAS  Google Scholar 

  31. Fleischer M, Simon E, Rumpel E, Ulmer H, Harbeck M, Wandel M, Fietzek C, Weimar U, Meixner H (2002) Detection of volatile compounds correlated to human diseases through breath analysis with chemical sensors. Sensors Actuators B 83:245–249

    Article  CAS  Google Scholar 

  32. Shin W, Nishibori M, Izu N, Itoh T, Matsubara I, Nose K, Shimouchi A (2011) Monitoring breath hydrogen using thermoelectric sensor. Sens Lett 9:684–687

    Article  CAS  Google Scholar 

  33. Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Haick H (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol 4:669–673

    Article  CAS  Google Scholar 

  34. Kim K-H, Jahan S, Kabir E (2012) A review of breath analysis for diagnosis of human health. Trends Anal Chem 33:1–8

    Article  Google Scholar 

  35. Byun HG, Persaud C, Pisanelli A (2010) Wound-state monitoring for burn patients using e-nose/SPME system. ETRI J 32:440–446

    Article  Google Scholar 

  36. Lee JH (2009) Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sensors Actuators B 140:319–336

    Article  CAS  Google Scholar 

  37. Shin J, Choi S, Lee I, Youn D, Park CO, Lee JH, Tuller HL, Il-Doo Kim ID (2013) Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv Funct Mater 23:2357–2367

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the “Development Project for Extremely Early Diagnostics Technologies for Human Diseases” of Aichi prefecture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woosuck Shin.

Additional information

Published in the topical collection Chemosensors and Chemoreception with guest editors Jong-Heun Lee and Hyung-Gi Byun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, W. Medical applications of breath hydrogen measurements. Anal Bioanal Chem 406, 3931–3939 (2014). https://doi.org/10.1007/s00216-013-7606-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7606-6

Keywords

Navigation