Skip to main content

Advertisement

Log in

Direct antitumour activity of zoledronic acid: preclinical and clinical data

  • Educational Series
  • Molecular Targets in Oncology
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Bisphosphonates (BPs) are widely used in the management of metastatic bone disease to reduce skeletal morbidity. Zoledronic acid (ZA), the most potent BP in clinical use, has demonstrated clinical utility in multiple tumour types. Preclinical data indicate that ZA may have direct antitumour activity, as has been demonstrated preclinically in both in vitro and in vivo experiments. The majority of preclinical studies showing antitumour effects have used high doses of ZA, making it difficult to translate these data to the clinical setting. This review summarises the published data on antitumour effects of ZA in tumour cell lines, mice experiments, and human clinical trials. Translational questions regarding drug dose, dose interval, and sequence with chemotherapy treatment are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ross JR, Saunders Y, Edmonds PM et al (2003) Systematic review of role of bisphosphonates on skeletal morbidity in metastatic cancer. BMJ 327:469

    Article  PubMed  CAS  Google Scholar 

  2. Ricciardi S, de Marinis F (2009) Treatment of bone metastases in lung cancer: the actual role of zoledronic acid. Rev Recent Clin Trials 4:205–211

    Article  PubMed  CAS  Google Scholar 

  3. Clezardin P (2005) Anti-tumour activity of zoledronic acid. Cancer Treat Rev 31[Suppl 3]:1–8

    Article  PubMed  Google Scholar 

  4. Santini D, Caraglia M, Vincenzi B et al (2006) Mechanisms of disease: Preclinical reports of antineoplastic synergistic action of bisphosphonates. Nat Clin Pract Oncol 3:325–338

    Article  PubMed  CAS  Google Scholar 

  5. Neville-Webbe HL, Gnant M, Coleman RE (2010) Potential anticancer properties of bisphosphonates. Semin Oncol 37[Suppl 1]:S53–65

    Article  PubMed  CAS  Google Scholar 

  6. Santini D, Virzi V, Fratto ME et al (2010) Can we consider zoledronic acid a new antitumor agent? Recent evidence in clinical setting. Curr Cancer Drug Targets 10:46–54

    Article  PubMed  CAS  Google Scholar 

  7. Reeder JG, Brufsky AM (2010) The role of bisphosphonates in the adjuvant setting for breast cancer. Oncology (Williston Park) 24:462–467, 475

    Google Scholar 

  8. Gnant M (2009) Bisphosphonates in the prevention of disease recurrence: current results and ongoing trials. Curr Cancer Drug Targets 9:824–833

    Article  PubMed  CAS  Google Scholar 

  9. Barginear MF, Van Poznak C (2010) Bisphosphonates: do we know their role in adjuvant breast cancer treatment? Oncology (Williston Park) 24:475, 478, 480

    Google Scholar 

  10. Neville-Webbe HL, Coleman RE (2010) Bisphosphonates and RANK ligand inhibitors for the treatment and prevention of metastatic bone disease. Eur J Cancer 46:1211–1222

    Article  PubMed  CAS  Google Scholar 

  11. Lipton A (2008) Emerging role of bisphosphonates in the clinic: antitumor activity and prevention of metastasis to bone. Cancer Treat Rev 34[Suppl 1]:S25–30

    Article  PubMed  CAS  Google Scholar 

  12. Caccamo N, Meraviglia S, Scarpa F et al (2008) Aminobisphosphonate-activated gammadelta T cells in immunotherapy of cancer: doubts no more. Expert Opin Biol Ther 8:875–883

    Article  PubMed  CAS  Google Scholar 

  13. Meraviglia S, Eberl M, Vermijlen D et al (2010) In vivo manipulation of Vgamma9Vdelta2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin Exp Immunol 161:290–297

    PubMed  CAS  Google Scholar 

  14. Vincenzi B, Santini D, Dicuonzo G et al (2005) Zoledronic acid-related angiogenesis modifications and survival in advanced breast cancer patients. J Interferon Cytokine Res 25:144–151

    Article  PubMed  CAS  Google Scholar 

  15. Santini D, Vincenzi B, Galluzzo S et al (2007) Repeated intermittent low-dose therapy with zoledronic acid induces an early, sustained, and long-lasting decrease of peripheral vascular endothelial growth factor levels in cancer patients. Clin Cancer Res 13:4482–4486

    Article  PubMed  CAS  Google Scholar 

  16. Rosen LS, Gordon D, Kaminski M et al (2003) Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: a randomized, double-blind, multicenter, comparative trial. Cancer 98:1735–1744

    Article  PubMed  CAS  Google Scholar 

  17. Rosen LS, Gordon D, Tchekmedyian S et al (2003) Zoledronic acid versus placebo in the treatment of skeletal metastases in patients with lung cancer and other solid tumors: a phase III, double-blind, randomized trial-the Zoledronic Acid Lung Cancer and Other Solid Tumors Study Group. J Clin Oncol 21:3150–3157

    Article  PubMed  CAS  Google Scholar 

  18. Saad F, Gleason DM, Murray R et al (2004) Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J Natl Cancer Inst 96:879–882

    Article  PubMed  CAS  Google Scholar 

  19. Dunford JE, Thompson K, Coxon FP et al (2001) Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J Pharmacol Exp Ther 296:235–242

    PubMed  CAS  Google Scholar 

  20. Russell RG, Rogers MJ (1999) Bisphosphonates: from the laboratory to the clinic and back again. Bone 25:97–106

    Article  PubMed  CAS  Google Scholar 

  21. Lawson MA, Xia Z, Barnett BL et al (2010) Differences between bisphosphonates in binding affinities for hydroxyapatite. J Biomed Mater Res B Appl Biomater 92:149–155

    PubMed  CAS  Google Scholar 

  22. Russell RG, Watts NB, Ebetino FH et al (2008) Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int 19:733–759

    Article  PubMed  CAS  Google Scholar 

  23. Rogers MJ, Gordon S, Benford HL et al (2000) Cellular and molecular mechanisms of action of bisphosphonates. Cancer 88[Suppl 12]:2961–2978

    Article  PubMed  CAS  Google Scholar 

  24. Watts NB, Diab DL (2010) Long-term use of bisphosphonates in osteoporosis. J Clin Endocrinol Metab 95:1555–1565

    Article  PubMed  CAS  Google Scholar 

  25. Gennari L, Merlotti D, Mossetti G et al (2009) The use of intravenous aminobisphosphonates for the treatment of Paget’s disease of bone. Mini Rev Med Chem 9:1052–1063

    Article  PubMed  CAS  Google Scholar 

  26. Phillipi CA, Remmington T, Steiner RD (2008) Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database Syst Rev (4) (4):CD005088

  27. Drake MT, Clarke BL, Khosla S (2008) Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc 83:1032–1045

    Article  PubMed  CAS  Google Scholar 

  28. Lehenkari PP, Kellinsalmi M, Napankangas JP et al (2002) Further insight into mechanism of action of clodronate: inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite. Mol Pharmacol 61:1255–1262

    Article  PubMed  CAS  Google Scholar 

  29. McTaggart SJ (2006) Isoprenylated proteins. Cell Mol Life Sci 63:255–267

    Article  PubMed  CAS  Google Scholar 

  30. Rogers MJ, Frith JC, Luckman SP et al (1999) Molecular mechanisms of action of bisphosphonates. Bone 24[Suppl 5]:73S–79S

    Article  PubMed  CAS  Google Scholar 

  31. Monkkonen H, Auriola S, Lehenkari P et al (2006) A new endogenous ATP analog (ApppI) inhibits the mitochondrial adenine nucleotide translocase (ANT) and is responsible for the apoptosis induced by nitrogen-containing bisphosphonates. Br J Pharmacol 147:437–445

    Article  PubMed  Google Scholar 

  32. Raikkonen J, Crockett JC, Rogers MJ et al (2009) Zoledronic acid induces formation of a pro-apoptotic ATP analogue and isopentenyl pyrophosphate in osteoclasts in vivo and in MCF-7 cells in vitro. Br J Pharmacol 157:427–435

    Article  PubMed  CAS  Google Scholar 

  33. Fromigue O, Lagneaux L, Body JJ (2000) Bisphosphonates induce breast cancer cell death in vitro. J Bone Miner Res 15:2211–2221

    Article  PubMed  CAS  Google Scholar 

  34. Jagdev SP, Coleman RE, Shipman CM et al (2001) The bisphosphonate, zoledronic acid, induces apoptosis of breast cancer cells: evidence for synergy with paclitaxel. Br J Cancer 84:1126–1134

    Article  PubMed  CAS  Google Scholar 

  35. Senaratne SG, Pirianov G, Mansi JL et al (2000) Bisphosphonates induce apoptosis in human breast cancer cell lines. Br J Cancer 82:1459–1468

    PubMed  CAS  Google Scholar 

  36. Verdijk R, Franke HR, Wolbers F et al (2007) Differential effects of bisphosphonates on breast cancer cell lines. Cancer Lett 246:308–312

    Article  PubMed  CAS  Google Scholar 

  37. Rachner TD, Singh SK, Schoppet M et al (2010) Zoledronic acid induces apoptosis and changes the TRAIL/OPG ratio in breast cancer cells. Cancer Lett 287:109–116

    Article  PubMed  CAS  Google Scholar 

  38. Senaratne SG, Mansi JL, Colston KW (2002) The bisphosphonate zoledronic acid impairs Ras membrane [correction of impairs membrane] localisation and induces cytochrome c release in breast cancer cells. Br J Cancer 86:1479–1486

    Article  PubMed  CAS  Google Scholar 

  39. Oades GM, Senaratne SG, Clarke IA et al (2003) Nitrogen containing bisphosphonates induce apoptosis and inhibit the mevalonate pathway, impairing Ras membrane localization in prostate cancer cells. J Urol 170:246–252

    Article  PubMed  CAS  Google Scholar 

  40. Ozturk OH, Bozcuk H, Burgucu D et al (2007) Cisplatin cytotoxicity is enhanced with zoledronic acid in A549 lung cancer cell line: preliminary results of an in vitro study. Cell Biol Int 31:1069–1071

    Article  PubMed  CAS  Google Scholar 

  41. Koto K, Murata H, Kimura S et al (2010) Zoledronic acid inhibits proliferation of human fibrosarcoma cells with induction of apoptosis, and shows combined effects with other anticancer agents. Oncol Rep 24:233–239

    PubMed  CAS  Google Scholar 

  42. Denoyelle C, Hong L, Vannier JP et al (2003) New insights into the actions of bisphosphonate zoledronic acid in breast cancer cells by dual RhoA-dependent and -independent effects. Br J Cancer 88:1631–1640

    Article  PubMed  CAS  Google Scholar 

  43. Neville-Webbe HL, Rostami-Hodjegan A, Evans CA et al (2005) Sequence- and schedule-dependent enhancement of zoledronic acid induced apoptosis by doxorubicin in breast and prostate cancer cells. Int J Cancer 113:364–371

    Article  PubMed  CAS  Google Scholar 

  44. Chuah C, Barnes DJ, Kwok M et al (2005) Zoledronate inhibits proliferation and induces apoptosis of imatinib-resistant chronic myeloid leukaemia cells. Leukemia 19:1896–1904

    Article  PubMed  CAS  Google Scholar 

  45. Monkkonen H, Ottewell PD, Kuokkanen J et al (2007) Zoledronic acid-induced IPP/ApppI production in vivo. Life Sci 81:1066–1070

    Article  PubMed  Google Scholar 

  46. Ory B, Blanchard F, Battaglia S et al (2007) Zoledronic acid activates the DNA S-phase checkpoint and induces osteosarcoma cell death characterized by apoptosis-inducing factor and endonuclease-G translocation independently of p53 and retinoblastoma status. Mol Pharmacol 71:333–343

    Article  PubMed  CAS  Google Scholar 

  47. Fromigue O, Kheddoumi N, Body JJ (2003) Bisphosphonates antagonise bone growth factors’ effects on human breast cancer cells survival. Br J Cancer 89:178–184

    Article  PubMed  CAS  Google Scholar 

  48. Stresing V, Daubine F, Benzaid I et al (2007) Bisphosphonates in cancer therapy. Cancer Lett 257:16–35

    Article  PubMed  CAS  Google Scholar 

  49. Budman DR, Calabro A (2006) Zoledronic acid (Zometa) enhances the cytotoxic effect of gemcitabine and fluvastatin: in vitro isobologram studies with conventional and nonconventional cytotoxic agents. Oncology 70:147–153

    Article  PubMed  CAS  Google Scholar 

  50. Woodward JK, Neville-Webbe HL, Coleman RE et al (2005) Combined effects of zoledronic acid and doxorubicin on breast cancer cell invasion in vitro. Anticancer Drugs 16:845–854

    Article  PubMed  CAS  Google Scholar 

  51. Vogt U, Bielawski KP, Bosse U et al (2004) Breast tumour growth inhibition in vitro through the combination of cyclophosphamide/metotrexate/5-fluorouracil, epirubicin/cyclophosphamide, epirubicin/paclitaxel, and epirubicin/docetaxel with the bisphosphonates ibandronate and zoledronic acid. Oncol Rep 12:1109–1114

    PubMed  CAS  Google Scholar 

  52. Matsumoto S, Kimura S, Segawa H et al (2005) Efficacy of the third-generation bisphosphonate, zoledronic acid alone and combined with anticancer agents against small cell lung cancer cell lines. Lung Cancer 47:31–39

    Article  PubMed  Google Scholar 

  53. Benassi MS, Chiechi A, Ponticelli F et al (2007) Growth inhibition and sensitization to cisplatin by zoledronic acid in osteosarcoma cells. Cancer Lett 250:194–205

    Article  PubMed  CAS  Google Scholar 

  54. Daubine F, Le Gall C, Gasser J et al (2007) Antitumor effects of clinical dosing regimens of bisphosphonates in experimental breast cancer bone metastasis. J Natl Cancer Inst 99:322–330

    Article  PubMed  CAS  Google Scholar 

  55. Lamoureux F, Ory B, Battaglia S et al (2008) Relevance of a new rat model of osteoblastic metastases from prostate carcinoma for preclinical studies using zoledronic acid. Int J Cancer 122:751–760

    Article  PubMed  CAS  Google Scholar 

  56. Giraudo E, Inoue M, Hanahan D (2004) An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 114:623–633

    PubMed  CAS  Google Scholar 

  57. Wakchoure S, Merrell MA, Aldrich W et al (2006) Bisphosphonates inhibit the growth of mesothelioma cells in vitro and in vivo. Clin Cancer Res 12:2862–2868

    Article  PubMed  CAS  Google Scholar 

  58. Gouin F, Ory B, Redini F et al (2006) Zoledronic acid slows down rat primary chondrosarcoma development, recurrent tumor progression after intralesional curretage and increases overall survival. Int J Cancer 119:980–984

    Article  PubMed  CAS  Google Scholar 

  59. Ory B, Heymann MF, Kamijo A et al (2005) Zoledronic acid suppresses lung metastases and prolongs overall survival of osteosarcoma-bearing mice. Cancer 104:2522–2529

    Article  PubMed  CAS  Google Scholar 

  60. Hiraga T, Williams PJ, Ueda A et al (2004) Zoledronic acid inhibits visceral metastases in the 4T1/luc mouse breast cancer model. Clin Cancer Res 10:4559–4567

    Article  PubMed  CAS  Google Scholar 

  61. Brubaker KD, Brown LG, Vessella RL et al (2006) Administration of zoledronic acid enhances the effects of docetaxel on growth of prostate cancer in the bone environment. BMC Cancer 6:15

    Article  PubMed  Google Scholar 

  62. Ottewell PD, Deux B, Monkkonen H et al (2008) Differential effect of doxorubicin and zoledronic acid on intraosseous versus extraosseous breast tumor growth in vivo. Clin Cancer Res 14:4658–4666

    Article  PubMed  CAS  Google Scholar 

  63. Ottewell PD, Monkkonen H, Jones M et al (2008) Antitumor effects of doxorubicin followed by zoledronic acid in a mouse model of breast cancer. J Natl Cancer Inst 100:1167–1178

    Article  PubMed  CAS  Google Scholar 

  64. Lu S, Zhang J, Zhou Z et al (2008) Synergistic inhibitory activity of zoledronate and paclitaxel on bone metastasis in nude mice. Oncol Rep 20:581–587

    PubMed  CAS  Google Scholar 

  65. Heymann D, Ory B, Blanchard F et al (2005) Enhanced tumor regression and tissue repair when zoledronic acid is combined with ifosfamide in rat osteosarcoma. Bone 37:74–86

    Article  PubMed  CAS  Google Scholar 

  66. Zhou Z, Guan H, Duan X et al (2005) Zoledronic acid inhibits primary bone tumor growth in Ewing sarcoma. Cancer 104:1713–1720

    Article  PubMed  CAS  Google Scholar 

  67. Major P, Lortholary A, Hon J et al (2001) Zoledronic acid is superior to pamidronate in the treatment of hypercalcemia of malignancy: a pooled analysis of two randomized, controlled clinical trials. J Clin Oncol 19:558–567

    PubMed  CAS  Google Scholar 

  68. Rosen LS, Gordon DH, Dugan W Jr et al (2004) Zoledronic acid is superior to pamidronate for the treatment of bone metastases in breast carcinoma patients with at least one osteolytic lesion. Cancer 100:36–43

    Article  PubMed  CAS  Google Scholar 

  69. Costa L, Major PP (2009) Effect of bisphosphonates on pain and quality of life in patients with bone metastases. Nat Clin Pract Oncol 6:163–174

    Article  PubMed  CAS  Google Scholar 

  70. Dong M, Feng FY, Zhang Y et al (2008) Phase III clinical study of zoledronic acid in the treatment of pain induced by bone metastasis from solid tumor or multiple myeloma. Zhonghua Zhong Liu Za Zhi 30:215–220

    PubMed  CAS  Google Scholar 

  71. Devitt B, McLachlan SA (2008) Use of ibandronate in the prevention of skeletal events in metastatic breast cancer. Ther Clin Risk Manag 4:453–458

    PubMed  CAS  Google Scholar 

  72. Costa L, Lipton A, Coleman RE (2006) Role of bisphosphonates for the management of skeletal complications and bone pain from skeletal metastases. Support Cancer Ther 3:143–153

    Article  PubMed  CAS  Google Scholar 

  73. Langer C, Hirsh V (2010) Skeletal morbidity in lung cancer patients with bone metastases: demonstrating the need for early diagnosis and treatment with bisphosphonates. Lung Cancer 67:4–11

    Article  PubMed  Google Scholar 

  74. Lipton A, Cook R, Saad F et al (2008) Normalization of bone markers is associated with improved survival in patients with bone metastases from solid tumors and elevated bone resorption receiving zoledronic acid. Cancer 113:193–201

    Article  PubMed  CAS  Google Scholar 

  75. Saad F, Lipton A, Cook R et al (2007) Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer 110:1860–1867

    Article  PubMed  Google Scholar 

  76. Zaghloul MS, Boutrus R, El-Hossieny H et al (2010) A prospective, randomized, placebo-controlled trial of zoledronic acid in bony metastatic bladder cancer. Int J Clin Oncol 15:382–389

    Article  PubMed  CAS  Google Scholar 

  77. Zarogoulidis K, Boutsikou E, Zarogoulidis P et al (2009) The impact of zoledronic acid therapy in survival of lung cancer patients with bone metastasis. Int J Cancer 125:1705–1709

    Article  PubMed  CAS  Google Scholar 

  78. Pandya KJ, Gajra A, Warsi GM et al (2010) Multicenter, randomized, phase 2 study of zoledronic acid in combination with docetaxel and carboplatin in patients with unresectable stage IIIB or stage IV nonsmall cell lung cancer. Lung Cancer 67:330–338

    Article  PubMed  Google Scholar 

  79. Chen T, Berenson J, Vescio R et al (2002) Pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with bone metastases. J Clin Pharmacol 42:1228–1236

    Article  PubMed  CAS  Google Scholar 

  80. Gao L, Deng H, Zhao H et al (2005) HTLV-1 Tax transgenic mice develop spontaneous osteolytic bone metastases prevented by osteoclast inhibition. Blood 106:4294–4302

    Article  PubMed  CAS  Google Scholar 

  81. Sato M, Grasser W, Endo N et al (1991) Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest 88:2095–2105

    Article  PubMed  CAS  Google Scholar 

  82. Peng H, Sohara Y, Moats RA et al (2007) The activity of zoledronic Acid on neuroblastoma bone metastasis involves inhibition of osteoclasts and tumor cell survival and proliferation. Cancer Res 67:9346–9355

    Article  PubMed  CAS  Google Scholar 

  83. Winter MC, Syddall SP, Cross SS et al (2010) ANZAC: a randomised neoadjuvant biomarker study investigating the anti-tumour activity of the addition of zoledronic acid to chemotherapy in breast cancer. 33rd Annual San Antonio Breast Cancer Symposium. Abstract #P1-11-01

  84. Zhao X, Xu X, Guo L et al (2010) Biomarker alterations with metronomic use of low-dose zoledronic acid for breast cancer patients with bone metastases and potential clinical significance. Breast Cancer Res Treat 124:733–743

    Article  PubMed  CAS  Google Scholar 

  85. Clyburn RD, Reid P, Evans CA et al (2010) Increased anti-tumour effects of doxorubicin and zoledronic acid in prostate cancer cells in vitro: supporting the benefits of combination therapy. Cancer Chemother Pharmacol 65:969–978

    Article  PubMed  CAS  Google Scholar 

  86. Neville-Webbe HL, Evans CA, Coleman RE et al (2006) Mechanisms of the synergistic interaction between the bisphosphonate zoledronic acid and the chemotherapy agent paclitaxel in breast cancer cells in vitro. Tumour Biol 27:92–103

    Article  PubMed  CAS  Google Scholar 

  87. Morgan C, Lewis PD, Jones RM et al (2007) The in vitro anti-tumour activity of zoledronic acid and docetaxel at clinically achievable concentrations in prostate cancer. Acta Oncol 46:669–677

    Article  PubMed  CAS  Google Scholar 

  88. Horie N, Murata H, Kimura S et al (2007) Combined effects of a third-generation bisphosphonate, zoledronic acid with other anticancer agents against murine osteosarcoma. Br J Cancer 96:255–261

    Article  PubMed  CAS  Google Scholar 

  89. Ottewell PD, Lefley DV, Cross SS et al (2010) Sustained inhibition of tumor growth and prolonged survival following sequential administration of doxorubicin and zoledronic acid in a breast cancer model. Int J Cancer 126:522–532

    Article  PubMed  CAS  Google Scholar 

  90. Facchini G, Caraglia M, Morabito A et al (2010) Metronomic administration of zoledronic acid and taxotere combination in castration resistant prostate cancer patients: Phase I ZANTE trial. Cancer Biol Ther 10:543–548

    Article  PubMed  CAS  Google Scholar 

  91. Coleman RE, Thorpe HC, Cameron D et al (2010) Adjuvant treatment with zoledronic acid in stage II/III breast cancer. The AZURE Trial (BIG 01/04). 33rd Annual Meeting of the San Antonio Breast Cancer Symposium. Abstract #S4-5

  92. Gnant M, Eidtmann H (2010) The anti-tumor effect of bisphosphonates ABCSG-12, ZO-FAST and more. Crit Rev Oncol Hematol 74[Suppl 1]:S2–6

    Article  PubMed  Google Scholar 

  93. Haque I, Mehta S, Majumder M et al (2011) Cyr61/CCN1 signaling is critical for epithelialmesenchymal transition and stemness and promotes pancreatic carcinogenesis. Mol Cancer 10:8

    Article  PubMed  CAS  Google Scholar 

  94. Marra M, Santini D, Meo G et al (2009) Cyr61 downmodulation potentiates the anticancer effects of zoledronic acid in androgen-independent prostate cancer cells. Int J Cancer 125:2004–2013

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquim Bosch-Barrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosch-Barrera, J., Merajver, S.D., Menéndez, J.A. et al. Direct antitumour activity of zoledronic acid: preclinical and clinical data. Clin Transl Oncol 13, 148–155 (2011). https://doi.org/10.1007/s12094-011-0634-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-011-0634-9

Keywords

Navigation