Skip to main content

Advertisement

Log in

CCAR2 deficiency augments genotoxic stress-induced apoptosis in the presence of melatonin in non-small cell lung cancer cells

  • Research Article
  • Published:
Tumor Biology

Abstract

Melatonin exhibits oncostatic activity in several cancers but does not lead to cytotoxicity in estrogen receptor (ER)-negative non-small cell lung cancers (NSCLCs). In an effort to overcome the melatonin resistance of these cancers, we investigated whether cell cycle and apoptosis regulator 2 (CCAR2) depletion would promote apoptosis following genotoxic stress in melatonin-resistant cancer cells. Ordinarily, the NSCLC cell lines A549 and A427 did not undergo cell death following melatonin treatment for short period. These cell lines were irradiated with UV, a source of genotoxic damage, to trigger apoptotic signaling. Treatment with melatonin prior to irradiation did not produce any significant change in apoptosis. By contrast, in CCAR2-deficient cells, melatonin treatment increased apoptosis induced by genotoxic stress; this effect was dependent on the dose of melatonin. The increase in apoptosis in CCAR2-deficient cells was not dependent on SIRT1. The results indicate that CCAR2 is critical for maintaining cell survival in the presence of melatonin under genotoxic stress. Furthermore, CCAR2 is overexpressed in NSCLC; therefore, melatonin could be used as a potential supplement to classical anticancer drugs in therapies against CCAR2-deficient cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stefulj J, Hortner M, Ghosh M, Schauenstein K, Rinner I, Wolfler A, et al. Gene expression of the key enzymes of melatonin synthesis in extrapineal tissues of the rat. J Pineal Res. 2001;30(4):243–7.

    Article  CAS  PubMed  Google Scholar 

  2. Boutin JA, Audinot V, Ferry G, Delagrange P. Molecular tools to study melatonin pathways and actions. Trends Pharmacol Sci. 2005;26(8):412–9.

    Article  CAS  PubMed  Google Scholar 

  3. Reiter RJ, Tan DX, Manchester LC, Pilar Terron M, Flores LJ, Koppisepi S. Medical implications of melatonin: receptor-mediated and receptor-independent actions. Adv Med Sci. 2007;52:11–28.

    CAS  PubMed  Google Scholar 

  4. Simonneaux V, Ribelayga C. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev. 2003;55(2):325–95.

    Article  CAS  PubMed  Google Scholar 

  5. Petrosillo G, Di Venosa N, Pistolese M, Casanova G, Tiravanti E, Colantuono G, et al. Protective effect of melatonin against mitochondrial dysfunction associated with cardiac ischemia- reperfusion: role of cardiolipin. FASEB J. 2006;20(2):269–76.

    Article  CAS  PubMed  Google Scholar 

  6. Allegra M, Reiter RJ, Tan DX, Gentile C, Tesoriere L, Livrea MA. The chemistry of melatonin’s interaction with reactive species. J Pineal Res. 2003;34(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  7. Reiter RJ, Tan DX, Mayo JC, Sainz RM, Leon J, Czarnocki Z. Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol. 2003;50(4):1129–46.

    CAS  PubMed  Google Scholar 

  8. Jung B, Ahmad N. Melatonin in cancer management: progress and promise. Cancer Res. 2006;66(20):9789–93.

    Article  CAS  PubMed  Google Scholar 

  9. Diederich M. Natural compounds as inducers of cell death : volume 1. New York: Springer; 2012.

  10. Bizzarri M, Proietti S, Cucina A, Reiter RJ. Molecular mechanisms of the pro-apoptotic actions of melatonin in cancer: a review. Expert Opin Ther Targets. 2013;17(12):1483–96.

    Article  CAS  PubMed  Google Scholar 

  11. Carbajo-Pescador S, Steinmetz C, Kashyap A, Lorenz S, Mauriz JL, Heise M, et al. Melatonin induces transcriptional regulation of Bim by FoxO3a in HepG2 cells. Br J Cancer. 2013;108(2):442–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cini G, Neri B, Pacini A, Cesati V, Sassoli C, Quattrone S, et al. Antiproliferative activity of melatonin by transcriptional inhibition of cyclin D1 expression: a molecular basis for melatonin-induced oncostatic effects. J Pineal Res. 2005;39(1):12–20.

    Article  CAS  PubMed  Google Scholar 

  13. Cos S, Fernandez R, Guezmes A, Sanchez-Barcelo EJ. Influence of melatonin on invasive and metastatic properties of MCF-7 human breast cancer cells. Cancer Res. 1998;58(19):4383–90.

    CAS  PubMed  Google Scholar 

  14. Hill SM, Blask DE. Effects of the pineal hormone melatonin on the proliferation and morphological characteristics of human breast cancer cells (MCF-7) in culture. Cancer Res. 1988;48(21):6121–6.

    CAS  PubMed  Google Scholar 

  15. Hill SM, Frasch T, Xiang S, Yuan L, Duplessis T, Mao L. Molecular mechanisms of melatonin anticancer effects. Integr Cancer Ther. 2009;8(4):337–46.

    Article  CAS  PubMed  Google Scholar 

  16. Joo SS, Yoo YM. Melatonin induces apoptotic death in LNCaP cells via p38 and JNK pathways: therapeutic implications for prostate cancer. J Pineal Res. 2009;47(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  17. Mao L, Dauchy RT, Blask DE, Slakey LM, Xiang S, Yuan L, et al. Circadian gating of epithelial-to-mesenchymal transition in breast cancer cells via melatonin-regulation of GSK3beta. Mol Endocrinol. 2012;26(11):1808–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Proietti S, Cucina A, Reiter RJ, Bizzarri M. Molecular mechanisms of melatonin’s inhibitory actions on breast cancers. Cell Mol Life Sci. 2013;70(12):2139–57.

    Article  CAS  PubMed  Google Scholar 

  19. Sainz RM, Mayo JC, Tan DX, Leon J, Manchester L, Reiter RJ. Melatonin reduces prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and PKA independent mechanism. Prostate. 2005;63(1):29–43.

    Article  CAS  PubMed  Google Scholar 

  20. Grant SG, Melan MA, Latimer JJ, Witt-Enderby PA. Melatonin and breast cancer: cellular mechanisms, clinical studies and future perspectives. Expert Rev Mol Med. 2009;11:e5.

    Article  PubMed  Google Scholar 

  21. Sanchez-Barcelo EJ, Cos S, Fernandez R, Mediavilla MD. Melatonin and mammary cancer: a short review. Endocr Relat Cancer. 2003;10(2):153–9.

    Article  CAS  PubMed  Google Scholar 

  22. Sanchez-Barcelo EJ, Cos S, Mediavilla D, Martinez-Campa C, Gonzalez A, Alonso-Gonzalez C. Melatonin-estrogen interactions in breast cancer. J Pineal Res. 2005;38(4):217–22.

    Article  CAS  PubMed  Google Scholar 

  23. Cos S, Gonzalez A, Martinez-Campa C, Mediavilla MD, Alonso-Gonzalez C, Sanchez-Barcelo EJ. Estrogen-signaling pathway: a link between breast cancer and melatonin oncostatic actions. Cancer Detect Prev. 2006;30(2):118–28.

    Article  CAS  PubMed  Google Scholar 

  24. Yuan L, Collins AR, Dai J, Dubocovich ML, Hill SM. MT(1) melatonin receptor overexpression enhances the growth suppressive effect of melatonin in human breast cancer cells. Mol Cell Endocrinol. 2002;192(1–2):147–56.

    Article  CAS  PubMed  Google Scholar 

  25. Hill SM, Spriggs LL, Simon MA, Muraoka H, Blask DE. The growth inhibitory action of melatonin on human breast cancer cells is linked to the estrogen response system. Cancer Lett. 1992;64(3):249–56.

    Article  CAS  PubMed  Google Scholar 

  26. Lissoni P, Ardizzoia A, Barni S, Paolorossi F, Tancini G, Meregalli S, et al. A randomized study of tamoxifen alone versus tamoxifen plus melatonin in estrogen receptor-negative heavily pretreated metastatic breast-cancer patients. Oncol Rep. 1995;2(5):871–3.

    CAS  PubMed  Google Scholar 

  27. Close P, East P, Dirac-Svejstrup AB, Hartmann H, Heron M, Maslen S, et al. DBIRD complex integrates alternative mRNA splicing with RNA polymerase II transcript elongation. Nature. 2012;484(7394):386–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Escande C, Chini CCS, Nin V, Dykhouse KM, Novak CM, Levine J, et al. Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice. J Clin Invest. 2010;120(2):545–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Fu J, Jiang J, Li J, Wang S, Shi G, Feng Q, et al. Deleted in breast cancer 1, a novel androgen receptor (AR) coactivator that promotes AR DNA-binding activity. J Biol Chem. 2009;284(11):6832–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Koyama S, Wada-Hiraike O, Nakagawa S, Tanikawa M, Hiraike H, Miyamoto Y, et al. Repression of estrogen receptor beta function by putative tumor suppressor DBC1. Biochem Biophys Res Commun. 2010;392(3):357–62.

    Article  CAS  PubMed  Google Scholar 

  31. Chini CC, Escande C, Nin V, Chini EN. Histone deacetylase 3 is negatively regulated by the nuclear protein deleted in breast cancer 1 (DBC1). J Biol Chem. 2010;285(52):40830–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Chini CC, Escande C, Nin V, Chini EN. DBC1 (Deleted in Breast Cancer 1) modulates the stability and function of the nuclear receptor Rev-erbalpha. Biochem J. 2013;451(3):453–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Garapaty S, Xu CF, Trojer P, Mahajan MA, Neubert TA, Samuels HH. Identification and characterization of a novel nuclear protein complex involved in nuclear hormone receptor-mediated gene regulation. J Biol Chem. 2009;284(12):7542–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Hiraike H, Wada-Hiraike O, Nakagawa S, Koyama S, Miyamoto Y, Sone K, et al. Identification of DBC1 as a transcriptional repressor for BRCA1. Br J Cancer. 2010;102(6):1061–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Li Z, Chen L, Kabra N, Wang C, Fang J, Chen J. Inhibition of SUV39H1 methyltransferase activity by DBC1. J Biol Chem. 2009;284(16):10361–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Nin V, Escande C, Chini CC, Giri S, Camacho-Pereira J, Matalonga J, et al. Role of deleted in breast cancer 1 (DBC1) protein in SIRT1 deacetylase activation induced by protein kinase A and AMP-activated protein kinase. J Biol Chem. 2012;287(28):23489–501.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Sundararajan R, Chen G, Mukherjee C, White E. Caspase-dependent processing activates the proapoptotic activity of deleted in breast cancer-1 during tumor necrosis factor-alpha-mediated death signaling. Oncogene. 2005;24(31):4908–20.

    Article  CAS  PubMed  Google Scholar 

  38. Yu EJ, Kim SH, Heo K, Ou CY, Stallcup MR, Kim JH. Reciprocal roles of DBC1 and SIRT1 in regulating estrogen receptor alpha activity and co-activator synergy. Nucleic Acids Res. 2011;39(16):6932–43.

    Article  CAS  PubMed  Google Scholar 

  39. Kim JE, Chen J, Lou Z. DBC1 is a negative regulator of SIRT1. Nature. 2008;451(7178):583–6.

    Article  CAS  PubMed  Google Scholar 

  40. Yuan J, Luo K, Liu T, Lou Z. Regulation of SIRT1 activity by genotoxic stress. Genes Dev. 2012;26(8):791–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Zannini L, Buscemi G, Kim JE, Fontanella E, Delia D. DBC1 phosphorylation by ATM/ATR inhibits SIRT1 deacetylase in response to DNA damage. J Mol Cell Biol. 2012;4(5):294–303.

    Article  CAS  PubMed  Google Scholar 

  42. Menssen A, Hydbring P, Kapelle K, Vervoorts J, Diebold J, Luscher B, et al. The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proc Natl Acad Sci U S A. 2012;109(4):E187–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Kang Y, Jung WY, Lee H, Lee E, Kim A, Kim BH. Expression of SIRT1 and DBC1 in gastric adenocarcinoma. Korean J Pathol. 2012;46(6):523–31.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Trauernicht AM, Kim SJ, Kim NH, Boyer TG. Modulation of estrogen receptor alpha protein level and survival function by DBC-1. Mol Endocrinol. 2007;21(7):1526–36.

    Article  CAS  PubMed  Google Scholar 

  45. Trauernicht AM, Kim SJ, Kim NH, Clarke R, Boyer TG. DBC-1 mediates endocrine resistant breast cancer cell survival. Cell Cycle. 2010;9(6):1218–9.

    Article  CAS  PubMed  Google Scholar 

  46. Kim W, Kim JE. Deleted in breast cancer 1 (DBC1) deficiency results in apoptosis of breast cancer cells through impaired responses to UV-induced DNA damage. Cancer Lett. 2013;333(2):180–6.

    Article  CAS  PubMed  Google Scholar 

  47. Kim SH, Kim JH, Yu EJ, Lee KW, Park CK. The overexpression of DBC1 in esophageal squamous cell carcinoma correlates with poor prognosis. Histol Histopathol. 2012;27(1):49–58.

    CAS  PubMed  Google Scholar 

  48. Cha EJ, Noh SJ, Kwon KS, Kim CY, Park BH, Park HS, et al. Expression of DBC1 and SIRT1 is associated with poor prognosis of gastric carcinoma. Clin Cancer Res. 2009;15(13):4453–9.

    Article  CAS  PubMed  Google Scholar 

  49. Kim JR, Moon YJ, Kwon KS, Bae JS, Wagle S, Yu TK, et al. Expression of SIRT1 and DBC1 is associated with poor prognosis of soft tissue sarcomas. PLoS One. 2013;8(9):e74738.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Lee H, Kim KR, Noh SJ, Park HS, Kwon KS, Park BH, et al. Expression of DBC1 and SIRT1 is associated with poor prognosis for breast carcinoma. Hum Pathol. 2011;42(2):204–13.

    Article  CAS  PubMed  Google Scholar 

  51. Noh SJ, Kang MJ, Kim KM, Bae JS, Park HS, Moon WS, et al. Acetylation status of P53 and the expression of DBC1, SIRT1, and androgen receptor are associated with survival in clear cell renal cell carcinoma patients. Pathology. 2013;45(6):574–80.

    Article  CAS  PubMed  Google Scholar 

  52. Park HS, Bae JS, Noh SJ, Kim KM, Lee H, Moon WS, et al. Expression of DBC1 and androgen receptor predict poor prognosis in diffuse large B cell lymphoma. Transl Oncol. 2013;6(3):370–81.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Sung JY, Kim R, Kim JE, Lee J. Balance between SIRT1 and DBC1 expression is lost in breast cancer. Cancer Sci. 2010;101(7):1738–44.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Y, Gu Y, Sha S, Kong X, Zhu H, Xu B, et al. DBC1 is over-expressed and associated with poor prognosis in colorectal cancer. Int J Clin Oncol. 2014;19(1):106–12.

    Article  CAS  PubMed  Google Scholar 

  55. Song N, Kim AJ, Kim HJ, Jee HJ, Kim M, Yoo YH, et al. Melatonin suppresses doxorubicin-induced premature senescence of A549 lung cancer cells by ameliorating mitochondrial dysfunction. J Pineal Res. 2012;53(4):335–43.

    Article  CAS  PubMed  Google Scholar 

  56. Fic M, Podhorska-Okolow M, Dziegiel P, Gebarowska E, Wysocka T, Drag-Zalesinska M, et al. Effect of melatonin on cytotoxicity of doxorubicin toward selected cell lines (human keratinocytes, lung cancer cell line A-549, laryngeal cancer cell line Hep-2). In Vivo. 2007;21(3):513–8.

    CAS  PubMed  Google Scholar 

  57. Stabile LP, Davis AL, Gubish CT, Hopkins TM, Luketich JD, Christie N, et al. Human non-small cell lung tumors and cells derived from normal lung express both estrogen receptor alpha and beta and show biological responses to estrogen. Cancer Res. 2002;62(7):2141–50.

    CAS  PubMed  Google Scholar 

  58. Mollerup S, Jorgensen K, Berge G, Haugen A. Expression of estrogen receptors alpha and beta in human lung tissue and cell lines. Lung Cancer. 2002;37(2):153–9.

    Article  PubMed  Google Scholar 

  59. Niikawa H, Suzuki T, Miki Y, Suzuki S, Nagasaki S, Akahira J, et al. Intratumoral estrogens and estrogen receptors in human non-small cell lung carcinoma. Clin Cancer Res. 2008;14(14):4417–26.

    Article  CAS  PubMed  Google Scholar 

  60. Croxtall JD, Emmas C, White JO, Choudhary Q, Flower RJ. Tamoxifen inhibits growth of oestrogen receptor-negative A549 cells. Biochem Pharmacol. 1994;47(2):197–202.

    Article  CAS  PubMed  Google Scholar 

  61. Luo J, Deng ZL, Luo X, Tang N, Song WX, Chen J, et al. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc. 2007;2(5):1236–47.

    Article  CAS  PubMed  Google Scholar 

  62. Cucina A, Proietti S, D'Anselmi F, Coluccia P, Dinicola S, Frati L, et al. Evidence for a biphasic apoptotic pathway induced by melatonin in MCF-7 breast cancer cells. J Pineal Res. 2009;46(2):172–80.

    Article  CAS  PubMed  Google Scholar 

  63. Kim CH, Yoo YM. Melatonin induces apoptotic cell death via p53 in LNCaP cells. Korean J Physiol Pharmacol. 2010;14(6):365–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Martin-Renedo J, Mauriz JL, Jorquera F, Ruiz-Andres O, Gonzalez P, Gonzalez-Gallego J. Melatonin induces cell cycle arrest and apoptosis in hepatocarcinoma HepG2 cell line. J Pineal Res. 2008;45(4):532–40.

    Article  CAS  PubMed  Google Scholar 

  65. Gerl R, Vaux DL. Apoptosis in the development and treatment of cancer. Carcinogenesis. 2005;26(2):263–70.

    Article  CAS  PubMed  Google Scholar 

  66. Kim JE, Sung S. Deleted in breast cancer 1 (DBC1) is a dynamically regulated protein. Neoplasma. 2010;57(4):365–8.

    CAS  PubMed  Google Scholar 

  67. Fan W, Luo J. SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Mol Cell. 2010;39(2):247–58.

    Article  CAS  PubMed  Google Scholar 

  68. Cao C, Lu S, Kivlin R, Wallin B, Card E, Bagdasarian A, et al. SIRT1 confers protection against UVB- and H2O2-induced cell death via modulation of p53 and JNK in cultured skin keratinocytes. J Cell Mol Med. 2009;13(9B):3632–43.

    Article  PubMed  Google Scholar 

  69. Cheng Y, Cai L, Jiang P, Wang J, Gao C, Feng H, et al. SIRT1 inhibition by melatonin exerts antitumor activity in human osteosarcoma cells. Eur J Pharmacol. 2013;715(1–3):219–29.

    Article  CAS  PubMed  Google Scholar 

  70. Jung-Hynes B, Schmit TL, Reagan-Shaw SR, Siddiqui IA, Mukhtar H, Ahmad N. Melatonin, a novel Sirt1 inhibitor, imparts antiproliferative effects against prostate cancer in vitro in culture and in vivo in TRAMP model. J Pineal Res. 2011;50(2):140–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Luchetti F, Canonico B, Curci R, Battistelli M, Mannello F, Papa S, et al. Melatonin prevents apoptosis induced by UV-B treatment in U937 cell line. J Pineal Res. 2006;40(2):158–67.

    Article  CAS  PubMed  Google Scholar 

  72. Fischer TW, Zbytek B, Sayre RM, Apostolov EO, Basnakian AG, Sweatman TW, et al. Melatonin increases survival of HaCaT keratinocytes by suppressing UV-induced apoptosis. J Pineal Res. 2006;40(1):18–26.

    Article  CAS  PubMed  Google Scholar 

  73. Izykowska I, Cegielski M, Gebarowska E, Podhorska-Okolow M, Piotrowska A, Zabel M, et al. Effect of melatonin on human keratinocytes and fibroblasts subjected to UVA and UVB radiation In vitro. In Vivo. 2009;23(5):739–45.

    CAS  PubMed  Google Scholar 

  74. Lee KS, Lee WS, Suh SI, Kim SP, Lee SR, Ryoo YW, et al. Melatonin reduces ultraviolet-B induced cell damages and polyamine levels in human skin fibroblasts in culture. Exp Mol Med. 2003;35(4):263–8.

    Article  CAS  PubMed  Google Scholar 

  75. Fischer TW, Kleszczynski K, Hardkop LH, Kruse N, Zillikens D. Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVR-induced depletion, and protects against the formation of DNA damage (8-hydroxy-2'-deoxyguanosine) in ex vivo human skin. J Pineal Res. 2013;54(3):303–12.

    Article  CAS  PubMed  Google Scholar 

  76. Fischer TW, Scholz G, Knoll B, Hipler UC, Elsner P. Melatonin suppresses reactive oxygen species induced by UV irradiation in leukocytes. J Pineal Res. 2004;37(2):107–12.

    Article  CAS  PubMed  Google Scholar 

  77. Fischer TW, Zmijewski MA, Wortsman J, Slominski A. Melatonin maintains mitochondrial membrane potential and attenuates activation of initiator (casp-9) and effector caspases (casp-3/casp-7) and PARP in UVR-exposed HaCaT keratinocytes. J Pineal Res. 2008;44(4):397–407.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Kleszczynski K, Hardkop LH, Fischer TW. Differential effects of melatonin as a broad range UV-damage preventive dermato-endocrine regulator. Dermatoendocrinol. 2011;3(1):27–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Srinivasan V, Spence DW, Pandi-Perumal SR, Brown GM, Cardinali DP. Melatonin in mitochondrial dysfunction and related disorders. Int J Alzheimers Dis. 2011;2011:326320.

    PubMed Central  PubMed  Google Scholar 

  80. Surendran D, Geetha CS, Mohanan PV. Amelioration of melatonin on oxidative stress and genotoxic effects induced by cisplatin in vitro. Toxicol Mech Methods. 2012;22(8):631–7.

    Article  CAS  PubMed  Google Scholar 

  81. Reiter RJ, Tan DX, Sainz RM, Mayo JC, Lopez-Burillo S. Melatonin: reducing the toxicity and increasing the efficacy of drugs. J Pharm Pharmacol. 2002;54(10):1299–321.

    Article  CAS  PubMed  Google Scholar 

  82. Kim JH, Jeong SJ, Kim B, Yun SM, Choi do Y, Kim SH. Melatonin synergistically enhances cisplatin-induced apoptosis via the dephosphorylation of ERK/p90 ribosomal S6 kinase/heat shock protein 27 in SK-OV-3 cells. J Pineal Res. 2012;52(2):244–52.

    Article  CAS  PubMed  Google Scholar 

  83. Uguz AC, Cig B, Espino J, Bejarano I, Naziroglu M, Rodriguez AB, et al. Melatonin potentiates chemotherapy-induced cytotoxicity and apoptosis in rat pancreatic tumor cells. J Pineal Res. 2012;53(1):91–8.

    Article  CAS  PubMed  Google Scholar 

  84. Fan L, Sun G, Ma T, Zhong F, Lei Y, Li X, et al. Melatonin reverses tunicamycin-induced endoplasmic reticulum stress in human hepatocellular carcinoma cells and improves cytotoxic response to doxorubicin by increasing CHOP and decreasing Survivin. J Pineal Res. 2013;55(2):184–94.

    Article  CAS  PubMed  Google Scholar 

  85. Fan LL, Sun GP, Wei W, Wang ZG, Ge L, Fu WZ, et al. Melatonin and doxorubicin synergistically induce cell apoptosis in human hepatoma cell lines. World J Gastroenterol. 2010;16(12):1473–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korea government (MOE) (No. 2010-0009414) and supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2011-0030072). This work was supported by Korea Foundation for Cancer Research (KFCR-2013-001).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ja-Eun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, W., Jeong, JW. & Kim, JE. CCAR2 deficiency augments genotoxic stress-induced apoptosis in the presence of melatonin in non-small cell lung cancer cells. Tumor Biol. 35, 10919–10929 (2014). https://doi.org/10.1007/s13277-014-2370-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2370-6

Keywords

Navigation