ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Simultaneous Targeting of NPC1 and VDAC1 by Itraconazole Leads to Synergistic Inhibition of mTOR Signaling and Angiogenesis

View Author Information
Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
§ Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
Faculty of Health Sciences, University of Macau, Taipa, Macau SAR China
Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
# Division of Structural Biology & Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore
Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
*Tel.: +1-410-955-4619. E-mail: [email protected]
Cite this: ACS Chem. Biol. 2017, 12, 1, 174–182
Publication Date (Web):November 22, 2016
https://doi.org/10.1021/acschembio.6b00849
Copyright © 2016 American Chemical Society

    Article Views

    1381

    Altmetric

    -

    Citations

    57
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (3)»

    Abstract

    Abstract Image

    The antifungal drug itraconazole was recently found to exhibit potent antiangiogenic activity and has since been repurposed as an investigational anticancer agent. Itraconazole has been shown to exert its antiangiogenic activity through inhibition of the mTOR signaling pathway, but the molecular mechanism of action was unknown. We recently identified the mitochondrial protein VDAC1 as a target of itraconazole and a mediator of its activation of AMPK, an upstream regulator of mTOR. However, VDAC1 could not account for the previously reported inhibition of cholesterol trafficking by itraconazole, which was also demonstrated to lead to mTOR inhibition. In this study, we demonstrate that cholesterol trafficking inhibition by itraconazole is due to direct inhibition of the lysosomal protein NPC1. We further map the binding site of itraconazole to the sterol-sensing domain of NPC1 using mutagenesis, competition with U18666A, and molecular docking. Finally, we demonstrate that simultaneous AMPK activation and cholesterol trafficking inhibition leads to synergistic inhibition of mTOR, endothelial cell proliferation, and angiogenesis.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acschembio.6b00849.

    • Supporting Figures S1–S7 and Materials and Methods (PDF)

    • Movie S1 (MPG)

    • Movie S2 (MPG)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 57 publications.

    1. Yingjun Li, Kalyan Kumar Pasunooti, Hanjing Peng, Ruo-Jing Li, Wei Q. Shi, Wukun Liu, Zhiqiang Cheng, Sarah A. Head, Jun O. Liu. Design and Synthesis of Tetrazole- and Pyridine-Containing Itraconazole Analogs as Potent Angiogenesis Inhibitors. ACS Medicinal Chemistry Letters 2020, 11 (6) , 1111-1117. https://doi.org/10.1021/acsmedchemlett.9b00438
    2. Yingjun Li, Kalyan Kumar Pasunooti, Ruo-Jing Li, Wukun Liu, Sarah A. Head, Wei Q. Shi, Jun O. Liu. Novel Tetrazole-Containing Analogues of Itraconazole as Potent Antiangiogenic Agents with Reduced Cytochrome P450 3A4 Inhibition. Journal of Medicinal Chemistry 2018, 61 (24) , 11158-11168. https://doi.org/10.1021/acs.jmedchem.8b01252
    3. Thijs Van de Vyver, Cristina Muntean, Iuliia Efimova, Dmitri V. Krysko, Lynn De Backer, Stefaan C. De Smedt, Koen Raemdonck. The alpha-adrenergic antagonist prazosin promotes cytosolic siRNA delivery from lysosomal compartments. Journal of Controlled Release 2023, 364 , 142-158. https://doi.org/10.1016/j.jconrel.2023.10.014
    4. Wei Tang, Guanghua Li, Qi Lin, Zhenzhen Zhu, Zhao Wang, Zhixiong Wang. Multiplex immunohistochemistry defines two cholesterol metabolism patterns predicting immunotherapeutic outcomes in gastric cancer. Journal of Translational Medicine 2023, 21 (1) https://doi.org/10.1186/s12967-023-04758-4
    5. Saman Yasamineh, Fatemeh Jabbari Mehrabani, Ehsan Derafsh, Renizo Danihiel Cosimi, Amir Mohammad Karimi Forood, Siamak Soltani, Meead Hadi, Omid Gholizadeh. Potential Use of the Cholesterol Transfer Inhibitor U18666A as a Potent Research Tool for the Study of Cholesterol Mechanisms in Neurodegenerative Disorders. Molecular Neurobiology 2023, 22 https://doi.org/10.1007/s12035-023-03798-7
    6. Priyanka Kannan, Madhana Priya Nanda Kumar, Nithya Rathinam, D Thirumal Kumar, Magesh Ramasamy. Elucidating the mutational impact in causing Niemann–Pick disease type C: an in silico approach. Journal of Biomolecular Structure and Dynamics 2023, 41 (17) , 8561-8570. https://doi.org/10.1080/07391102.2022.2135598
    7. Fangquan Chen, Yanjiao Lu, Junhao Lin, Rui Kang, Jiao Liu. Cholesterol Metabolism in Cancer and Cell Death. Antioxidants & Redox Signaling 2023, 39 (1-3) , 102-140. https://doi.org/10.1089/ars.2023.0340
    8. Ningna Weng, Zhe Zhang, Yunhan Tan, Xiaoyue Zhang, Xiawei Wei, Qing Zhu. Repurposing antifungal drugs for cancer therapy. Journal of Advanced Research 2023, 48 , 259-273. https://doi.org/10.1016/j.jare.2022.08.018
    9. Frank W. Pfrieger. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Progress in Lipid Research 2023, 90 , 101225. https://doi.org/10.1016/j.plipres.2023.101225
    10. Zhihua Wang, Miaomiao Wang, Mengxin Zhang, Kaikun Xu, Xinshuai Zhang, Yi Xie, Yiming Zhang, Cheng Chang, Xiaolu Li, Aihua Sun, Fuchu He. High-affinity SOAT1 ligands remodeled cholesterol metabolism program to inhibit tumor growth. BMC Medicine 2022, 20 (1) https://doi.org/10.1186/s12916-022-02436-8
    11. Ping Jin, Jingwen Jiang, Li Zhou, Zhao Huang, Edouard C. Nice, Canhua Huang, Li Fu. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. Journal of Hematology & Oncology 2022, 15 (1) https://doi.org/10.1186/s13045-022-01313-4
    12. You Lan, Bo Qian, Hai-Yan Huang, Pan Wang, Ting Li, Qi Yuan, Han-Yu Zhang, Yu-Chun Lin, Zhong-Ning Lin. Hepatocyte-Derived Prostaglandin E2-Modulated Macrophage M1-Type Polarization via mTOR-NPC1 Axis-Regulated Cholesterol Transport from Lysosomes to the Endoplasmic Reticulum in Hepatitis B Virus x Protein-Related Nonalcoholic Steatohepatitis. International Journal of Molecular Sciences 2022, 23 (19) , 11660. https://doi.org/10.3390/ijms231911660
    13. Kathleen I. O’Neill, Li-Wei Kuo, Michelle M. Williams, Hanne Lind, Lyndsey S. Crump, Nia G. Hammond, Nicole S. Spoelstra, M. Cecilia Caino, Jennifer K. Richer. NPC1 Confers Metabolic Flexibility in Triple Negative Breast Cancer. Cancers 2022, 14 (14) , 3543. https://doi.org/10.3390/cancers14143543
    14. Mai K. L. Nguyen, Jaimy Jose, Mohamed Wahba, Marc Bernaus-Esqué, Andrew J. Hoy, Carlos Enrich, Carles Rentero, Thomas Grewal. Linking Late Endosomal Cholesterol with Cancer Progression and Anticancer Drug Resistance. International Journal of Molecular Sciences 2022, 23 (13) , 7206. https://doi.org/10.3390/ijms23137206
    15. Stefano Marastoni, Ainhoa Madariaga, Aleksandra Pesic, Sree Narayanan Nair, Zhu Juan Li, Zvi Shalev, Troy Ketela, Ilaria Colombo, Victoria Mandilaras, Michael Cabanero, Jeff P. Bruce, Xuan Li, Swati Garg, Lisa Wang, Eric X. Chen, Sarbjot Gill, Neesha C. Dhani, Wenjiang Zhang, Melania Pintilie, Valerie Bowering, Marianne Koritzinsky, Robert Rottapel, Bradly G. Wouters, Amit M. Oza, Anthony M. Joshua, Stephanie Lheureux. Repurposing Itraconazole and Hydroxychloroquine to Target Lysosomal Homeostasis in Epithelial Ovarian Cancer. Cancer Research Communications 2022, 2 (5) , 293-306. https://doi.org/10.1158/2767-9764.CRC-22-0037
    16. Bert Vanmechelen, Joren Stroobants, Winston Chiu, Joost Schepers, Arnaud Marchand, Patrick Chaltin, Kurt Vermeire, Piet Maes. Identification of novel Ebola virus inhibitors using biologically contained virus. Antiviral Research 2022, 200 , 105294. https://doi.org/10.1016/j.antiviral.2022.105294
    17. Hisham F. Bahmad, Timothy Demus, Maya M. Moubarak, Darine Daher, Juan Carlos Alvarez Moreno, Francesca Polit, Olga Lopez, Ali Merhe, Wassim Abou-Kheir, Alan M. Nieder, Robert Poppiti, Yumna Omarzai. Overcoming Drug Resistance in Advanced Prostate Cancer by Drug Repurposing. Medical Sciences 2022, 10 (1) , 15. https://doi.org/10.3390/medsci10010015
    18. Sebastian Schloer, Jonas Goretzko, Ursula Rescher. Repurposing Antifungals for Host-Directed Antiviral Therapy?. Pharmaceuticals 2022, 15 (2) , 212. https://doi.org/10.3390/ph15020212
    19. Jiang Du, Xinlei Liu, Yan Zhang, Xiaojing Han, Chunya Ma, Yanli Liu, Lihong Guan, Liang Qiao, Juntang Lin. The Effects of Combined Therapy With Metformin and Hydroxypropyl-β-Cyclodextrin in a Mouse Model of Niemann-Pick Disease Type C1. Frontiers in Pharmacology 2022, 12 https://doi.org/10.3389/fphar.2021.825425
    20. Finny S. Varghese, Febrina Meutiawati, Mona Teppor, Sofie Jacobs, Carolien de Keyzer, Ezgi Taşköprü, Esther van Woudenbergh, Gijs J. Overheul, Ellen Bouma, Jolanda M. Smit, Leen Delang, Andres Merits, Ronald P. van Rij. Posaconazole inhibits multiple steps of the alphavirus replication cycle. Antiviral Research 2022, 197 , 105223. https://doi.org/10.1016/j.antiviral.2021.105223
    21. Hui-Yun Hwang, Joong Sup Shim, Dasol Kim, Ho Jeong Kwon. Antidepressant drug sertraline modulates AMPK-MTOR signaling-mediated autophagy via targeting mitochondrial VDAC1 protein. Autophagy 2021, 17 (10) , 2783-2799. https://doi.org/10.1080/15548627.2020.1841953
    22. Cai-ying Hu, Qian-ying Zhang, Jie-hui Chen, Bin Wen, Wei-jian Hang, Kai Xu, Juan Chen, Ben-hong He. Protective Effect of Salidroside on Mitochondrial Disturbances via Reducing Mitophagy and Preserving Mitochondrial Morphology in OGD-induced Neuronal Injury. Current Medical Science 2021, 41 (5) , 936-943. https://doi.org/10.1007/s11596-021-2374-6
    23. Shen-Han Lee, Monika Golinska, John R. Griffiths. HIF-1-Independent Mechanisms Regulating Metabolic Adaptation in Hypoxic Cancer Cells. Cells 2021, 10 (9) , 2371. https://doi.org/10.3390/cells10092371
    24. Rodger Rothenberger, Wendy Jones, Colin MacNeill. Itraconazole Improves Vulvodynia in Fungus Culture-Negative Patients Post Fluconazole Failure. Sexual Medicine 2021, 9 (4) , 100383-100383. https://doi.org/10.1016/j.esxm.2021.100383
    25. Diego Gómez-Coronado, Miguel A. Lasunción, Javier Martínez-Botas, María E. Fernández-Suárez. Role of cholesterol metabolism in the anticancer pharmacology of selective estrogen receptor modulators. Seminars in Cancer Biology 2021, 73 , 101-115. https://doi.org/10.1016/j.semcancer.2020.08.015
    26. Ellen Van Damme, Sandra De Meyer, Denisa Bojkova, Sandra Ciesek, Jindrich Cinatl, Steven De Jonghe, Dirk Jochmans, Pieter Leyssen, Christophe Buyck, Johan Neyts, Marnix Van Loock. In vitro activity of itraconazole against SARS‐CoV‐2. Journal of Medical Virology 2021, 93 (7) , 4454-4460. https://doi.org/10.1002/jmv.26917
    27. Maria Maslyanko, Ryan D. Harris, David Mu. Connecting Cholesterol Efflux Factors to Lung Cancer Biology and Therapeutics. International Journal of Molecular Sciences 2021, 22 (13) , 7209. https://doi.org/10.3390/ijms22137209
    28. Olivia Swain, Sofia K. Romano, Ritika Miryala, Jocelyn Tsai, Vinnie Parikh, George K. E. Umanah. SARS-CoV-2 Neuronal Invasion and Complications: Potential Mechanisms and Therapeutic Approaches. The Journal of Neuroscience 2021, 41 (25) , 5338-5349. https://doi.org/10.1523/JNEUROSCI.3188-20.2021
    29. David W Sanders, Chanelle C Jumper, Paul J Ackerman, Dan Bracha, Anita Donlic, Hahn Kim, Devin Kenney, Ivan Castello-Serrano, Saori Suzuki, Tomokazu Tamura, Alexander H Tavares, Mohsan Saeed, Alex S Holehouse, Alexander Ploss, Ilya Levental, Florian Douam, Robert F Padera, Bruce D Levy, Clifford P Brangwynne. SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation. eLife 2021, 10 https://doi.org/10.7554/eLife.65962
    30. Lyn H. Jones. Medicinal Chemical Biology. 2021, 1-37. https://doi.org/10.1002/0471266949.bmc256
    31. Tomas Koltai, Stephan J. Reshkin, Fátima Baltazar, Larry Fliegel. Cholesterol metabolism in prostate cancer. 2021, 211-240. https://doi.org/10.1016/B978-0-323-90528-2.00007-2
    32. Ryuta Shioi, Fumika Karaki, Hiromasa Yoshioka, Tomomi Noguchi-Yachide, Minoru Ishikawa, Kosuke Dodo, Yuichi Hashimoto, Mikiko Sodeoka, Kenji Ohgane, . Image-based screen capturing misfolding status of Niemann-Pick type C1 identifies potential candidates for chaperone drugs. PLOS ONE 2020, 15 (12) , e0243746. https://doi.org/10.1371/journal.pone.0243746
    33. Zhe Zhang, Li Zhou, Na Xie, Edouard C. Nice, Tao Zhang, Yongping Cui, Canhua Huang. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduction and Targeted Therapy 2020, 5 (1) https://doi.org/10.1038/s41392-020-00213-8
    34. Annika Koponen, Guoping Pan, Annukka M. Kivelä, Arthur Ralko, Juuso H. Taskinen, Amita Arora, Riikka Kosonen, Otto K. Kari, Joseph Ndika, Elina Ikonen, Wonhwa Cho, Daoguang Yan, Vesa M. Olkkonen. ORP2, a cholesterol transporter, regulates angiogenic signaling in endothelial cells. The FASEB Journal 2020, 34 (11) , 14671-14694. https://doi.org/10.1096/fj.202000202R
    35. Mariana Nunes, Miguel Henriques Abreu, Carla Bartosch, Sara Ricardo. Recycling the Purpose of Old Drugs to Treat Ovarian Cancer. International Journal of Molecular Sciences 2020, 21 (20) , 7768. https://doi.org/10.3390/ijms21207768
    36. Huanji Xu, Sheng Zhou, Qiulin Tang, Hongwei Xia, Feng Bi. Cholesterol metabolism: New functions and therapeutic approaches in cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2020, 1874 (1) , 188394. https://doi.org/10.1016/j.bbcan.2020.188394
    37. Poonam Kanwar, Harsha Samtani, Sibaji K. Sanyal, Ashish K. Srivastava, Penna Suprasanna, Girdhar K. Pandey. VDAC and its interacting partners in plant and animal systems: an overview. Critical Reviews in Biotechnology 2020, 40 (5) , 715-732. https://doi.org/10.1080/07388551.2020.1756214
    38. Ira Shrestha, Jong-Soo Choi, Yun-Ui Bae, Kyung-Oh Doh. Enhancement of Liposomal Plasmid DNA and siRNA Delivery by Itraconazole through Intracellular Cholesterol Accumulation. Pharmaceutical Research 2020, 37 (7) https://doi.org/10.1007/s11095-020-02846-4
    39. Hongwu Qian, Xuelan Wu, Ximing Du, Xia Yao, Xin Zhao, Joyce Lee, Hongyuan Yang, Nieng Yan. Structural Basis of Low-pH-Dependent Lysosomal Cholesterol Egress by NPC1 and NPC2. Cell 2020, 182 (1) , 98-111.e18. https://doi.org/10.1016/j.cell.2020.05.020
    40. Stephen L. Sturley, Tamayanthi Rajakumar, Natalie Hammond, Katsumi Higaki, Zsuzsa Márka, Szabolcs Márka, Andrew B. Munkacsi. Potential COVID-19 therapeutics from a rare disease: weaponizing lipid dysregulation to combat viral infectivity. Journal of Lipid Research 2020, 61 (7) , 972-982. https://doi.org/10.1194/jlr.R120000851
    41. Tatiana K. Rostovtseva, María Queralt-Martín, William M. Rosencrans, Sergey M. Bezrukov. Targeting the Multiple Physiologic Roles of VDAC With Steroids and Hydrophobic Drugs. Frontiers in Physiology 2020, 11 https://doi.org/10.3389/fphys.2020.00446
    42. Süreyya Ölgen. Clinical trials on combination of repurposed drugs and anticancer therapies. 2020, 395-437. https://doi.org/10.1016/B978-0-12-819668-7.00015-4
    43. Tomomi Takano, Yumeho Wakayama, Tomoyoshi Doki. Endocytic Pathway of Feline Coronavirus for Cell Entry: Differences in Serotype-Dependent Viral Entry Pathway. Pathogens 2019, 8 (4) , 300. https://doi.org/10.3390/pathogens8040300
    44. Zufeng Guo, Zhiqiang Cheng, Jingxin Wang, Wukun Liu, Hanjing Peng, Yuefan Wang, A. V. Subba Rao, Ruo‐jing Li, Xue Ying, Preethi Korangath, Maria V. Liberti, Yingjun Li, Yongmei Xie, Sam Y. Hong, Cordelia Schiene‐Fischer, Gunter Fischer, Jason W. Locasale, Saraswati Sukumar, Heng Zhu, Jun O. Liu. Discovery of a Potent GLUT Inhibitor from a Library of Rapafucins by Using 3D Microarrays. Angewandte Chemie 2019, 131 (48) , 17318-17322. https://doi.org/10.1002/ange.201905578
    45. Zufeng Guo, Zhiqiang Cheng, Jingxin Wang, Wukun Liu, Hanjing Peng, Yuefan Wang, A. V. Subba Rao, Ruo‐jing Li, Xue Ying, Preethi Korangath, Maria V. Liberti, Yingjun Li, Yongmei Xie, Sam Y. Hong, Cordelia Schiene‐Fischer, Gunter Fischer, Jason W. Locasale, Saraswati Sukumar, Heng Zhu, Jun O. Liu. Discovery of a Potent GLUT Inhibitor from a Library of Rapafucins by Using 3D Microarrays. Angewandte Chemie International Edition 2019, 58 (48) , 17158-17162. https://doi.org/10.1002/anie.201905578
    46. Brett L. Roberts, Zachary C. Severance, Ryan C. Bensen, Anh T. Le-McClain, Cori A. Malinky, Evan M. Mettenbrink, Juan I. Nuñez, William J. Reddig, Earl L. Blewett, Anthony W.G. Burgett. Differing activities of oxysterol-binding protein (OSBP) targeting anti-viral compounds. Antiviral Research 2019, 170 , 104548. https://doi.org/10.1016/j.antiviral.2019.104548
    47. Pei Kou, Shuang Wei, Fei Xiong. Recent Advances of mTOR Inhibitors Use in Autosomal Dominant Polycystic Kidney Disease: Is the Road Still Open?. Current Medicinal Chemistry 2019, 26 (16) , 2962-2973. https://doi.org/10.2174/0929867325666180330094434
    48. Verónica Rojo-León, Celina García, Concepción Valencia, Marco-Antonio Méndez, Christopher Wood, Luis Covarrubias. The E6/E7 oncogenes of human papilloma virus and estradiol regulate hedgehog signaling activity in a murine model of cervical cancer. Experimental Cell Research 2019, 381 (2) , 311-322. https://doi.org/10.1016/j.yexcr.2019.05.024
    49. Junfang Lyu, Eun Ju Yang, Joong Sup Shim. Cholesterol Trafficking: An Emerging Therapeutic Target for Angiogenesis and Cancer. Cells 2019, 8 (5) , 389. https://doi.org/10.3390/cells8050389
    50. Kayo Inoue, Hiroshi Tsubamoto, Roze Isono-Nakata, Kazuko Sakata, Nami Nakagomi. Itraconazole treatment of primary malignant melanoma of the vagina evaluated using positron emission tomography and tissue cDNA microarray: a case report. BMC Cancer 2018, 18 (1) https://doi.org/10.1186/s12885-018-4520-5
    51. Febrina Meutiawati, Bodine Bezemer, Jeroen R.P.M. Strating, Gijs J. Overheul, Eva Žusinaite, Frank J.M. van Kuppeveld, Koen W.R. van Cleef, Ronald P. van Rij. Posaconazole inhibits dengue virus replication by targeting oxysterol-binding protein. Antiviral Research 2018, 157 , 68-79. https://doi.org/10.1016/j.antiviral.2018.06.017
    52. Lisa Bauer, Salvatore Ferla, Sarah A. Head, Shridhar Bhat, Kalyan K. Pasunooti, Wei Q. Shi, Lucian Albulescu, Jun O. Liu, Andrea Brancale, Frank J.M. van Kuppeveld, Jeroen R.P.M. Strating. Structure-activity relationship study of itraconazole, a broad-range inhibitor of picornavirus replication that targets oxysterol-binding protein (OSBP). Antiviral Research 2018, 156 , 55-63. https://doi.org/10.1016/j.antiviral.2018.05.010
    53. C. Carbone, C. Martins-Gomes, V. Pepe, A.M. Silva, T. Musumeci, G. Puglisi, P.M. Furneri, E.B. Souto. Repurposing itraconazole to the benefit of skin cancer treatment: A combined azole-DDAB nanoencapsulation strategy. Colloids and Surfaces B: Biointerfaces 2018, 167 , 337-344. https://doi.org/10.1016/j.colsurfb.2018.04.031
    54. Yi Lin, Xiaodan He, Dinglun Zhou, Li Li, Jiawei Sun, Xuehua Jiang. Co-delivery of doxorubicin and itraconazole by Pluronic® P123 coated liposomes to enhance the anticancer effect in breast cancers. RSC Advances 2018, 8 (42) , 23768-23779. https://doi.org/10.1039/C8RA03787F
    55. Junfang Lyu, Eun Ju Yang, Sarah A. Head, Nana Ai, Baoyuan Zhang, Changjie Wu, Ruo-Jing Li, Yifan Liu, Chen Yang, Yongjun Dang, Ho Jeong Kwon, Wei Ge, Jun O. Liu, Joong Sup Shim. Pharmacological blockade of cholesterol trafficking by cepharanthine in endothelial cells suppresses angiogenesis and tumor growth. Cancer Letters 2017, 409 , 91-103. https://doi.org/10.1016/j.canlet.2017.09.009
    56. Xiaochun Li, Feiran Lu, Michael N. Trinh, Philip Schmiege, Joachim Seemann, Jiawei Wang, Günter Blobel. 3.3 Å structure of Niemann–Pick C1 protein reveals insights into the function of the C-terminal luminal domain in cholesterol transport. Proceedings of the National Academy of Sciences 2017, 114 (34) , 9116-9121. https://doi.org/10.1073/pnas.1711716114
    57. Hiroshi Tsubamoto, Tomoko Ueda, Kayo Inoue, Kazuko Sakata, Hiroaki Shibahara, Takashi Sonoda. Repurposing itraconazole as an anticancer agent. Oncology Letters 2017, 14 (2) , 1240-1246. https://doi.org/10.3892/ol.2017.6325

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect