ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Quantitative Proteomic Profiling Reveals That Diverse Metabolic Pathways Are Influenced by Melatonin in an in Vivo Model of Ovarian Carcinoma

View Author Information
Department of Anatomy, Institute of Biosciences, UNESP − Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
Department of Morphology and Pathology, UFSCar − Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
§ Center for the Study of Venoms and Venomous Animals (CEVAP), UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
Institute of Biology, North of Parana State University − UENP, CLM, Bandeirantes, Paraná, Brazil
*Tel: +55 (14) 3880-0027. E-mail: [email protected]
Cite this: J. Proteome Res. 2016, 15, 10, 3872–3882
Publication Date (Web):September 8, 2016
https://doi.org/10.1021/acs.jproteome.6b00713
Copyright © 2016 American Chemical Society

    Article Views

    474

    Altmetric

    -

    Citations

    34
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    To obtain more information into the molecular mechanisms underlying ovarian cancer (OC), we proposed a comparative proteomic analysis in animals receiving long-term melatonin as therapy or only vehicle using multidimensional protein identification combined with mass spectrometry. To induce tumor, a single dose of 100 μg 7,12-dimethylbenz(a)anthracene (DMBA) dissolved in 10 μL of sesame oil was injected under the left ovarian bursa of 20 Fischer 344 rats. The right ovaries were injected with sesame oil only. After tumors were developed, half of the animals received intraperitoneal administration of melatonin (200 μg/100g body weight/day) for 60 days. Melatonin therapy promoted down-regulation in numerous proteins involved in OC signaling pathways. The most significant portion of these proteins are involved in several metabolic processes, mainly those associated with mitochondrial systems, generation of metabolites and energy, hypoxia-inducible factor-1 signaling, antigen processing and presentation, endoplasmic reticulum stress-associated pathways, and cancer-related proteoglycans. A small number of proteins that were overexpressed by melatonin therapy included ATP synthase subunit β, fatty acid-binding protein, and 10-kDa heat shock protein. Taken together, our findings suggest that melatonin therapy efficiently modulated important signaling pathways involved in OC, and these proteins might be further targets that should be explored in new therapeutic opportunities for OC.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 34 publications.

    1. Luiz Antonio Lupi Júnior, Maira Smaniotto Cucielo, Raquel Fantin Domeniconi, Lucilene Delazari dos Santos, Henrique Spaulonci Silveira, Iseu da Silva Nunes, Marcelo Martinez, Francisco Eduardo Martinez, Wagner José Fávaro, Luiz Gustavo de Almeida Chuffa. P-MAPA and IL-12 Differentially Regulate Proteins Associated with Ovarian Cancer Progression: A Proteomic Study. ACS Omega 2019, 4 (26) , 21761-21777. https://doi.org/10.1021/acsomega.9b02512
    2. Efterpi Bouroutzika, Stavros Proikakis, Ekaterini K. Theodosiadou, Konstantinos Vougas, Angeliki I. Katsafadou, George T. Tsangaris, Irene Valasi. Proteomics Analysis of Pregnancy in Ewes under Heat Stress Conditions and Melatonin Administration. Animals 2024, 14 (3) , 400. https://doi.org/10.3390/ani14030400
    3. Saima Naseem, Asif Ahmad Khan, Qamar Uddin, Arzeena Jabeen, Kamal Ahmad, Mohd Asad. A Comprehensive Review on Applicability and Bioactivity of Rogan-I-Kunjad (Sesamum indicum L-Oil): Unani Prospective. Annals of the National Academy of Medical Sciences (India) 2023, 59 (04) , 175-185. https://doi.org/10.1055/s-0043-1775599
    4. Maira Smaniotto Cucielo, Paula Paccielli Freire, Maycon Tavares Emílio-Silva, Graziela Gorete Romagnoli, Robson Francisco Carvalho, Ramon Kaneno, Clélia Akiko Hiruma-Lima, Flávia Karina Delella, Russel J. Reiter, Luiz Gustavo de Almeida Chuffa. Melatonin enhances cell death and suppresses the metastatic capacity of ovarian cancer cells by attenuating the signaling of multiple kinases. Pathology - Research and Practice 2023, 248 , 154637. https://doi.org/10.1016/j.prp.2023.154637
    5. Rosita Verteramo, Matteo Pierdomenico, Pantaleo Greco, Carmelia Milano. The Role of Melatonin in Pregnancy and the Health Benefits for the Newborn. Biomedicines 2022, 10 (12) , 3252. https://doi.org/10.3390/biomedicines10123252
    6. Niloufar Targhazeh, Karla J. Hutt, Amy L. Winship, Russel Reiter, Bahman Yousefi. Melatonin as an oncostatic agent: Review of the modulation of tumor microenvironment and overcoming multidrug resistance. Biochimie 2022, 202 , 71-84. https://doi.org/10.1016/j.biochi.2022.09.010
    7. Maira Smaniotto Cucielo, Roberta Carvalho Cesário, Henrique Spaulonci Silveira, Letícia Barbosa Gaiotte, Sérgio Alexandre Alcantara dos Santos, Debora Aparecida Pires de Campos Zuccari, Fábio Rodrigues Ferreira Seiva, Russel J. Reiter, Luiz Gustavo de Almeida Chuffa. Melatonin Reverses the Warburg-Type Metabolism and Reduces Mitochondrial Membrane Potential of Ovarian Cancer Cells Independent of MT1 Receptor Activation. Molecules 2022, 27 (14) , 4350. https://doi.org/10.3390/molecules27144350
    8. Claudio Manna, Valentina Lacconi, Giuseppe Rizzo, Antonino De Lorenzo, Micol Massimiani. Placental Dysfunction in Assisted Reproductive Pregnancies: Perinatal, Neonatal and Adult Life Outcomes. International Journal of Molecular Sciences 2022, 23 (2) , 659. https://doi.org/10.3390/ijms23020659
    9. Russel Reiter, Ramaswamy Sharma, Sergio Rosales-Corral, Walter Manucha, Luiz Gustavo de Almeida Chuffa, Debora Aparecida Pires de Campos Zuccari. Melatonin and Pathological Cell Interactions: Mitochondrial Glucose Processing in Cancer Cells. International Journal of Molecular Sciences 2021, 22 (22) , 12494. https://doi.org/10.3390/ijms222212494
    10. Naba Kumar Das, Saptadip Samanta. The promising oncostatic effects of melatonin against ovarian cancer. World Journal of Current Medical and Pharmaceutical Research 2021, , 85-93. https://doi.org/10.37022/wjcmpr.v3i4.185
    11. Hannah N. Miles, Daniel G. Delafield, Lingjun Li. Recent developments and applications of quantitative proteomics strategies for high-throughput biomolecular analyses in cancer research. RSC Chemical Biology 2021, 2 (4) , 1050-1072. https://doi.org/10.1039/D1CB00039J
    12. Marek Samec, Alena Liskova, Lenka Koklesova, Kevin Zhai, Elizabeth Varghese, Samson Mathews Samuel, Miroslava Šudomová, Vincent Lucansky, Monika Kassayova, Martin Pec, Kamil Biringer, Aranka Brockmueller, Karol Kajo, Sherif T. S. Hassan, Mehdi Shakibaei, Olga Golubnitschaja, Dietrich Büsselberg, Peter Kubatka. Metabolic Anti-Cancer Effects of Melatonin: Clinically Relevant Prospects. Cancers 2021, 13 (12) , 3018. https://doi.org/10.3390/cancers13123018
    13. Wamidh H. Talib, Ahmad Riyad Alsayed, Alaa Abuawad, Safa Daoud, Asma Ismail Mahmod. Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities. Molecules 2021, 26 (9) , 2506. https://doi.org/10.3390/molecules26092506
    14. Carmen Rodríguez, Noelia Puente‐Moncada, Russel J. Reiter, Ana M. Sánchez‐Sánchez, Federico Herrera, Jezabel Rodríguez‐Blanco, Cristina Duarte‐Olivenza, María Turos‐Cabal, Isaac Antolín, Vanesa Martín. Regulation of cancer cell glucose metabolism is determinant for cancer cell fate after melatonin administration. Journal of Cellular Physiology 2021, 236 (1) , 27-40. https://doi.org/10.1002/jcp.29886
    15. Feng Cheng, Zhifa Wen, Xiaodan Feng, Xiaoman Wang, Yajun Chen. A serum lipidomic strategy revealed potential lipid biomarkers for early-stage cervical cancer. Life Sciences 2020, 260 , 118489. https://doi.org/10.1016/j.lfs.2020.118489
    16. Saptadip Samanta. Melatonin: an endogenous miraculous indolamine, fights against cancer progression. Journal of Cancer Research and Clinical Oncology 2020, 146 (8) , 1893-1922. https://doi.org/10.1007/s00432-020-03292-w
    17. Meric A. Altinoz, Yasemin Ucal, Muazzez C. Yilmaz, İrem Kiris, Ozan Ozisik, Ugur Sezerman, Aysel Ozpinar, İlhan Elmaci. Progesterone at high doses reduces the growth of U87 and A172 glioblastoma cells: Proteomic changes regarding metabolism and immunity. Cancer Medicine 2020, 9 (16) , 5767-5780. https://doi.org/10.1002/cam4.3223
    18. Ehab Kotb Elmahallawy, Yasser Mohamed, Walied Abdo, Tokuma Yanai. Melatonin and Mesenchymal Stem Cells as a Key for Functional Integrity for Liver Cancer Treatment. International Journal of Molecular Sciences 2020, 21 (12) , 4521. https://doi.org/10.3390/ijms21124521
    19. Luiz Gustavo de Almeida Chuffa, Luiz Antonio Lupi, Maira Smaniotto Cucielo, Henrique Spaulonci Silveira, Russel J. Reiter, Fábio Rodrigues Ferreira Seiva. Melatonin Promotes Uterine and Placental Health: Potential Molecular Mechanisms. International Journal of Molecular Sciences 2020, 21 (1) , 300. https://doi.org/10.3390/ijms21010300
    20. Petr Muller, Philip J. Coates, Rudolf Nenutil, Filip Trcka, Roman Hrstka, Josef Chovanec, Veronika Brychtova, Borivoj Vojtesek. Tomm34 is commonly expressed in epithelial ovarian cancer and associates with tumour type and high FIGO stage. Journal of Ovarian Research 2019, 12 (1) https://doi.org/10.1186/s13048-019-0498-0
    21. Hadis Zare, Rana Shafabakhsh, Russel J. Reiter, Zatollah Asemi. Melatonin is a potential inhibitor of ovarian cancer: molecular aspects. Journal of Ovarian Research 2019, 12 (1) https://doi.org/10.1186/s13048-019-0502-8
    22. Rafael Genario, Ediane Morello, Allain Amador Bueno, Heitor Oliveira Santos. The usefulness of melatonin in the field of obstetrics and gynecology. Pharmacological Research 2019, 147 , 104337. https://doi.org/10.1016/j.phrs.2019.104337
    23. Luiz Gustavo de Almeida Chuffa, Fábio Rodrigues Ferreira Seiva, Maira Smaniotto Cucielo, Henrique Spaulonci Silveira, Russel J. Reiter, Luiz Antonio Lupi. Mitochondrial functions and melatonin: a tour of the reproductive cancers. Cellular and Molecular Life Sciences 2019, 76 (5) , 837-863. https://doi.org/10.1007/s00018-018-2963-0
    24. Guilherme H. Tamarindo, Daniele L. Ribeiro, Marina G. Gobbo, Luiz H. A. Guerra, Paula Rahal, Sebastião R. Taboga, Fernanda R. Gadelha, Rejane M. Góes. Melatonin and Docosahexaenoic Acid Decrease Proliferation of PNT1A Prostate Benign Cells via Modulation of Mitochondrial Bioenergetics and ROS Production. Oxidative Medicine and Cellular Longevity 2019, 2019 , 1-15. https://doi.org/10.1155/2019/5080798
    25. Francesca Ricci, Laura Brunelli, Roberta Affatato, Rosaria Chilà, Martina Verza, Stefano Indraccolo, Francesca Falcetta, Maddalena Fratelli, Robert Fruscio, Roberta Pastorelli, Giovanna Damia. Overcoming platinum-acquired resistance in ovarian cancer patient-derived xenografts. Therapeutic Advances in Medical Oncology 2019, 11 , 175883591983954. https://doi.org/10.1177/1758835919839543
    26. Luiz Gustavo de Almeida Chuffa, Grazielle de Moura Ferreira, Luiz Antonio Lupi, Iseu da Silva Nunes, Wagner José Fávaro. P-MAPA immunotherapy potentiates the effect of cisplatin on serous ovarian carcinoma through targeting TLR4 signaling. Journal of Ovarian Research 2018, 11 (1) https://doi.org/10.1186/s13048-018-0380-5
    27. Javier Menéndez-Menéndez, Carlos Martínez-Campa. Melatonin: An Anti-Tumor Agent in Hormone-Dependent Cancers. International Journal of Endocrinology 2018, 2018 , 1-20. https://doi.org/10.1155/2018/3271948
    28. Na Li, Xiaohan Zhan, Xianquan Zhan. The lncRNA SNHG3 regulates energy metabolism of ovarian cancer by an analysis of mitochondrial proteomes. Gynecologic Oncology 2018, 150 (2) , 343-354. https://doi.org/10.1016/j.ygyno.2018.06.013
    29. Shuyun Ma, Xuan Rong, Fei Gao, Yang Yang, Lin Wei. TPX2 promotes cell proliferation and migration via PLK1 in OC. Cancer Biomarkers 2018, 22 (3) , 443-451. https://doi.org/10.3233/CBM-171056
    30. Hongbiao Huang, Ni Liu, Yuning Liao, Ningning Liu, Jianyu Cai, Xiaohong Xia, Zhiqiang Guo, Yanling Li, Qirong Wen, Qi Yin, Yan Liu, Qingxia Wu, Dhivya Rajakumar, Xiujie Sheng, Jinbao Liu. Platinum-containing compound platinum pyrithione suppresses ovarian tumor proliferation through proteasome inhibition. Journal of Experimental & Clinical Cancer Research 2017, 36 (1) https://doi.org/10.1186/s13046-017-0547-8
    31. Luiz Gustavo de Almeida Chuffa, Russel J Reiter, Luiz Antonio Lupi. Melatonin as a promising agent to treat ovarian cancer: molecular mechanisms. Carcinogenesis 2017, 38 (10) , 945-952. https://doi.org/10.1093/carcin/bgx054
    32. Wenkai Ren, Gang Liu, Shuai Chen, Jie Yin, Jing Wang, Bie Tan, Guoyao Wu, Fuller W. Bazer, Yuanyi Peng, Tiejun Li, Russel J. Reiter, Yulong Yin. Melatonin signaling in T cells: Functions and applications. Journal of Pineal Research 2017, 62 (3) https://doi.org/10.1111/jpi.12394
    33. Yohan Zonta, Marcelo Martinez, Isabel Camargo, Raquel Domeniconi, Luiz Lupi Júnior, Patricia Pinheiro, Russel Reiter, Francisco Martinez, Luiz Chuffa. Melatonin Reduces Angiogenesis in Serous Papillary Ovarian Carcinoma of Ethanol-Preferring Rats. International Journal of Molecular Sciences 2017, 18 (4) , 763. https://doi.org/10.3390/ijms18040763
    34. Russel Reiter, Sergio Rosales-Corral, Dun-Xian Tan, Dario Acuna-Castroviejo, Lilan Qin, Shun-Fa Yang, Kexin Xu. Melatonin, a Full Service Anti-Cancer Agent: Inhibition of Initiation, Progression and Metastasis. International Journal of Molecular Sciences 2017, 18 (4) , 843. https://doi.org/10.3390/ijms18040843

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect