Skip to main content
Log in

High glucose promotes cell proliferation and enhances GDNF and RET expression in pancreatic cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hyperglycemia promotes pancreatic cancer progression, while the underlying mechanism is uncertain. We investigated the cell proliferation, glial cell line-derived neuotrophic factor (GDNF) and its tyrosine kinase receptor RET expression in BxPC-3 and MIA PaCa-2 cells when exposed to different concentrations of glucose. Proliferation of both cells was effected by glucose in a concentration-dependent manner. Definite expression of GDNF and RET was detected in both cells. Glucose concentrations could alter the expression of GDNF and RET in a concentration-dependent manner, correspondingly with the alterations of cell proliferation. Up-regulation of GDNF and RET ligand-receptor interaction might participate in the glucose-induced cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jee SH, Ohrr H, Sull JW, Yun JE, Ji M et al (2005) Fasting serum glucose level and cancer risk in Korean men and women. JAMA 293:194–202

    Article  CAS  PubMed  Google Scholar 

  2. Fisher WE (2001) Diabetes: risk factor for the development of pancreatic cancer or manifestation of the disease? World J Surg 25:503–508

    Article  CAS  PubMed  Google Scholar 

  3. Pannala R, Basu A, Petersen GM, Chari ST (2009) New-onset diabetes: a potential clue to the early diagnosis of pancreatic cancer. Lancet Oncol 10:88–95

    Article  PubMed  Google Scholar 

  4. Suba Z, Ujpal M (2006) Correlations of insulin resistance and neoplasms. Magy Onkol 50:127–135

    PubMed  Google Scholar 

  5. Krone CA, Ely JT (2005) Controlling hyperglycemia as an adjunct to cancer therapy. Integr Cancer Ther 4:25–31

    Article  PubMed  Google Scholar 

  6. Giovannucci E, Michaud D (2007) The role of obesity and related metabolic disturbances in cancers of the colon, prostate, and pancreas. Gastroenterology 132:2208–2225

    Article  CAS  PubMed  Google Scholar 

  7. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    Article  CAS  PubMed  Google Scholar 

  8. Ng WH, Wan GQ, Peng ZN, Too HP (2009) Glial cell-line derived neurotrophic factor (GDNF) family of ligands confer chemoresistance in a ligand-specific fashion in malignant gliomas. J Clin Neurosci 16:427–436

    Article  CAS  PubMed  Google Scholar 

  9. Yasuda H, Terada M, Maeda K, Kogawa S, Sanada M et al (2003) Diabetic neuropathy and nerve regeneration. Prog Neurobiol 69:229–285

    Article  CAS  PubMed  Google Scholar 

  10. Du F, Wang L, Qian W, Liu S (2009) Loss of enteric neurons accompanied by decreased expression of GDNF and PI3K/Akt pathway in diabetic rats. Neurogastroenterol Motil 21:e1114–e1229

    Article  Google Scholar 

  11. Veit C, Genze F, Menke A, Hoeffert S, Gress TM et al (2004) Activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase is required for glial cell line-derived neurotrophic factor-induced migration and invasion of pancreatic carcinoma cells. Cancer Res 64:5291–5300

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi M (2001) The GDNF/RET signaling pathway and human diseases. Cytokine Growth Factor Rev 12:361–373

    Article  CAS  PubMed  Google Scholar 

  13. Busik JV, Hootman SR, Greenidge CA, Henry DN (1997) Glucose-specific regulation of aldose reductase in capan-1 human pancreatic duct cells in vitro. J Clin Invest 100:1685–1692

    Article  CAS  PubMed  Google Scholar 

  14. Jemal A, Siegel R, Ward E, Hao Y, Xu J et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  15. Shaib YH, Davila JA, El-Serag HB (2006) The epidemiology of pancreatic cancer in the United States: changes below the surface. Aliment Pharmacol Ther 24:87–94

    Article  CAS  PubMed  Google Scholar 

  16. Batty GD, Kivimaki M, Morrison D, Huxley R, Smith GD et al (2009) Risk factors for pancreatic cancer mortality: extended follow-up of the original Whitehall Study. Cancer Epidemiol Biomarkers Prev 18:673–675

    Article  PubMed  Google Scholar 

  17. Lowenfels AB, Maisonneuve P (2006) Epidemiology and risk factors for pancreatic cancer. Best Pract Res Clin Gastroenterol 20:197–209

    Article  PubMed  Google Scholar 

  18. Cartwright T, Richards DA, Boehm KA (2008) Cancer of the pancreas: are we making progress? A review of studies in the US Oncology Research Network. Cancer Control 15:308–313

    PubMed  Google Scholar 

  19. Yalniz M, Pour PM (2005) Diabetes mellitus: a risk factor for pancreatic cancer? Langenbecks Arch Surg 390:66–72

    Article  CAS  PubMed  Google Scholar 

  20. Gumbs AA (2008) Obesity, pancreatitis, and pancreatic cancer. Obes Surg 18:1183–1187

    Article  PubMed  Google Scholar 

  21. Zyromski NJ, Mathur A, Pitt HA, Wade TE, Wang S et al (2009) Obesity potentiates the growth and dissemination of pancreatic cancer. Surgery 146:258–263

    Article  PubMed  Google Scholar 

  22. Fisher WE, Boros LG, Schirmer WJ (1996) Insulin promotes pancreatic cancer: evidence for endocrine influence on exocrine pancreatic tumors. J Surg Res 63:310–313

    Article  CAS  PubMed  Google Scholar 

  23. Le Roith D, Roberts CT Jr (2003) The insulin-like growth factor system and cancer. Cancer Lett 195:127–137

    Google Scholar 

  24. Katsumichi I, Pour PM (2007) Diabetes mellitus in pancreatic cancer: is it a causal relationship? Am J Surg 194:S71–S75

    Article  PubMed  Google Scholar 

  25. Basso D, Greco E, Fogar P, Pucci P, Flagiello A et al (2005) Pancreatic cancer-associated diabetes mellitus: an open field for proteomic applications. Clin Chim Acta 357:184–189

    Article  CAS  PubMed  Google Scholar 

  26. Fisher WE, Muscarella P, Boros LG, Schirmer WJ (1998) Variable effect of streptozotocin-diabetes on the growth of hamster pancreatic cancer (H2T) in the Syrian hamster and nude mouse. Surgery 123:315–320

    CAS  PubMed  Google Scholar 

  27. Okumura M, Yamamoto M, Sakuma H, Kojima T, Maruyama T et al (2002) Leptin and high glucose stimulate cell proliferation in MCF-7 human breast cancer cells: reciprocal involvement of PKC-alpha and PPAR expression. Biochim Biophys Acta 1592:107–116

    CAS  PubMed  Google Scholar 

  28. Yamamoto M, Patel NA, Taggart J, Sridhar R, Cooper DR (1999) A shift from normal to high glucose levels stimulates cell proliferation in drug sensitive MCF-7 human breast cancer cells but not in multidrug resistant MCF-7/ADR cells which overproduce PKC-betaII. Int J Cancer 83:98–106

    Article  CAS  PubMed  Google Scholar 

  29. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    Article  CAS  PubMed  Google Scholar 

  30. Okada Y, Takeyama H, Sato M, Morikawa M, Sobue K et al (1999) Experimental implication of celiac ganglionotropic invasion of pancreatic-cancer cells bearing c-ret proto-oncogene with reference to glial-cell-line-derived neurotrophic factor (GDNF). Int J Cancer 81:67–73

    Article  CAS  PubMed  Google Scholar 

  31. Zeng Q, Cheng Y, Zhu Q, Yu Z, Wu X et al (2008) The relationship between overexpression of glial cell-derived neurotrophic factor and its RET receptor with progression and prognosis of human pancreatic cancer. J Int Med Res 36:656–664

    CAS  PubMed  Google Scholar 

  32. Ito Y, Okada Y, Sato M, Sawai H, Funahashi H et al (2005) Expression of glial cell line-derived neurotrophic factor family members and their receptors in pancreatic cancers. Surgery 138:788–794

    Article  PubMed  Google Scholar 

  33. Funahashi H, Takeyama H, Sawai H, Furuta A, Sato M et al (2003) Alteration of integrin expression by glial cell line-derived neurotrophic factor (GDNF) in human pancreatic cancer cells. Pancreas 27:190–196

    Article  CAS  PubMed  Google Scholar 

  34. Ceyhan GO, Giese NA, Erkan M, Kerscher AG, Wente MN et al (2006) The neurotrophic factor artemin promotes pancreatic cancer invasion. Ann Surg 244:274–281

    Article  PubMed  Google Scholar 

  35. Ceyhan GO, Demir IE, Altintas B, Rauch U, Thiel G et al (2008) Neural invasion in pancreatic cancer: a mutual tropism between neurons and cancer cells. Biochem Biophys Res Commun 374:442–447

    Article  CAS  PubMed  Google Scholar 

  36. Zhu ZW, Friess H, Wang L, Bogardus T, Korc M et al (2001) Nerve growth factor exerts differential effects on the growth of human pancreatic cancer cells. Clin Cancer Res 7:105–112

    CAS  PubMed  Google Scholar 

  37. Dai H, Li R, Wheeler T, Ozen M, Ittmann M et al (2007) Enhanced survival in perineural invasion of pancreatic cancer: an in vitro approach. Hum Pathol 38:299–307

    Article  CAS  PubMed  Google Scholar 

  38. Suzuki T, Sekido H, Kato N, Nakayama Y, Yabe-Nishimura C (2004) Neurotrophin-3-induced production of nerve growth factor is suppressed in Schwann cells exposed to high glucose: involvement of the polyol pathway. J Neurochem 91:1430–1438

    Article  CAS  PubMed  Google Scholar 

  39. Chen Y, Yang R, Yao L, Sun Z, Wang R et al (2007) Differential expression of neurotrophins in penises of streptozotocin-induced diabetic rats. J Androl 28:306–312

    Article  CAS  PubMed  Google Scholar 

  40. Larrieta ME, Vital P, Mendoza-Rodriguez A, Cerbon M, Hiriart M (2006) Nerve growth factor increases in pancreatic beta cells after streptozotocin-induced damage in rats. Exp Biol Med (Maywood) 231:396–402

    CAS  Google Scholar 

  41. Sawai H, Okada Y, Kazanjian K, Kim J, Hasan S et al (2005) The G691S RET polymorphism increases glial cell line-derived neurotrophic factor-induced pancreatic cancer cell invasion by amplifying mitogen-activated protein kinase signaling. Cancer Res 65:11536–11544

    Article  CAS  PubMed  Google Scholar 

  42. Okada Y, Eibl G, Duffy JP, Reber HA, Hines OJ (2003) Glial cell-derived neurotrophic factor upregulates the expression and activation of matrix metalloproteinase-9 in human pancreatic cancer. Surgery 134:293–299

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grant from National Natural Scientific Foundation on China (2009 No. 30900705) and Scientific Grant of Xi’an City (2009 No. GG06718).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyong Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Ma, Q. & Li, J. High glucose promotes cell proliferation and enhances GDNF and RET expression in pancreatic cancer cells. Mol Cell Biochem 347, 95–101 (2011). https://doi.org/10.1007/s11010-010-0617-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0617-0

Keywords

Navigation