Skip to main content
Log in

The levels of melatonin and its metabolites in conditioned corn (Zea mays L.) and cucumber (Cucumis sativus L.) seeds during storage

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The efficiency of pre-sowing conditioning/priming methods used to apply melatonin into seeds was verified: osmopriming in the case of dicot Cucumis sativus and hydropriming of monocot Zea mays seeds. Both priming techniques were selected experimentally as optimal for the studied plant species. Four different seed variants were compared: control non-treated ones, and seeds conditioned with water or with 50 or 500 μM melatonin water solutions. The HPLC–MS quantitative and qualitative analyses were used to determine the content of melatonin and of its potential metabolites in the seeds during 1 year following the conditioning. The control seeds and those conditioned with water contained small amount of endogenous melatonin in both species. However, the level of this indoleamine increased markedly in cucumber and corn seeds primed with exogenous melatonin and it was always correlated with the concentration of melatonin applied. It was noted that melatonin was metabolized during seed storage by its gradual oxidation, thus it protects dry seeds against oxidative stress, prevents potential injuries and significantly increases seeds quality. Interestingly, in the control and water-primed seeds, seasonal fluctuations of endogenous melatonin concentration were noted and significant increase in this indoleamine in the winter month was observed. This suggests that in seeds endogenous melatonin could play a crucial role in seasonal rhythms independently of environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29:380–395

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB (2014) Phytomelatonin: discovery, content, and role in plants. Adv Bot. doi:10.1155/2014/815769

    Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2006) The physiological function of melatonin in plants. Plant Signal Behav 1:89–95

    Article  PubMed Central  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2007) Melatonin promotes adventitious and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. J Pineal Res 42:147–152

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2009a) Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. J Pineal Res 46:58–63

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2009b) Assessment of different sample processing procedures applied to the determination of melatonin in plants. Phytochem Anal 20:14–18

    Article  CAS  PubMed  Google Scholar 

  • Bajwa VS, Shukla MR, Sherif SM, Murch SJ, Saxena PK (2014) Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J Pineal Res 56:238–245

    Article  CAS  PubMed  Google Scholar 

  • Balzer I, Hardeland R (1991) Photoperiodism and effects of indoleamines in a unicellular alga, Gonyaulax polyedra. Science 253:795–797

    Article  CAS  PubMed  Google Scholar 

  • Boccalandro HE, Gonzalez CV, Wunderlin DA, Silva MF (2011) Melatonin levels, determined by LC–ESI–MS/MS, fluctuate during the day/night cycle in Vitis vinifera cv Malbec: evidence of its antioxidant role in fruits. J Pineal Res 51:226–232

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Back KW (2014) An increase in melatonin in transgenic rice causes pleiotropic phenotypes, including enhanced seedling growth, delayed flowering, and low grain yield. J Pineal Res 56:380–414

    Google Scholar 

  • Byeon Y, Lee HY, Lee K, Park S, Back K (2014) Cellular localization and kinetics of the rice melatonin biosynthetic enzymes SNAT and ASMT. J Pineal Res 56:107–114

    Article  CAS  PubMed  Google Scholar 

  • Chen GF, Huo YS, Tan D-X, Liang Z, Zhang W, Zhang Y (2003) Melatonin in Chinese medicinal herbs. Life Sci 73:19–26

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Qi WB, Reiter RJ, Wei W, Wang BM (2009) Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J Plant Physiol 166:324–328

    Article  CAS  PubMed  Google Scholar 

  • Cho MH, No HK, Prinyawiwatkul W (2008) Chitosan treatments affect growth and selected quality of sunflower sprouts. J Food Sci 73:70–77

    Article  Google Scholar 

  • De Luca V, Cutler AJ (1987) Subcellular localization of enzymes involved in indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 85:1099–1102

    Article  PubMed Central  PubMed  Google Scholar 

  • Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara HW, Schloot W (1995) Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res 18:28–31

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L, Wong HL, Kawasaki T, Shimamoto K (2010) Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem 285:11308–11313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hardeland R, Poeggeler B (2003) Non-vertebrate melatonin. J Pineal Res 34:233–241

    Article  CAS  PubMed  Google Scholar 

  • Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Hara M, Suzuki T, Reiter RJ (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int 35(3):627–634

    CAS  PubMed  Google Scholar 

  • Hernández-Ruiz J, Arnao MB (2008a) Melatonin stimulates the expansion of etiolated lupin cotyledons. Plant Growth Regul 55:29–34

    Article  Google Scholar 

  • Hernández-Ruiz J, Arnao MB (2008b) Distribution of melatonin in different zones of lupin and barley plants at different ages in the presence and absence of light. J Agr Food Chem 56:10567–10573

    Article  Google Scholar 

  • Hernández-Ruiz J, Cano A, Arnao MB (2004) Melatonin: a growth stimulating compound present in lupine tissues. Planta 220:140–144

    Article  PubMed  Google Scholar 

  • Hernández-Ruiz J, Cano A, Arnao MB (2005) Melatonin acts as a growth-stimulating compound in some monocot species. J Pineal Res 39:137–142

    Article  PubMed  Google Scholar 

  • Janas KM, Posmyk MM (2013) Melatonin, an underestimated natural substance with great potential for agricultural application. Acta Physiol Plant 35:3285–3292

    Article  CAS  Google Scholar 

  • Janas KM, Ciupińska E, Posmyk MM (2009) Melatonin applied by hydropriming, as phytobiostimulator improving corn (Zea mays L.) seedlings growth at abiotic stresses conditions. In: Li S, Wang Y, Cao F, Huang P, Zhang Y (eds) Progress in environmental science and technology, vol IIA. Science Press, USA, pp 383–388

    Google Scholar 

  • Kang S, Kang K, Lee K, Back K (2007) Characterization of rice tryptophan decarboxylases and their direct involvement in serotonin biosynthesis in transgenic rice. Planta 227:263–272

    Article  CAS  PubMed  Google Scholar 

  • Kolar J, Machackova I, Illnerova H, Prinsen E, Van Dongen W, Van Onckelen HA (1995) Melatonin in higher plant determined by radioimmunoassay and liquid chromatography mass spectrometry. Biol Rhythm Res 26:406–409

    Google Scholar 

  • Kolar J, Machackova I, Eder J, Prinsen E, Van Dongen W, Van Onckelen H, Illnerová H (1997) Melatonin: occurrence and daily rhythm in Chenopodium rubrum. Phytochem 44(8):1407–1413

    Article  CAS  Google Scholar 

  • Kolar J, Johnson C, Machackova I (2003) Exogenously applied melatonin (N-acetyl-5-methoxytryptamine) affects flowering of the short day plant Chenopodium rubrum. Physiol Plant 118:605–612

    Article  CAS  Google Scholar 

  • Lerner AB, Case DJ, Takahashi Y (1958) Isolation of melatonin a pineal factor that lightens melanocytes. J Am Chem Soc 80:2587

    Article  CAS  Google Scholar 

  • Manchester LC, Tan D-X, Reiter RJ, Park W, Monis K, Qi W (2000) High levels of melatonin in the seeds of edible plants—possible function in germ tissue protection. Life Sci 67:3023–3029

    Article  CAS  PubMed  Google Scholar 

  • Michael BE, Kaufman MR (1973) The osmotic potential of polyethylene glycol 6000. Plant Physiol 51:914–916

    Article  Google Scholar 

  • Murch SJ, Saxena PK (2002) Melatonin: a potential regulator of plant growth and development? In Vitro Cell Dev Biol Plant 38:531–536

    Article  CAS  Google Scholar 

  • Paredes SD, Korkmaz A, Manchester LC, Tan D-X, Reiter RJ (2009) Phytomelatonin: a review. J Exp Bot 60(1):57–69

    Article  CAS  PubMed  Google Scholar 

  • Park S, Lee DE, Jang H, Byeon Y, Kim YS, Back K (2013) Melatonin rich transgenic rice plants exhibit resistance to herbicide-induced oxidative stress. J Pineal Res 54:258–263

    Article  CAS  PubMed  Google Scholar 

  • Posmyk MM, Janas KM (2009) Melatonin in plants. Acta Physiol Plant 31:1–11

    Article  CAS  Google Scholar 

  • Posmyk MM, Corbineau F, Vinel D, Bailly C, Côme D (2001) Osmoconditioning reduces physiological and biochemical damage induced by chilling soybean seeds. Physiol Plant 111:473–482

    Article  CAS  PubMed  Google Scholar 

  • Posmyk MM, Kuran H, Marciniak K, Janas KM (2008) Pre-sowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations. J Pineal Res 45:24–31

    Article  CAS  PubMed  Google Scholar 

  • Posmyk MM, Bałabusta M, Wieczorek M, Sliwinska E, Janas KM (2009a) Melatonin applied to cucumber (Cucumis sativus L.) seeds improves germination during chilling stress. J Pineal Res 46:214–223

    Article  CAS  PubMed  Google Scholar 

  • Posmyk MM, Bałabusta M, Janas KM (2009b) Melatonin applied by osmopriming, as phytobiostimulator improving cucumber (Cucumis sativus L.) seedlings growth at abiotic stresses conditions. In: Li S, Wang Y, Cao F, Huang P, Zhang Y (eds) Progress in environmental science and technology, vol IIA. Science Press, USA, pp 362–369

    Google Scholar 

  • Sarrou E, Therios I, Dimassi-Theriou K (2014) Melatonin and other factors that promote rooting and sprouting of shoot cuttings in Punica granatum cv. Wonderful Turk J Bot 38:293–301

    Article  CAS  Google Scholar 

  • Słaba M, Szewczyk R, Piątek MA, Długoński J (2013) Alachlor oxidation by the filamentous fungus Paecilomyces marquandii. J Haz Mat 261:443–450

    Article  Google Scholar 

  • Stevens LH, Blom TJM, Verpoorte R (1993) Subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus and Tabernaemontana divaricata. Plant Cell Rep 12:573–576

    Article  CAS  PubMed  Google Scholar 

  • Tal O, Haim A, Harel O, Gerchman Y (2011) Melatonin as an antioxidant and its semi-lunar rhythm in green macroalga Ulva sp. J Exp Bot 62(6):1903–1910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tan D-X, Manchester LC, Di Mascio P, Martinez GR, Prado FM, Reiter RJ (2007) Novel rhythms of N-1-acetyl-N-2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: importance for phytoremediation. FASEB J 21:1724–1729

    Article  CAS  PubMed  Google Scholar 

  • Tan D-X, Hardeland R, Manchester LC, Korkmaz A, Ma S, Rosales-Corral S, Reiter RJ (2012) Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot 63(2):577–597

    Article  CAS  PubMed  Google Scholar 

  • Tan D-X, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J Pineal Res 54:127–138

    Article  CAS  PubMed  Google Scholar 

  • Wolf K, Kolar J, Witters E, Van Dongen W, Van Onckelen H, Machackova I (2001) Daily profile of melatonin levels in Chenopodium rubrum L. depends on photoperiod. J Plant Physiol 158(11):1491–1493

    Article  CAS  Google Scholar 

  • Yin L, Wang P, Li M, Ke X, Li C, Liang D, Wu S, Ma X, Li C, Zou Y, Ma F (2013) Exogenous melatonin improves Malus resistance to Marssonina apple blotch. J Pineal Res 54:426–434

    CAS  PubMed  Google Scholar 

  • Zhang N, Zhang HJ, Zhao B, Sun QQ, Cao YY, Li R, Wu XX, Weeda S, Li L, Ren S, Reiter RJ, Guo YD (2014) The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. J Pineal Res 56:39–50

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Sun Q, Zhang H, Cao Y, Weeda S, Ren S, Guo YD (2015) Roles of melatonin in abiotic stress resistance in plants. J Exp Bot 66(3):647–656

    Article  PubMed  Google Scholar 

  • Zhao Y, Tan D-X, Lei Q, Chen H, Wang L, Li QT, Gao Y, Kong J (2013) Melatonin and its potential biological functions in the fruits of sweet cherry. J Pineal Res 55:79–88

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research work financed in the years 2011/2014 by the National Science Centre of Poland as NCN N N310 111940 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata M. Posmyk.

Additional information

Communicated by J. van Staden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kołodziejczyk, I., Bałabusta, M., Szewczyk, R. et al. The levels of melatonin and its metabolites in conditioned corn (Zea mays L.) and cucumber (Cucumis sativus L.) seeds during storage. Acta Physiol Plant 37, 105 (2015). https://doi.org/10.1007/s11738-015-1850-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1850-7

Keywords

Navigation