Skip to main content
Log in

Regulation of microRNAs by molecular hydrogen contributes to the prevention of radiation-induced damage in the rat myocardium

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

microRNAs (miRNAs) constitute a large class of post-transcriptional regulators of gene expression. It has been estimated that miRNAs regulate up to 30% of the protein-coding genes in humans. They are implicated in many physiological and pathological processes, including those involved in radiation-induced heart damage. Biomedical studies indicate that molecular hydrogen has potential as a radioprotective agent due to its antioxidant, anti-inflammatory, and signal-modulating effects. However, the impact of molecular hydrogen on the expression of miRNAs in the heart after irradiation has not been investigated. This study aimed to explore the involvement of miRNA-1, -15b, and -21 in the protective action of molecular hydrogen on rat myocardium damaged by irradiation. The results showed that the levels of malondialdehyde (MDA) and tumor necrosis factor alpha (TNF-α) increased in the rat myocardium after irradiation. Treatment with molecular hydrogen-rich water (HRW) reduced these values to the level of non-irradiated controls. miRNA-1 is known to be involved in cardiac hypertrophy, and was significantly decreased in the rat myocardium after irradiation. Application of HRW attenuated this decrease in all evaluated time periods. miRNA-15b is considered to be anti-fibrotic, anti-hypertrophic, and anti-oxidative. Irradiation downregulated miRNA-15b, whereas administration of HRW restored these values. miRNA-21 is connected with cardiac fibrosis. We observed significant increase in miRNA-21 expression in the irradiated rat hearts. Molecular hydrogen lowered myocardial miRNA-21 levels after irradiation. This study revealed for the first time that the protective effects of molecular hydrogen on irradiation-induced heart damage may be mediated by regulating miRNA-1, -15b, and -21.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Senkus-Konefka E, Jassem J (2007) Cardiovascular effects of breast cancer radiotherapy. Cancer Treat Rev 33(6):578–593. https://doi.org/10.1016/j.ctrv.2007.07.011

    Article  PubMed  Google Scholar 

  2. Lee MS, Finch W, Mahmud E (2013) Cardiovascular complications of radiotherapy. Am J Cardiol 112(10):1688–1696. https://doi.org/10.1016/j.amjcard.2013.07.031

    Article  PubMed  Google Scholar 

  3. Ambros V (2001) MicroRNAs: tiny regulators with great potential. Cell 107(7):823–826

    Article  CAS  Google Scholar 

  4. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20. https://doi.org/10.1016/j.cell.2004.12.035

    Article  CAS  PubMed  Google Scholar 

  5. Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallasch C, Rheinheimer S, Meder B, Stähler C, Meese E, Keller A (2016) Distribution of miRNA expression across human tissues. Nucleic Acids Res 44(8):3865–3877. https://doi.org/10.1093/nar/gkw116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Simone NL, Soule BP, Ly D, Saleh AD, Savage JE, Degraff W, Cook J, Harris CC, Gius D, Mitchell JB (2009) Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS ONE 4(7):e6377. https://doi.org/10.1371/journal.pone.0006377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Slezak J, Kura B, Ravingerová T, Tribulova N, Okruhlicova L, Barancik M (2015) Mechanisms of cardiac radiation injury and potential preventive approaches. Can J Physiol Pharmacol 93(9):737–753. https://doi.org/10.1139/cjpp-2015-0006

    Article  CAS  PubMed  Google Scholar 

  8. Kura B, Babal P, Slezak J (2017) Implication of microRNAs in the development and potential treatment of radiation-induced heart disease. Can J Physiol Pharmacol 95(10):1236–1244. https://doi.org/10.1139/cjpp-2016-0741

    Article  CAS  PubMed  Google Scholar 

  9. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 13(6):688–694. https://doi.org/10.1038/nm1577

    Article  CAS  PubMed  Google Scholar 

  10. Slezak J, Kura B, Babal P, Barancik M, Ferko M, Frimmel K, Kalocayova B, Kukreja RC, Lazou A, Mezesova L, Okruhlicova L, Ravingerova T, Singal PK, Szeiffova Bacova B, Viczenczova C, Vrbjar N, Tribulova N (2017) Potencial markers and metabolic processes involved in the mechanism of radiation-induced heart injury. Can J Physiol Pharmacol 95(10):1190–1203. https://doi.org/10.1139/cjpp-2017-0121

    Article  CAS  PubMed  Google Scholar 

  11. Wang F, Yu G, Liu SY, Li JB, Wang JF, Bo LL, Qian LR, Sun XJ, Deng XM (2011) Hydrogen-rich saline protects against renal ischemia/reperfusion injury in rats. J Surg Res 167(2):e339–e344. https://doi.org/10.1016/j.jss.2010.11.005

    Article  CAS  PubMed  Google Scholar 

  12. Zhao S, Yang Y, Liu W, Xuan Z, Wu S, Yu S, Mei K, Huang Y, Zhang P, Cai J, Ni J, Zhao Y (2014) Protective effect of hydrogen-rich saline against radiation-induced immune dysfunction. J Cell Mol Med 18(5):938–946. https://doi.org/10.1111/jcmm.12245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hayashida K, Sano M, Ohsawa I, Shinmura K, Tamaki K, Kimura K, Endo J, Katayama T, Kawamura A, Kohsaka S, Makino S, Ohta S, Ogawa S, Fukuda K (2008) Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun 373(1):30–35. https://doi.org/10.1016/j.bbrc.2008.05.165

    Article  CAS  PubMed  Google Scholar 

  14. Qian L, Cao F, Cui J, Wang Y, Huang Y, Chuai Y, Zaho L, Jiang H, Cai J (2010) The potential cardioprotective effects of hydrogen in irradiated mice. J Radiat Res 51:741–747. https://doi.org/10.1269/jrr.10093

    Article  CAS  PubMed  Google Scholar 

  15. Seo T, Kurokawa R, Sato B (2012) A convenient method for determining the concentration of hydrogen in water: use of methylene blue with colloidal platinum. Med Gas Res 2:1. https://doi.org/10.1186/2045-9912-2-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stewart FA, Hoving S, Russell NS (2010) Vascular damage as an underlying mechanism of cardiac and cerebral toxicity in irradiated cancer patients. Radiat Res 174(6):865–869. https://doi.org/10.1667/RR1862.1

    Article  CAS  PubMed  Google Scholar 

  17. Slezak J, Barancik M, Ravingerova T, Tribulova N, Kura B, Lazou A et al (2014) Molecular mechanisms of myocardial irradiation injury and potential prevention targets. Proceedings of New Frontiers in Basic Cardiovascular Research 2014: 11th Meeting of France—New EU Members, Smolenice, Slovakia, June 15–18, p. 29

  18. Slezák J, Kura B, Frimmel K, Zálešák M, Ravingerová T, Viczenczová C, Okruhlicová Ľ, Tribulová N (2016) Preventive and therapeutic application of molecular hydrogen in situations with excessive production of free radicals. Physiol Res 65(Suppl 1):S11–S28

    PubMed  Google Scholar 

  19. Spulber S, Edoff K, Hong L, Morisawa S, Shirahata S, Ceccatelli S (2012) Molecular hydrogen reduces LPS-induced neuroinflammation and promotes recovery from sickness behaviour in mice. PLoS ONE 7(7):e42078. https://doi.org/10.1371/journal.pone.0042078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang Y, Su WJ, Chen Y, Wu TY, Gong H, Shen XL, Wang YX, Sun XJ, Jiang CL (2016) Effects of hydrogen-rich water on depressive-like behavior in mice. Sci Rep 6:23742. https://doi.org/10.1038/srep23742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cuomo JR, Sharma GK, Conger PD, Weintraub NL (2016) Novel concepts in radiation-induced cardiovascular disease. World J Cardiol 8(9):504–519. https://doi.org/10.4330/wjc.v8.i9.504

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li J, Wang C, Zhang JH, Cai JM, Cao YP, Sun XJ (2010) Hydrogen-rich saline improves memory function in a rat model of amyloid-beta-induced Alzheimer’s disease by reduction of oxidative stress. Brain Res 1328:152–161. https://doi.org/10.1016/j.brainres.2010.02.046

    Article  CAS  PubMed  Google Scholar 

  23. Eckermann JM, Chen W, Jadhav V, Hsu FP, Colohan AR, Tang J, Zhang JH (2011) Hydrogen is neuroprotective against surgically induced brain injury. Med Gas Res 1(1):7. https://doi.org/10.1186/2045-9912-1-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Matchett GA, Fathali N, Hasegawa Y, Jadhav V, Ostrowski RP, Martin RD, Dorotta IR, Sun X, Zhang JH (2009) Hydrogen gas is ineffective in moderate and severe neonatal hypoxia-ischemia rat models. Brain Res 1259:90–97. https://doi.org/10.1016/j.brainres.2008.12.066

    Article  CAS  PubMed  Google Scholar 

  25. Dixon BJ, Tang J, Zhang JH (2013) The evolution of molecular hydrogen: a noteworthy potential therapy with clinical significance. Med Gas Res 3(1):10. https://doi.org/10.1186/2045-9912-3-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zheng Y, Zhu D (2016) Molecular hydrogen therapy ameliorates organ damage induced by sepsis. Oxid Med Cell Longev 2016:5806057 https://doi.org/10.1155/2016/5806057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM (1996) Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 274(5288):787–789

    Article  PubMed  Google Scholar 

  28. Beg AA, Baltimore D (1996) An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 274(5288):782–784

    Article  CAS  PubMed  Google Scholar 

  29. Li Q, Yu P, Zeng Q, Luo B, Cai S, Hui K, Yu G, Zhu C, Chen X, Duan M, Sun X (2016) Neuroprotective effect of hydrogen-rich saline in global cerebral ischemia/reperfusion rats: up-regulated tregs and down-regulated miR-21, miR-210 and NF-κB expression. Neurochem Res 41(10):2655–2665. https://doi.org/10.1007/s11064-016-1978-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang CS, Kawamura T, Peng X, Tochigi N, Shigemura N, Billiar TR, Nakao A, Toyoda Y (2011) Hydrogen inhalation reduced epithelial apoptosis in ventilator-induced lung injury via a mechanism involving nuclear factor-kappa B activation. Biochem Biophys Res Commun 408(2):253–258. https://doi.org/10.1016/j.bbrc.2011.04.008

    Article  CAS  PubMed  Google Scholar 

  31. Huang KC, Hsu SP, Yang CC, Ou-Yang P, Lee KT, Morisawa S, Otsubo K, Chien CT (2010) Electrolysed-reduced water dialysate improves T-cell damage in end-stage renal disease patients with chronic haemodialysis. Nephrol Dial Transplant 25(8):2730–2737. https://doi.org/10.1093/ndt/gfq082

    Article  CAS  PubMed  Google Scholar 

  32. Liu GD, Zhang H, Wang L, Han Q, Zhou SF, Liu P (2013) Molecular hydrogen regulates the expression of miR-9, miR-21 and miR-199 in LPS-activated retinal microglia cells. Int J Ophthalmol 6(3):280–285. https://doi.org/10.3980/j.issn.2222-3959.2013.03.05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Melman YF, Shah R, Das S (2014) MicroRNAs in heart failure: is the picture becoming less miRky? Circ Heart Fail 7(1):203–214. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000266

    Article  PubMed  Google Scholar 

  34. Duan L, Xiong X, Liu Y, Wang J (2014) miRNA-1: functional roles and dysregulation in heart disease. Mol Biosyst 10(11):2775–2782. https://doi.org/10.1039/c4mb00338a

    Article  CAS  PubMed  Google Scholar 

  35. Kura B, Yin C, Frimmel K, Krizak J, Okruhlicova L, Kukreja RC, Slezak J (2016) Changes of microRNA-1, -15b and -21 levels in irradiated rat hearts after treatment with potentially radioprotective drugs. Physiol Res 65(Suppl 1):S129–S137

    CAS  PubMed  Google Scholar 

  36. Kato R, Nomura A, Sakamoto A, Yasuda Y, Amatani K, Nagai S, Sen Y, Ijiri Y, Okada Y, Yamaguchi T, Izumi Y, Yoshiyama M, Tanaka K, Hayashi T (2014) Hydrogen gas attenuates embryonic gene expression and prevents left ventricular remodeling induced by intermittent hypoxia in cardiomyopathic hamsters. Am J Physiol Heart Circ Physiol 307(11):H1626–H1633. https://doi.org/10.1152/ajpheart.00228.2014

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Xu J, Long Z, Wang C, Wang L, Sun P, Li P, Wang T (2016) Hydrogen (H2) inhibits isoproterenol-induced cardiac hypertrophy via antioxidative pathways. Front Pharmacol 7:392. https://doi.org/10.3389/fphar.2016.00392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tijsen AJ, Van Der Made I, Van Den Hoogenhof MM, Wijnen WJ, Van Deel ED, De Groot NE, Alekseev S, Fluiter K, Schroen B, Goumans MJ, van der Velden J, Duncker DJ, Pinto YM, Creemers EE (2014) The microRNA-15 family inhibits the TGFβ-pathway in the heart. Cardiovasc Res 104(1):61–71. https://doi.org/10.1093/cvr/cvu184

    Article  CAS  PubMed  Google Scholar 

  39. Tang Y, Cui Y, Li Z, Jiao Z, Zhang Y, He Y, Chen G, Zhou Q, Wang W, Zhou X, Luo J, Zhang S (2016) Radiation-induced miR-208a increases the proliferation and radioresistance by targeting p21 in human lung cancer cells. J Exp Clin Cancer Res 35:7. https://doi.org/10.1186/s13046-016-0285-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lang A, Grether-Beck S, Singh M, Kuck F, Jakob S, Kefalas A, Altinoluk-Hambüchen S, Graffmann N, Schneider M, Lindecke A, Brenden H, Felsner I, Ezzahoini H, Marini A, Weinhold S, Vierkötter A, Tigges J, Schmidt S, Stühler K, Köhrer K, Uhrberg M, Haendeler J, Krutmann J, Piekorz RP (2016) MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4. Aging (Albany NY) 8(3):484–505. https://doi.org/10.18632/aging.100905

    Article  CAS  Google Scholar 

  41. Luo YX, Tang X, An XZ, Xie XM, Chen XF, Zhao X, Hao DL, Chen HZ, Liu DP (2017) Sirt4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity. Eur Heart J 38(18):1389–1398. https://doi.org/10.1093/eurheartj/ehw138

    Article  CAS  PubMed  Google Scholar 

  42. Latronico MV, Catalucci D, Condorelli G (2007) Emerging role of microRNAs in cardiovascular biology. Circ Res 101(12):1225–1236. https://doi.org/10.1161/CIRCRESAHA.107.163147

    Article  CAS  PubMed  Google Scholar 

  43. Roy S, Banerjee J, Gnyawali SC, Khanna S, He G, Pfeiffer D, Zweier JL, Sen CK (2013) Suppression of induced microRNA-15b prevents rapid loss of cardiac function in a dicer depleted model of cardiac dysfunction. PLoS ONE 8(6):e66789. https://doi.org/10.1371/journal.pone.0066789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hullinger TG, Montgomery RL, Seto AG, Dickinson BA, Semus HM, Lynch JM, Dalby CM, Robinson K, Stack C, Latimer PA, Hare JM, Olson EN, van Rooij E (2012) Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res 110(1):71–81. https://doi.org/10.1161/CIRCRESAHA.111.244442

    Article  CAS  PubMed  Google Scholar 

  45. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JT, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456(7224):980–984. https://doi.org/10.1038/nature07511

    Article  CAS  PubMed  Google Scholar 

  46. Cheng Y, Zhang C (2010) MicroRNA-21 in cardiovascular disease. J Cardiovasc Transl Res 3(3):251–255. https://doi.org/10.1007/s12265-010-9169-7

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kwon OS, Kim KT, Lee E, Kim M, Choi SH, Li H, Fornace AJ Jr, Cho JH, Lee YS, Lee JS, Lee YJ, Cha HJ (2016) Induction of MiR-21 by stereotactic body radiotherapy contributes to the pulmonary fibrotic response. PLoS ONE 11(7):e0160137. https://doi.org/10.1371/journal.pone.0160137

    Article  CAS  Google Scholar 

  48. Halimi M, Parsian H, Asghari SM, Sariri R, Moslemi D, Yeganeh F, Zabihi E (2014) Clinical translation of human microRNA 21 as a potential biomarker for exposure to ionizing radiation. Transl Res 16(6):578–584. https://doi.org/10.1016/j.trsl.2014.01.009

    Article  CAS  Google Scholar 

  49. Roy S, Khanna S, Hussain SR, Biswas S, Azad A, Rink C, Gnyawali S, Shilo S, Nuovo GJ, Sen CK (2009) MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res 82(1):21–29. https://doi.org/10.1093/cvr/cvp015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin Q, Geng Y, Zhao M, Lin S, Zhu Q, Tian Z (2017) MiR-21 regulates TNF-α-induced CD40 expression via the SIRT1-NF-κB pathway in renal inner medullary collecting duct cells. Cell Physiol Biochem 41(1):124–136. https://doi.org/10.1159/000455981

    Article  CAS  PubMed  Google Scholar 

  51. Sato C, Kamijo Y, Yoshimura K, Inagaki T, Yamaya T, Asakuma S, Majima M, Asari Y (2015) Effects of hydrogen water on paraquat-induced pulmonary fibrosis in mice. Kitasato Med J 45:9–16

    Google Scholar 

  52. Xing Z, Pan W, Zhang J, Xu X, Zhang X, He X, Fan M (2017) Hydrogen rich water attenuates renal injury and fibrosis by regulation transforming growth factor-β induced Sirt1. Biol Pharm Bull 40(5):610–615. https://doi.org/10.1248/bpb.b16-00832

    Article  CAS  PubMed  Google Scholar 

  53. Ding NH, Li JJ, Sun LQ (2013) Molecular mechanisms and treatment of radiation-induced lung fibrosis. Curr Drug Targets 14(11):1347–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Roggli E, Britan A, Gattesco S, Lin-Marq N, Abderrahmani A, Meda P, Regazzi R (2010) Involvement of micrornas in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic β-cells. Diabetes 59(4):978–986. https://doi.org/10.2337/db09-0881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shin VY, Jin H, Ng EK, Cheng AS, Chong WW, Wong CY, Leung WK, Sung JJ, Chu KM (2011) NF-kappaB targets miR-16 and miR-21 in gastric cancer: involvement of prostaglandin E receptors. Carcinogenesis 32(2):240–245. https://doi.org/10.1093/carcin/bgq240

    Article  CAS  PubMed  Google Scholar 

  56. Murakami Y, Ito M, Ohsawa I (2017) Molecular hydrogen protects against oxidative stress-induced SH-SY5Y neuroblastoma cell death through the process of mitohormesis. PLoS ONE 12(5):e0176992. https://doi.org/10.1371/journal.pone.0176992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants of Slovak Research and Development Agency (APVV-15-0376), Scientific Grant Agency of Ministry of Education, Science, Research and Sport of the Slovak Republic (VEGA 2/0021/15), and grant for Infrastructure completion for modern civilization research (ITMS 26230120006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Slezak.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kura, B., Kalocayova, B., LeBaron, T.W. et al. Regulation of microRNAs by molecular hydrogen contributes to the prevention of radiation-induced damage in the rat myocardium. Mol Cell Biochem 457, 61–72 (2019). https://doi.org/10.1007/s11010-019-03512-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03512-z

Keywords

Navigation