Skip to main content

Advertisement

Log in

Targeting Myofibroblasts in Model Systems of Fibrosis by an Artificial α-Smooth Muscle-Actin Promoter Hybrid

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Myofibroblasts are the main cell types producing extracellular matrix proteins in a variety of fibrotic diseases. Therefore, they are useful targets for studies of intracellular communication and gene therapeutical approaches in scarring diseases. An artificial promoter containing the −702 bp regulatory sequence of the α-smooth muscle actin (SMA) gene linked to the first intron enhancer sequence of the β-actin gene and the β-globin intron-exon junction was constructed and tested for myofibroblast-dependent gene expression using the green fluorescent protein as a reporter. Reporter expression revealed myofibroblast-specific function in hepatic and renal myofibroblasts, in vitro. In addition, differentiation-dependent activation of the SMA-β-actin promoter hybrid was shown after induction of myofibroblastic features in mesangial cells by stretching treatment. Furthermore, wound healing experiments with SMA-β-actin promoter reporter mice demonstrated myofibroblast-specific action, in vivo. In conclusion, the −702 bp regulatory region of the SMA promoter linked to enhancing β-actin and β-globin sequences benefits from its small size and is suggested as a promising tool to target myofibroblasts as the crucial cell type in various scarring processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wynn, T. A. (2008). Cellular and molecular mechanisms of fibrosis. The Journal of pathology, 214, 199–210.

    Article  CAS  Google Scholar 

  2. Desmouliere, A., & Gabbiani, G. (1995). Myofibroblast differentiation during fibrosis. Experimental Nephrology, 3, 134–139.

    CAS  Google Scholar 

  3. Gabbiani, G. (1994). Modulation of fibroblastic cytoskeletal features during wound healing and fibrosis. Pathology, Research and Practice, 190, 851–853.

    CAS  Google Scholar 

  4. Ramadori, G., & Saile, B. (2004). Portal tract fibrogenesis in the liver. Laboratory Investigation, 84, 153–159.

    Article  Google Scholar 

  5. Gressner, A. M. (1996). Transdifferentiation of hepatic stellate cells (Ito cells) to myofibroblasts: A key event in hepatic fibrogenesis. Kidney International Supplement, 54, S39–S45.

    CAS  Google Scholar 

  6. Hui, A. Y., & Friedman, S. L. (2003). Molecular basis of hepatic fibrosis. Expert Reviews in Molecular Medicine, 5, 1–23.

    Article  Google Scholar 

  7. Neilson, E. G. (2006). Mechanisms of disease: Fibroblasts—a new look at an old problem. Nature Clinical Practice, 2, 101–108.

    Article  CAS  Google Scholar 

  8. Radisky, D. C., Kenny, P. A., & Bissell, M. J. (2007). Fibrosis and cancer: Do myofibroblasts come also from epithelial cells via EMT? Journal of Cellular Biochemistry, 101, 830–839.

    Article  CAS  Google Scholar 

  9. Woodcock-Mitchell, J., Mitchell, J. J., Low, R. B., Kieny, M., Sengel, P., Rubbia, L., et al. (1988). Alpha-smooth muscle actin is transiently expressed in embryonic rat cardiac and skeletal muscles. Differentiation, 39, 161–166.

    Article  CAS  Google Scholar 

  10. Nakano, Y., Nishihara, T., Sasayama, S., Miwa, T., Kamada, S., & Kakunaga, T. (1991). Transcriptional regulatory elements in the 5’ upstream and first intron regions of the human smooth muscle (aortic type) alpha-actin-encoding gene. Gene, 99, 285–289.

    Article  CAS  Google Scholar 

  11. Simonson, M. S., Walsh, K., Kumar, C. C., Bushel, P., & Herman, W. H. (1995). Two proximal CArG elements regulate SM alpha-actin promoter, a genetic marker of activated phenotype of mesangial cells. American Journal of Physiology, 268, F760–F769.

    CAS  Google Scholar 

  12. Shimizu, R. T., Blank, R. S., Jervis, R., Lawrenz-Smith, S. C., & Owens, G. K. (1995). The smooth muscle alpha-actin gene promoter is differentially regulated in smooth muscle versus non-smooth muscle cells. Journal of Biological Chemistry, 270, 7631–7643.

    Article  CAS  Google Scholar 

  13. Mack, C. P., Thompson, M. M., Lawrenz-Smith, S., & Owens, G. K. (2000). Smooth muscle alpha-actin CArG elements coordinate formation of a smooth muscle cell-selective, serum response factor-containing activation complex. Circulation Research, 86, 221–232.

    CAS  Google Scholar 

  14. Jung, F., Johnson, A. D., Kumar, M. S., Wei, B., Hautmann, M., Owens, G. K., et al. (1999). Characterization of an E-box-dependent cis element in the smooth muscle alpha-actin promoter. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 2591–2599.

    CAS  Google Scholar 

  15. Kumar, M. S., Hendrix, J. A., Johnson, A. D., & Owens, G. K. (2003). Smooth muscle alpha-actin gene requires two E-boxes for proper expression in vivo and is a target of class I basic helix-loop-helix proteins. Circulation Research, 92, 840–847.

    Article  CAS  Google Scholar 

  16. Wang, J., Niu, W., Nikiforov, Y., Naito, S., Chernausek, S., Witte, D., et al. (1997). Targeted overexpression of IGF-I evokes distinct patterns of organ remodeling in smooth muscle cell tissue beds of transgenic mice. Journal of Clinical Investigation, 100, 1425–1439.

    Article  CAS  Google Scholar 

  17. Kawada, N., Moriyama, T., Ando, A., Koyama, T., Hori, M., Miwa, T., et al. (1999). Role of intron 1 in smooth muscle alpha-actin transcriptional regulation in activated mesangial cells in vivo. Kidney International, 55, 2338–2348.

    Article  CAS  Google Scholar 

  18. Mack, C. P., & Owens, G. K. (1999). Regulation of smooth muscle alpha-actin expression in vivo is dependent on CArG elements within the 5’ and first intron promoter regions. Circulation Research, 84, 852–861.

    CAS  Google Scholar 

  19. Tomasek, J. J., McRae, J., Owens, G. K., & Haaksma, C. J. (2005). Regulation of alpha-smooth muscle actin expression in granulation tissue myofibroblasts is dependent on the intronic CArG element and the transforming growth factor-beta1 control element. American Journal of Pathology, 166, 1343–1351.

    CAS  Google Scholar 

  20. Dong, J. Y., Fan, P. D., & Frizzell, R. A. (1996). Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Human Gene Therapy, 7, 2101–2112.

    Article  CAS  Google Scholar 

  21. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T., & Nishimune, Y. (1997). ‘Green mice’ as a source of ubiquitous green cells. FEBS Letters, 407, 313–319.

    Article  CAS  Google Scholar 

  22. Sauvant, P., Sapin, V., Abergel, A., Schmidt, C. K., Blanchon, L., Alexandre-Gouabau, M. C., et al. (2002). PAV-1, a new rat hepatic stellate cell line converts retinol into retinoic acid, a process altered by ethanol. The International Journal of Biochemistry & Cell Biology, 34, 1017–1029.

    Article  CAS  Google Scholar 

  23. Ramadori, G., Veit, T., Schwogler, S., Dienes, H. P., Knittel, T., Rieder, H., et al. (1990). Expression of the gene of the alpha-smooth muscle-actin isoform in rat liver and in rat fat-storing (ITO) cells. Virchows Archiv. B, Cell Pathology Including Molecular Pathology, 59, 349–357.

    Article  CAS  Google Scholar 

  24. Geerts, A., Vrijsen, R., Rauterberg, J., Burt, A., Schellinck, P., & Wisse, E. (1989). In vitro differentiation of fat-storing cells parallels marked increase of collagen synthesis and secretion. Journal of Hepatology, 9, 59–68.

    Article  CAS  Google Scholar 

  25. Dignam, J. D., Lebovitz, R. M., & Roeder, R. G. (1983). Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Research, 11, 1475–1489.

    Article  CAS  Google Scholar 

  26. Banes, A. J., Horesovsky, G., Larson, C., Tsuzaki, M., Judex, S., Archambault, J., et al. (1999). Mechanical load stimulates expression of novel genes in vivo and in vitro in avian flexor tendon cells. Osteoarthritis and Cartilage/OARS, Osteoarthritis Research Society, 7, 141–153.

    Article  CAS  Google Scholar 

  27. Harris, R. C., Haralson, M. A., & Badr, K. F. (1992). Continuous stretch-relaxation in culture alters rat mesangial cell morphology, growth characteristics, and metabolic activity. Laboratory Investigation, 66, 548–554.

    CAS  Google Scholar 

  28. Fleischmann, M., Bloch, W., Kolossov, E., Andressen, C., Muller, M., Brem, G., et al. (1998). Cardiac specific expression of the green fluorescent protein during early murine embryonic development. FEBS Letters, 440, 370–376.

    Article  CAS  Google Scholar 

  29. Foster, D. N., Min, B., Foster, L. K., Stoflet, E. S., Sun, S., Getz, M. J., et al. (1992). Positive and negative cis-acting regulatory elements mediate expression of the mouse vascular smooth muscle alpha-actin gene. Journal of Biological Chemistry, 267, 11995–12003.

    CAS  Google Scholar 

  30. Johnson, A. D., & Owens, G. K. (1999). Differential activation of the SMalphaA promoter in smooth vs. skeletal muscle cells by bHLH factors. American Journal of Physiology, 276, C1420–C1431.

    CAS  Google Scholar 

  31. Hautmann, M. B., Madsen, C. S., & Owens, G. K. (1997). A transforming growth factor beta (TGFbeta) control element drives TGFbeta-induced stimulation of smooth muscle alpha-actin gene expression in concert with two CArG elements. Journal of Biological Chemistry, 272, 10948–10956.

    Article  CAS  Google Scholar 

  32. Cogan, J. G., Subramanian, S. V., Polikandriotis, J. A., Kelm, R. J., Jr., & Strauch, A. R. (2002). Vascular smooth muscle alpha-actin gene transcription during myofibroblast differentiation requires Sp1/3 protein binding proximal to the MCAT enhancer. Journal of Biological Chemistry, 277, 36433–36442.

    Article  CAS  Google Scholar 

  33. Wipff, P. J., Rifkin, D. B., Meister, J. J., & Hinz, B. (2007). Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. Journal of Cell Biology, 179, 1311–1323.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank Daniela Lohfink, Tanja Roth, and Melanie Scheffler for excellent technical support. This study was supported by the German Competence Network for Viral Hepatitis (HepNet), funded by the German Ministry of Education and Research (BMBF-01KI0405).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jochen W. U. Fries or Margarete Odenthal.

Additional information

The first authors J. Hirschfeld and J. Maurer contributed equally to this study as well as the senior authors J. W. U. Fries and M. Odenthal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF 44 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirschfeld, J., Maurer, J., Jung, D. et al. Targeting Myofibroblasts in Model Systems of Fibrosis by an Artificial α-Smooth Muscle-Actin Promoter Hybrid. Mol Biotechnol 43, 121–129 (2009). https://doi.org/10.1007/s12033-009-9186-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9186-4

Keywords

Navigation