ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Tyrosine Phosphorylation Is Required for Functional Activation of Disulfide-Containing Constitutively Active STAT Mutants

View Author Information
Department of Medical Oncology, Dana-Farber Cancer Institute, Departments of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts 02115, and Department of Genetics, Biology, and Biochemistry, University of Turin, Via Santena 5 bis, Torino, Italy 10126
Cite this: Biochemistry 2006, 45, 17, 5599–5605
Publication Date (Web):April 6, 2006
https://doi.org/10.1021/bi0525674
Copyright © 2006 American Chemical Society

    Article Views

    1313

    Altmetric

    -

    Citations

    40
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Aberrant activation of STAT transcription factors has been implicated in a variety of cancers. Constitutively active forms of STAT1 and STAT3 (STAT1C and STAT3C) have been developed to determine the effects of STAT activation in isolation from other cytokine-stimulated signaling pathways. These mutants were created by engineering cysteine residues into the carboxy terminus of each STAT molecule, allowing a hypothesized disulfide bond to form between two unphosphorylated monomers. To determine whether the presence of cysteine residues is sufficient to allow for functional activation in the absence of tyrosine phosphorylation, we developed STAT1C and STAT3C mutants that are unable to be phosphorylated on the critical tyrosine residue. Without the tyrosine residue, cysteine containing constitutive STAT mutants failed to transactivate STAT target genes. Furthermore, transfection of STAT dominant negative mutants prevented the activation of STAT1C and STAT3C. Cytokine-induced activation of STAT1C and STAT3C was dramatically prolonged when compared to wild-type proteins and led to extended STAT-dependent gene activation. These data show that tyrosine phosphorylation is required for activation of STAT1C and STAT3C. Additionally, these findings suggest the existence of basal phosphorylation that is a dynamic process that involves both phosphorylation and dephosphorylation. The constitutive STAT mutants likely show heightened activity because of the cysteine residues stabilizing these dimers and preventing dephosphorylation, resulting in the accumulation of trancriptionally active STAT dimer complexes.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This work was supported by NIH Grant CA79547, the Friends of the Dana-Farber Cancer Institute, and the family and friends of Peter Connaughton.

     Department of Medical Oncology, Dana-Farber Cancer Institute, Departments of Medicine, Harvard Medical School and Brigham and Women's Hospital.

    §

     University of Turin.

    *

     To whom correspondence should be addressed:  Dana-Farber Cancer Institute, Room M552B, 44 Binney Street, Boston, MA 02115. Telephone:  (617) 632-4714. Fax:  (617) 632-6356. E-mail:  [email protected].

    Cited By

    This article is cited by 40 publications.

    1. Ralf Buettner, Renzo Corzano, Rumana Rashid, Jianping Lin, Maheswari Senthil, Michael Hedvat, Anne Schroeder, Allen Mao, Andreas Herrmann, John Yim, Hongzhi Li, Yate-Ching Yuan, Kenichi Yakushijin, Fumiko Yakushijin, Nagarajan Vaidehi, Roger Moore, Gabriel Gugiu, Terry D. Lee, Richard Yip, Yuan Chen, Richard Jove, David Horne, and John C. Williams . Alkylation of Cysteine 468 in Stat3 Defines a Novel Site for Therapeutic Development. ACS Chemical Biology 2011, 6 (5) , 432-443. https://doi.org/10.1021/cb100253e
    2. Zunlin Yang, Qiwang Xiang, John Nicholas, . Direct and biologically significant interactions of human herpesvirus 8 interferon regulatory factor 1 with STAT3 and Janus kinase TYK2. PLOS Pathogens 2023, 19 (11) , e1011806. https://doi.org/10.1371/journal.ppat.1011806
    3. Sara Verdura, Elisabet Cuyàs, Verónica Ruiz-Torres, Vicente Micol, Jorge Joven, Joaquim Bosch-Barrera, Javier A. Menendez. Lung Cancer Management with Silibinin: A Historical and Translational Perspective. Pharmaceuticals 2021, 14 (6) , 559. https://doi.org/10.3390/ph14060559
    4. Denglei Ma, Rui Huang, Kaiwen Guo, Zirun Zhao, Weipeng Wei, Lihong Gu, Lin Li, Lan Zhang. Cornel Iridoid Glycoside Protects Against STAT1-Dependent Synapse and Memory Deficits by Increasing N-Methyl-D-aspartate Receptor Expression in a Tau Transgenic Mice. Frontiers in Aging Neuroscience 2021, 13 https://doi.org/10.3389/fnagi.2021.671206
    5. Silvia Grasso, Davide Cangelosi, Jennifer Chapelle, Melissa Alzona, Giorgia Centonze, Alessia Lamolinara, Vincenzo Salemme, Costanza Angelini, Alessandro Morellato, Andrea Saglietto, Federico Tommaso Bianchi, Sara Cabodi, Iris Chiara Salaroglio, Federica Fusella, Marzia Ognibene, Manuela Iezzi, Annalisa Pezzolo, Valeria Poli, Ferdinando Di Cunto, Alessandra Eva, Chiara Riganti, Luigi Varesio, Emilia Turco, Paola Defilippi. The SRCIN1/p140Cap adaptor protein negatively regulates the aggressiveness of neuroblastoma. Cell Death & Differentiation 2020, 27 (2) , 790-807. https://doi.org/10.1038/s41418-019-0386-6
    6. Xiao‐Guang Li, Xiao‐Yue Hong, Ya‐li Wang, Shu‐Juan Zhang, Jun‐Fei Zhang, Xia‐Chun Li, Yan‐Chao Liu, Dong‐Shen Sun, Qiong Feng, Jin‐Wang Ye, Yuan Gao, Dan Ke, Qun Wang, Hong‐lian Li, Keqiang Ye, Gong‐Ping Liu, Jian‐Zhi Wang. Tau accumulation triggers STAT 1‐dependent memory deficits by suppressing NMDA receptor expression. EMBO reports 2019, 20 (6) https://doi.org/10.15252/embr.201847202
    7. Martina Kunkl, Marta Mastrogiovanni, Nicla Porciello, Silvana Caristi, Emanuele Monteleone, Stefano Arcieri, Loretta Tuosto. CD28 Individual Signaling Up-regulates Human IL-17A Expression by Promoting the Recruitment of RelA/NF-κB and STAT3 Transcription Factors on the Proximal Promoter. Frontiers in Immunology 2019, 10 https://doi.org/10.3389/fimmu.2019.00864
    8. Sara Verdura, Elisabet Cuyàs, Laura Llorach-Parés, Almudena Pérez-Sánchez, Vicente Micol, Alfons Nonell-Canals, Jorge Joven, Manuel Valiente, Melchor Sánchez-Martínez, Joaquim Bosch-Barrera, Javier A. Menendez. Silibinin is a direct inhibitor of STAT3. Food and Chemical Toxicology 2018, 116 , 161-172. https://doi.org/10.1016/j.fct.2018.04.028
    9. Lisa N. Heppler, David A. Frank. Rare mutations provide unique insight into oncogenic potential of STAT transcription factors. Journal of Clinical Investigation 2017, 128 (1) , 113-115. https://doi.org/10.1172/JCI98619
    10. Steven W. Poser, Josh G. Chenoweth, Carlo Colantuoni, Jimmy Masjkur, George Chrousos, Stefan R. Bornstein, Ronald D. McKay, Andreas Androutsellis-Theotokis. Concise Review: Reprogramming, Behind the Scenes: Noncanonical Neural Stem Cell Signaling Pathways Reveal New, Unseen Regulators of Tissue Plasticity With Therapeutic Implications. Stem Cells Translational Medicine 2015, 4 (11) , 1251-1257. https://doi.org/10.5966/sctm.2015-0105
    11. Jun Xia, Mingming Fang, Xiaoyan Wu, Yuyu Yang, Liming Yu, Huihui Xu, Hui Kong, Qi Tan, Hong Wang, Weiping Xie, Yong Xu. A2b adenosine signaling represses CIITA transcription via an epigenetic mechanism in vascular smooth muscle cells. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 2015, 1849 (6) , 665-676. https://doi.org/10.1016/j.bbagrm.2015.03.001
    12. Ke Jiang, Katherine L. Wright, Ping Zhu, Michael J. Szego, Alexa N. Bramall, William W. Hauswirth, Qiuhong Li, Sean E. Egan, Roderick R. McInnes. STAT3 promotes survival of mutant photoreceptors in inherited photoreceptor degeneration models. Proceedings of the National Academy of Sciences 2014, 111 (52) https://doi.org/10.1073/pnas.1411248112
    13. Antonio Lavecchia, Carmen Di Giovanni, Carmen Cerchia. Novel inhibitors of signal transducer and activator of transcription 3 signaling pathway: an update on the recent patent literature. Expert Opinion on Therapeutic Patents 2014, 24 (4) , 383-400. https://doi.org/10.1517/13543776.2014.877443
    14. Nicole R. Leitner, Caroline Lassnig, Rita Rom, Susanne Heider, Zsuzsanna Bago-Horvath, Robert Eferl, Simone Müller, Thomas Kolbe, Lukas Kenner, Thomas Rülicke, Birgit Strobl, Mathias Müller, . Inducible, Dose-Adjustable and Time-Restricted Reconstitution of Stat1 Deficiency In Vivo. PLoS ONE 2014, 9 (1) , e86608. https://doi.org/10.1371/journal.pone.0086608
    15. Haitao Wei, Song Wang, Qinghuang Chen, Yuhai Chen, Xiaojuan Chi, Lianfeng Zhang, Shile Huang, George F. Gao, Ji-Long Chen, . Suppression of Interferon Lambda Signaling by SOCS-1 Results in Their Excessive Production during Influenza Virus Infection. PLoS Pathogens 2014, 10 (1) , e1003845. https://doi.org/10.1371/journal.ppat.1003845
    16. V Pernet, S Joly, N Jordi, D Dalkara, A Guzik-Kornacka, J G Flannery, M E Schwab. Misguidance and modulation of axonal regeneration by Stat3 and Rho/ROCK signaling in the transparent optic nerve. Cell Death & Disease 2013, 4 (7) , e734-e734. https://doi.org/10.1038/cddis.2013.266
    17. Erik A. Nelson, Sarah R. Walker, David A. Frank. Jak/STAT Signaling in the Pathogenesis and Treatment of Multiple Myeloma. 2013, 117-138. https://doi.org/10.1007/978-1-4614-4666-8_7
    18. Ying Dunkel, Andrew Ong, Dimple Notani, Yash Mittal, Michael Lam, Xiaoyi Mi, Pradipta Ghosh. STAT3 Protein Up-regulates Gα-interacting Vesicle-associated Protein (GIV)/Girdin Expression, and GIV Enhances STAT3 Activation in a Positive Feedback Loop during Wound Healing and Tumor Invasion/Metastasis. Journal of Biological Chemistry 2012, 287 (50) , 41667-41683. https://doi.org/10.1074/jbc.M112.390781
    19. Belen Elguero, Geraldine Gueron, Jimena Giudice, Martin A Toscani, Paola De Luca, Florencia Zalazar, Federico Coluccio-Leskow, Roberto Meiss, Nora Navone, Adriana De Siervi, Elba Vazquez. Unveiling the Association of STAT3 and HO-1 in Prostate Cancer: Role beyond Heme Degradation. Neoplasia 2012, 14 (11) , 1043-1056. https://doi.org/10.1593/neo.121358
    20. Lidia Avalle, Sara Pensa, Gabriella Regis, Francesco Novelli, Valeria Poli. STAT1 and STAT3 in tumorigenesis. JAK-STAT 2012, 1 (2) , 65-72. https://doi.org/10.4161/jkst.20045
    21. Seung Woo Lee, Young Yong Ahn, Yon Soo Kim, Sang Beum Kang, Soon Woo Nam, Dong Soo Lee, Hyun Yong Jeong, Jin Man Kim. The Immunohistochemical Expression of STAT3, Bcl-xL, and MMP-2 Proteins in Colon Adenoma and Adenocarcinoma. Gut and Liver 2012, 6 (1) , 45-51. https://doi.org/10.5009/gnl.2012.6.1.45
    22. Lori A. Nessel. Disposable Workers: Applying a Human Rights Framework to Analyze Duties Owed to Seriously Injured or Ill Migrants. SSRN Electronic Journal 2012, https://doi.org/10.2139/ssrn.2262736
    23. Doris Germain. Estrogen Carcinogenesis in Breast Cancer. Endocrinology and Metabolism Clinics of North America 2011, 40 (3) , 473-484. https://doi.org/10.1016/j.ecl.2011.05.009
    24. Edwin Chen, Philip A. Beer, Anna L. Godfrey, Christina A. Ortmann, Juan Li, Ana P. Costa-Pereira, Catherine E. Ingle, Emmanouil T. Dermitzakis, Peter J. Campbell, Anthony R. Green. Distinct Clinical Phenotypes Associated with JAK2V617F Reflect Differential STAT1 Signaling. Cancer Cell 2010, 18 (5) , 524-535. https://doi.org/10.1016/j.ccr.2010.10.013
    25. Sarah R. Walker, Mousumi Chaudhury, Erik A. Nelson, David A. Frank. Microtubule-Targeted Chemotherapeutic Agents Inhibit Signal Transducer and Activator of Transcription 3 (STAT3) Signaling. Molecular Pharmacology 2010, 78 (5) , 903-908. https://doi.org/10.1124/mol.110.066316
    26. Laura A. Ekas, Timothy J. Cardozo, Maria Sol Flaherty, Elizabeth A. McMillan, Foster C. Gonsalves, Erika A. Bach. Characterization of a dominant-active STAT that promotes tumorigenesis in Drosophila. Developmental Biology 2010, 344 (2) , 621-636. https://doi.org/10.1016/j.ydbio.2010.05.497
    27. Eirini Pectasides, Ann-Marie Egloff, Clarence Sasaki, Panteleimon Kountourakis, Barbara Burtness, George Fountzilas, Urania Dafni, Thomas Zaramboukas, Theodoros Rampias, David Rimm, Jennifer Grandis, Amanda Psyrri. Nuclear Localization of Signal Transducer and Activator of Transcription 3 in Head and Neck Squamous Cell Carcinoma Is Associated with a Better Prognosis. Clinical Cancer Research 2010, 16 (8) , 2427-2434. https://doi.org/10.1158/1078-0432.CCR-09-2658
    28. Oliver H. Krämer, Thorsten Heinzel. Phosphorylation–acetylation switch in the regulation of STAT1 signaling. Molecular and Cellular Endocrinology 2010, 315 (1-2) , 40-48. https://doi.org/10.1016/j.mce.2009.10.007
    29. Shannon Silva, Kumkum Ganguly, Theresa M. Fresquez, Goutam Gupta, T. Mark McCleskey, Anu Chaudhary. Beryllium Alters Lipopolysaccharide-Mediated Intracellular Phosphorylation and Cytokine Release in Human Peripheral Blood Mononuclear Cells. Journal of Occupational and Environmental Hygiene 2009, 6 (12) , 775-782. https://doi.org/10.1080/15459620903267986
    30. Cheryl A. London. Tyrosine Kinase Inhibitors in Veterinary Medicine. Topics in Companion Animal Medicine 2009, 24 (3) , 106-112. https://doi.org/10.1053/j.tcam.2009.02.002
    31. Mamta Puri, Ken Lemon, W. Paul Duprex, Bertus K. Rima, Curt M. Horvath. A Point Mutation, E95D, in the Mumps Virus V Protein Disengages STAT3 Targeting from STAT1 Targeting. Journal of Virology 2009, 83 (13) , 6347-6356. https://doi.org/10.1128/JVI.00596-09
    32. Pavel Krejci, Lisa Salazar, Helen S. Goodridge, Tamara A. Kashiwada, Matthew J. Schibler, Petra Jelinkova, Leslie Michels Thompson, William R. Wilcox. STAT1 and STAT3 do not participate in FGF-mediated growth arrest in chondrocytes. Journal of Cell Science 2008, 121 (3) , 272-281. https://doi.org/10.1242/jcs.017160
    33. Lena Thyrell, Velmurugesan Arulampalam, Linn Hjortsberg, Marianne Farnebo, Dan Grandér, Katja Pokrovskaja Tamm. Interferon alpha induces cell death through interference with interleukin 6 signaling and inhibition of STAT3 activity. Experimental Cell Research 2007, 313 (19) , 4015-4024. https://doi.org/10.1016/j.yexcr.2007.08.007
    34. Doris Germain, David A. Frank. Targeting the Cytoplasmic and Nuclear Functions of Signal Transducers and Activators of Transcription 3 for Cancer Therapy. Clinical Cancer Research 2007, 13 (19) , 5665-5669. https://doi.org/10.1158/1078-0432.CCR-06-2491
    35. David A. Frank. STAT3 as a central mediator of neoplastic cellular transformation. Cancer Letters 2007, 251 (2) , 199-210. https://doi.org/10.1016/j.canlet.2006.10.017
    36. Jiannong Li, Bin Yu, Lanxi Song, Steve Eschrich, Eric B. Haura. Effects of IFN- γ And Stat1 on Gene Expression, Growth, And Survival in Non-Small Cell Lung Cancer Cells. Journal of Interferon & Cytokine Research 2007, 27 (3) , 209-220. https://doi.org/10.1089/jir.2006.0111
    37. Lynn M. Williams, Usha Sarma, Kate Willets, Tim Smallie, Fionula Brennan, Brian M.J. Foxwell. Expression of Constitutively Active STAT3 Can Replicate the Cytokine-suppressive Activity of Interleukin-10 in Human Primary Macrophages. Journal of Biological Chemistry 2007, 282 (10) , 6965-6975. https://doi.org/10.1074/jbc.M609101200
    38. Rebecca A. Lynch, Julia Etchin, Traci E. Battle, David A. Frank. A Small-Molecule Enhancer of Signal Transducer and Activator of Transcription 1 Transcriptional Activity Accentuates the Antiproliferative Effects of IFN-γ in Human Cancer Cells. Cancer Research 2007, 67 (3) , 1254-1261. https://doi.org/10.1158/0008-5472.CAN-06-2439
    39. Li Li, Peter E. Shaw. Elevated Activity of STAT3C due to Higher DNA Binding Affinity of Phosphotyrosine Dimer Rather than Covalent Dimer Formation. Journal of Biological Chemistry 2006, 281 (44) , 33172-33181. https://doi.org/10.1074/jbc.M606940200
    40. Cheh Peng Lim, Xinmin Cao. Structure, function, and regulation of STAT proteins. Molecular BioSystems 2006, 2 (11) , 536. https://doi.org/10.1039/b606246f

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect