Skip to main content

Advertisement

Log in

Pancreatic Cancer and Immunotherapy: Resistance Mechanisms and Proposed Solutions

  • Review Article
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Background

Pancreatic ductal adenocarcinoma (PDAC) continues to be one of the most aggressive and lethal diseases in the world. The success of immunotherapy in other types of malignancy has led to further trials to understand better the role of immunotherapy in PDAC. However, initial studies with immunotherapy, namely, the checkpoint inhibitors, in PDAC have not been met with the same outcomes. The purpose of this review is to identify and discuss the various resistance mechanisms of PDAC to immunotherapy (pancreatic stroma, genetic predisposition/epigenetics, and the immune inhibitory cells, cytokines, soluble factors, and enzymes that comprise the tumor microenvironment) and the solutions currently being studied to overcome them.

Conclusions

Various preclinical and early clinical studies have shown that immunotherapy, especially checkpoint inhibitors, in PDAC may be efficacious as part of a multi-modal treatment, in combination with other therapies that target these resistance mechanisms. Several clinical trials are ongoing to explore this concept further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Thind K, Padrnos LJ, Ramanathan RK, et al. Immunotherapy in pancreatic cancer treatment: a new frontier. Ther Adv Gastroenterol. 2017;10(1):168–94.

    Article  CAS  Google Scholar 

  2. Walker EJ, Kho AH. Beyond first-line chemotherapy for advanced pancreatic cancer: an expanding array of therapeutic options? J Immunother. 2010;33(8):828–33.

    Article  CAS  Google Scholar 

  3. Conroy T, Desseigne F, Ychou M, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–25.

    Article  CAS  PubMed  Google Scholar 

  4. Von Hoff D, Ervin T, Arena F, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.

    Article  CAS  Google Scholar 

  5. Ibrahim AM, Wang YH. Viro-immune therapy: a new strategy for treatment of pancreatic cancer. World J Gastroenterol. 2016;22(2):748–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Royal RE, Levy C, Turner K, et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother. 2010;33(8):828–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duluc C, Moatassim-Billah S, Chalabi-Dchar M. Pharmacological targeting of the protein synthesis mTOR/4E-BP1 pathway in cancer-associated fibroblasts abrogates pancreatic tumor chemoresistance. EMBO Mol Med. 2015;7(6):735–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hartmann N, Giese NA, Giese T, et al. Prevailing role of contact guidance in intrastromal T-cell trapping in human pancreatic cancer. Clin Cancer Res. 2014;20(13):3422–33.

    Article  CAS  PubMed  Google Scholar 

  10. Mei L, Du W, Ma WW. Targeting stromal microenvironment in pancreatic ductal adenocarcinoma: controversies and promises. J Gastrointest Oncol. 2016;7(3):487–94.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jiang H, Hegde S, Knolhoff BL, et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med. 2016;22(8):851–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bynigeri RR, Jakkampudi A, Jangala R, et al. Pancreatic stellate cell: Pandora’s box for pancreatic disease biology. World J Gastroenterol. 2017;23(3):382–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bahrami A, Khazaei M, Bagherieh F, Ghayour-Mobarhan M, et al. Targeting stroma in pancreatic cancer: promises and failures of targeted therapies. J Cell Physiol. 2017;232(11):2931–7.

    Article  CAS  PubMed  Google Scholar 

  14. Wong KM, Horton KJ, Coveler AL, et al. Targeting the tumor stroma: the biology and clinical development of pegylated recombinant human hyaluronidase (PEGPH20). Curr Oncol Rep. 2017;19(7):47.

    Article  CAS  PubMed  Google Scholar 

  15. Hugo W, Zaretsky JM, Sun L, Song C, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165(1):35–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Peng W, Chen JQ, Liu C, et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 2016;6(2):202–16.

    Article  CAS  PubMed  Google Scholar 

  17. Khan KH, Yap TA, Yan L, et al. Targeting the PI3K-AKT-mTOR signaling network in cancer. Chin J Cancer. 2013;32(5):253–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ding G, Zhou L, Qian Y, et al. Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget. 2015;6(30):29877–88.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sharma P, Hu-Lieskovan S, Wargo JA, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168(4):707–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Skelton RA, Javed A, Zheng L, et al. Overcoming the resistance of pancreatic cancer to immune checkpoint inhibitors. J Surg Oncol. 2017;116(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  21. Amedei A, Niccolai E, Prisco D. Pancreatic cancer: role of the immune system in cancer progression and vaccine-based immunotherapy. Hum Vaccin Immunother. 2014;10(11):3354–68.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Johnson BA III, Yarchoan M, Lee V, et al. Strategies for increasing pancreatic tumor immunogenicity. Clin Cancer Res. 2017;23(7):1656–69.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Steele CW, Karim SA, Leach JDG, et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell. 2016;29(6):832–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seo YD, Pillarisetty VG. T-cell programming in pancreatic adenocarcinoma: a review. Cancer Gene Ther. 2017;24(3):106–13.

    Article  CAS  PubMed  Google Scholar 

  25. Mace TA, Shakya R, Pitarresi JR, et al. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut. 2018;67(2):320–32.

    Article  CAS  PubMed  Google Scholar 

  26. McAllister F, Leach SD. Targeting IL-17 for pancreatic cancer prevention. Oncotarget. 2014;5(20):9530–1.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wolpin BM, Hezel AF, Abrams T, et al. Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. J Clin Oncol. 2009;27:193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Javle MM, Shroff RT, Xiong H, et al. Inhibition of the mammalian target of rapamycin (mTOR) in advanced pancreatic cancer: results of two phase II studies. BMC Cancer. 2010;10:368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hingorani SR, Harris WP, Beck JT, et al. Phase Ib study of PEGylated recombinant human hyaluronidase and gemcitabine in patients with advanced pancreatic cancer. Clin Cancer Res. 2016;22:2848–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zeitz U, Weber K, Soegiarto DW, et al. Impaired insulin secretory capacity in mice lacking a functional vitamin D receptor. FASEB J. 2003;17:509–11.

    Article  CAS  PubMed  Google Scholar 

  31. Sherman M, Yu R, Dannielle D, et al. Vitamin D receptor mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 2014;159(1):80–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Beatty GL, Chiorean EG, Fishman MP, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331(6024):1612–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Beatty GL, Torigian DA, Chiorean EG, et al. A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clin Cancer Res. 2013;19(22):6286–95.

    Article  CAS  PubMed  Google Scholar 

  34. Okkenhaug K, Graupera M, Vanhaesebroeck B. Targeting PI3K in cancer: impact on tumor cells, their protective stroma, angiogenesis, and immunotherapy. Cancer Discov. 2016;6(10):1090–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaneda MM, Cappello P, Nguyen AV, et al. Macrophage PI3Kγ drives pancreatic ductal adenocarcinoma progression. Cancer Discov. 2016;6(8):870–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bahary N, Garrido-Laguna I, Cinar P, et al. Phase 2 trial of the indoleamine 2,3-dioxygenase pathway (IDO) inhibitor indoximod plus gemcitabine/nab-paclitaxel for the treatment of metastatic pancreas cancer: interim analysis. J Clin Oncol. 34(15):3020.

  37. Zhu Y, Knolhoff BL, Meyer MA, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74(18):5057–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ferrantini M, Capone I, Belardelli F. Interferon-alpha and cancer: mechanisms of action and new perspectives of clinical use. Biochimie. 2007;89:884–93.

    Article  CAS  PubMed  Google Scholar 

  39. Hara H, Kobayashi A, Narumi K, et al. Intratumoral interferon-alpha gene transfer enhances tumor immunity after allogeneic hematopoietic stem cell transplantation. Cancer Immunol Immunother. 2009;58:1007–21.

    Article  CAS  PubMed  Google Scholar 

  40. Narumi K, Udagawa T, Kondoh A, et al. In vivo delivery of interferon-alpha gene enhances tumor immunity and suppresses immunotolerance in reconstituted lymphopenic hosts. Gene Ther. 2012;19:34–48.

    Article  CAS  PubMed  Google Scholar 

  41. Aida K, Miyakawa R, Suzuki K, et al. Suppression of Tregs by anti-glucocorticoid induced TNF receptor antibody enhances the antitumor immunity of interferon-α gene therapy for pancreatic cancer. Cancer Sci. 2014 Feb;105(2):159–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine Tan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Informed Consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, E., El-Rayes, B. Pancreatic Cancer and Immunotherapy: Resistance Mechanisms and Proposed Solutions. J Gastrointest Canc 50, 1–8 (2019). https://doi.org/10.1007/s12029-018-0179-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-018-0179-z

Keywords

Navigation