Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Epithelial–mesenchymal transition: a new target in anticancer drug discovery

Abstract

The conversion of cells with an epithelial phenotype into cells with a mesenchymal phenotype, referred to as epithelial–mesenchymal transition, is a critical process for embryonic development that also occurs in adult life, particularly during tumour progression. Tumour cells undergoing epithelial–mesenchymal transition acquire the capacity to disarm the body's antitumour defences, resist apoptosis and anticancer drugs, disseminate throughout the organism, and act as a reservoir that replenishes and expands the tumour cell population. Epithelial–mesenchymal transition is therefore becoming a target of prime interest for anticancer therapy. Here, we discuss the screening and classification of compounds that affect epithelial–mesenchymal transition, highlight some compounds of particular interest, and address issues related to their clinical application.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction of epithelial–mesenchymal transition by stimuli from the tumour microenvironment.
Figure 2: Somatic gene alterations and hereditary epigenetic changes promoting epithelial–mesenchymal transition.
Figure 3: Strategies for screening epithelial–mesenchymal transition-targeting agents.

Similar content being viewed by others

References

  1. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial−mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Kalluri, R. EMT: when epithelial cells decide to become mesenchymal-like cells. J. Clin. Invest. 119, 1417–1419 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Polyak, K. & Weinberg, R. A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat. Rev. Cancer 9, 265–273 (2009).

    CAS  PubMed  Google Scholar 

  4. Vega, S. et al. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 18, 1131–1143 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mejlvang, J. et al. Direct repression of cyclin D1 by SIP1 attenuates cell cycle progression in cells undergoing an epithelial mesenchymal transition. Mol. Biol. Cell 18, 4615–4624 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsai, J. H., Donaher, J. L., Murphy, D. A., Chau, S. & Yang, J. Spatiotemporal regulation of epithelial−mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22, 725–736 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Marcucci, F., Bellone, M., Caserta, C. A. & Corti, A. Pushing tumor cells towards a malignant phenotype: stimuli from the microenvironment, intercellular communications and alternative roads. Int. J. Cancer 135, 1265–1276 (2014).

    CAS  PubMed  Google Scholar 

  8. Sahlgren, C., Gustafsson, M. V., Jin, S., Poellinger, L. & Lendahl, U. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc. Natl Acad. Sci. USA 105, 6392–6397 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Martínez-Zaguilán, R. et al. Acidic pH enhances the invasive behavior of human melanoma cells. Clin. Exp. Metastasis 14, 176–186 (1996).

    PubMed  Google Scholar 

  10. Santisteban, M. et al. Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res. 69, 2887–2895 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gjorevski, N., Boghaert, E. & Nelson, C. M. Regulation of epithelial−mesenchymal transition by transmission of mechanical stress through epithelial tissues. Cancer Microenviron. 5, 29–38 (2012).

    PubMed  Google Scholar 

  12. Goetz, J. G. et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146, 148–163 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Acharyya, S. et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150, 165–178 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun, L. et al. miR-200b and miR-15b regulate chemotherapy-induced epithelial−mesenchymal transition in human tongue cancer cells by targeting BMI1. Oncogene 31, 432–445 (2012).

    CAS  PubMed  Google Scholar 

  15. Piao, Y. et al. Acquired resistance to anti-VEGF therapy in glioblastoma is associated with a mesenchymal transition. Clin. Cancer Res. 19, 4392–4403 (2013).

    CAS  PubMed  Google Scholar 

  16. Dumont, N. et al. Sustained induction of epithelial to mesenchymal transition activates DNA methylation of genes silenced in basal-like breast cancers. Proc. Natl Acad. Sci. USA 105, 14867–14872 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wallin, J. J. et al. Active PI3K pathway causes an invasive phenotype which can be reversed or promoted by blocking the pathway at divergent nodes. PLoS ONE 7, e36402 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sunaga, N. et al. Oncogenic KRAS-induced interleukin-8 overexpression promotes cell growth and migration and contributes to aggressive phenotypes of non-small cell lung cancer. Int. J. Cancer 130, 1733–1744 (2012).

    CAS  PubMed  Google Scholar 

  19. Chung, S. S., Giehl, N., Wu, Y. Y. & Vadgama, J. V. STAT3 activation in HER2-overexpressing breast cancer promotes epithelial−mesenchymal transition and cancer stem cell traits. Int. J. Oncol. 44, 403–411 (2014).

    CAS  PubMed  Google Scholar 

  20. Huang, L. E., Bindra, R. S., Glazer, P. M. & Harris, A. L. Hypoxia-induced genetic instability — a calculated mechanism underlying tumor progression. J. Mol. Med. (Berl.) 85, 139–148 (2007).

    CAS  Google Scholar 

  21. Creighton, C. J. et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl Acad. Sci. USA 106, 13820–13825 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, M., Atkinson, R. L. & Rosen, J. M. Selective targeting of radiation-resistant tumor-initiating cells. Proc. Natl Acad. Sci. USA 107, 3522–3527 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tam, W. L. & Weinberg, R. A. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat. Med. 19, 1438–1449 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Scheel, C. et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145, 926–940 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cruciat, C. M. & Niehrs, C. Secreted and transmembrane Wnt inhibitors and activators. Cold Spring Harb. Perspect. Biol. 5, a015081 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. Tate, C. M. et al. A BMP7 variant inhibits the tumorigenic potential of glioblastoma stem-like cells. Cell Death Differ. 19, 1644–1654 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lombardo, Y. et al. Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice. Gastroenterology 140, 297–309 (2011).

    CAS  PubMed  Google Scholar 

  28. Whissell, G. et al. The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression. Nat. Cell Biol. 16, 695–707 (2014).

    CAS  PubMed  Google Scholar 

  29. Todaro, M. et al. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell 14, 342–356 (2014).

    CAS  PubMed  Google Scholar 

  30. Chua, H. L. et al. NF-κB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26, 711–724 (2007).

    CAS  PubMed  Google Scholar 

  31. Kumar, M. et al. NF-κB regulates mesenchymal transition for the induction of non-small cell lung cancer initiating cells. PLoS ONE 8, e68597 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiong, H. et al. Roles of STAT3 and ZEB1 proteins in E-cadherin down-regulation and human colorectal cancer epithelial−mesenchymal transition. J. Biol. Chem. 287, 5819–5832 (2012).

    CAS  PubMed  Google Scholar 

  33. Wong, C. C. L. et al. Inhibitors of hypoxia-inducible factor 1 block breast cancer metastatic niche formation and lung metastasis. J. Mol. Med. (Berl.) 90, 803–815 (2012).

    CAS  Google Scholar 

  34. Onder, T. T. et al. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 68, 3645–3654 (2008).

    CAS  PubMed  Google Scholar 

  35. Johnson, R. & Halder, G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat. Rev. Drug Discov. 13, 63–79 (2014).

    CAS  PubMed  Google Scholar 

  36. Cordenonsi, M. et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147, 759–772 (2011).

    CAS  PubMed  Google Scholar 

  37. Bartucci, M. et al. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene 34, 681–690 (2015).

    CAS  PubMed  Google Scholar 

  38. Ansieau, S. et al. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14, 79–89 (2008).

    CAS  PubMed  Google Scholar 

  39. Zhang, Q. et al. Wnt/β-catenin signaling enhances hypoxia-induced epithelial−mesenchymal transition in hepatocellular carcinoma via crosstalk with hif-1α signaling. Carcinogenesis 34, 962–973 (2013).

    PubMed  Google Scholar 

  40. Byers, L. A. et al. An epithelial−mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin. Cancer Res. 19, 279–290 (2013).

    CAS  PubMed  Google Scholar 

  41. De Craene, B. & Berx, G. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer 13, 97–110 (2013).

    CAS  PubMed  Google Scholar 

  42. Mani, S. A. et al. The epithelial−mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cieply, B., Farris, J., Denvir, J., Ford, H. L. & Frisch, S. M. Epithelial−mesenchymal transition and tumor suppression are controlled by a reciprocal feedback loop between ZEB1 and Grainyhead-like-2. Cancer Res. 73, 6299–6309 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma, L. et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat. Cell Biol. 12, 247–256 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Williams, L. V., Veliceasa, D., Vinokour, E. & Volpert, O. V. miR-200b inhibits prostate cancer EMT, growth and metastasis. PLoS ONE 8, e83991 (2013).

    PubMed  PubMed Central  Google Scholar 

  46. Bracken, C. P. et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial−mesenchymal transition. Cancer Res. 68, 7846–7854 (2008).

    CAS  PubMed  Google Scholar 

  47. Pan, X. A., Wang, Z. X. & Wang, R. MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biol. Ther. 10, 1224–1232 (2010).

    CAS  PubMed  Google Scholar 

  48. Coppola, V. et al. BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial−mesenchymal transition. Oncogene 32, 1843–1853 (2013).

    CAS  PubMed  Google Scholar 

  49. Gallardo-Pérez, J. C., Rivero-Segura, N. A., Marín-Hernández, A., Moreno-Sánchez, R. & Rodríguez-Enríquez, S. GPI/AMF inhibition blocks the development of the metastatic phenotype of mature multi-cellular tumor spheroids. Biochim. Biophys. Acta 1843, 1043–1053 (2014).

    PubMed  Google Scholar 

  50. Yauch, R. L. et al. Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin. Cancer Res. 11, 8686–8698 (2005).

    CAS  PubMed  Google Scholar 

  51. McConkey, D. J. et al. Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev. 28, 335–344 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tam, W. L. et al. Protein kinase C α is a central signaling node and therapeutic target for breast cancer stem cells. Cancer Cell 24, 347–364 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ashizawa, T. et al. Effect of the STAT3 inhibitor STX-0119 on the proliferation of a temozolomide-resistant glioblastoma cell line. Int. J. Oncol. 45, 411–418 (2014).

    CAS  PubMed  Google Scholar 

  54. Wilson, C. et al. Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK pathway inhibition. Oncotarget 5, 7328–7341 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Huang, R. Y. J. et al. An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis. 4, e915 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Aref, A. R. et al. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Integr. Biol. (Camb.) 5, 381–389 (2013).

    CAS  Google Scholar 

  57. Vinci, M. et al. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol. 10, 29 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, Y. Q., Zhang, W. J. & Qin, L. D. Mesenchymal-mode migration assay and antimetastatic drug screening with high-throughput microfluidic channel networks. Angew. Chem. Int. Ed.Engl. 53, 2344–2348 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Buonato, J. M. & Lazzara, M. J. ERK1/2 blockade prevents epithelial−mesenchymal transition in lung cancer cells and promotes their sensitivity to EGFR inhibition. Cancer Res. 74, 309–319 (2014).

    CAS  PubMed  Google Scholar 

  60. Chua, K. N. et al. A cell-based small molecule screening method for identifying inhibitors of epithelial−mesenchymal transition in carcinoma. PLoS ONE 7, e33183 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gill, B. J. et al. A synthetic matrix with independently tunable biochemistry and mechanical properties to study epithelial morphogenesis and EMT in a lung adenocarcinoma model. Cancer Res. 72, 6013–6023 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Thomson, S., Petti, F., Sujka-Kwok, I., Epstein, D. & Haley, J. D. Kinase switching in mesenchymal-like non-small cell lung cancer lines contributes to EGFR inhibitor resistance through pathway redundancy. Clin. Exp. Metastasis 25, 843–854 (2008).

    CAS  PubMed  Google Scholar 

  63. Thomson, S. et al. A systems view of epithelial−mesenchymal transition signaling states. Clin. Exp. Metastasis 28, 137–155 (2011).

    CAS  PubMed  Google Scholar 

  64. Shah, P., Gau, Y. & Sabnis, G. Histone deacetylase inhibitor entinostat reverses epithelial to mesenchymal transition of breast cancer cells by reversing the repression of E-cadherin. Breast Cancer Res. Treat. 143, 99–111 (2014).

    CAS  PubMed  Google Scholar 

  65. Gurney, A. et al. Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc. Natl Acad. Sci. USA 109, 11717–11722 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kang, Y. et al. Role of focal adhesion kinase in regulating YB-1-mediated paclitaxel resistance in ovarian cancer. J. Natl Cancer Inst. 105, 1485–1495 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wicki, A. et al. Tumor invasion in the absence of epithelial−mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9, 261–272 (2006).

    CAS  PubMed  Google Scholar 

  68. Lu, X. & Kang, Y. B. Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin. Cancer Res. 16, 5928–5935 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rohwer, N. et al. Hypoxia-inducible factor 1α mediates anoikis resistance via suppression of α5 integrin. Cancer Res. 68, 10113–10120 (2008).

    CAS  PubMed  Google Scholar 

  70. Lou, Y. et al. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res. 71, 3364–3376 (2011).

    CAS  PubMed  Google Scholar 

  71. Fiaschi, T. et al. Carbonic anhydrase IX from cancer-associated fibroblasts drives epithelial−mesenchymal transition in prostate carcinoma cells. Cell Cycle 12, 1791–1801 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lock, F. E. et al. Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche. Oncogene 32, 5210–5219 (2013).

    CAS  PubMed  Google Scholar 

  73. De Milito, A. et al. pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. Int. J. Cancer 127, 207–219 (2010).

    CAS  PubMed  Google Scholar 

  74. Ferrari, S. et al. Proton pump inhibitor chemosensitization in human osteosarcoma: from the bench to the patients' bed. J. Transl. Med. 11, 268 (2013).

    PubMed  PubMed Central  Google Scholar 

  75. Erler, J. T. et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440, 1222–1226 (2006).

    CAS  PubMed  Google Scholar 

  76. El-Haibi, C. P. et al. Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proc. Natl Acad. Sci. USA 109, 17460–17465 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Taylor, M. A., Amin, J. D., Kirschmann, D. A. & Schiemann, W. P. Lysyl oxidase contributes to mechanotransduction-mediated regulation of transforming growth factor-β signaling in breast cancer cells. Neoplasia 13, 406–418 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang, X. X. et al. Inactivation of lysyl oxidase by β-aminopropionitrile inhibits hypoxia-induced invasion and migration of cervical cancer cells. Oncol. Rep. 29, 541–548 (2013).

    CAS  PubMed  Google Scholar 

  79. Pickup, M. W. et al. Stromally derived lysyl oxidase promotes metastasis of transforming growth factor-β-deficient mouse mammary carcinomas. Cancer Res. 73, 5336–5346 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Barker, H. E., Cox, T. R. & Erler, J. T. The rationale for targeting the LOX family in cancer. Nat. Rev. Cancer 12, 540–552 (2012).

    CAS  PubMed  Google Scholar 

  81. Gilkes, D. M., Semenza, G. L. & Wirtz, D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat. Rev. Cancer 14, 430–439 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Canadas, I. et al. Targeting epithelial-to-mesenchymal transition with Met inhibitors reverts chemoresistance in small cell lung cancer. Clin. Cancer Res. 20, 938–950 (2014).

    CAS  PubMed  Google Scholar 

  83. Sun, S. Y. et al. Targeting the c-Met/FZD8 signaling axis eliminates patient-derived cancer stem-like cells in head and neck squamous carcinomas. Cancer Res. 74, 7546–7559 (2014).

    CAS  PubMed  Google Scholar 

  84. Wu, Y. Y. et al. Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells. Mol. Cancer Res. 10, 1597–1606 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Guo, J. B. et al. PRRX1 promotes epithelial−mesenchymal transition through the Wnt/β-catenin pathway in gastric cancer. Med. Oncol. 32, 393 (2015).

    PubMed  Google Scholar 

  86. Bhola, N. E. et al. TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer. J. Clin. Invest. 123, 1348–1358 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Philips, G. M. et al. Hedgehog signaling antagonist promotes regression of both liver fibrosis and hepatocellular carcinoma in a murine model of primary liver cancer. PLoS ONE 6, e23943 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, Z. W. et al. Acquisition of epithelial−mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the Notch signaling pathway. Cancer Res. 69, 2400–2407 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, Y. M. et al. Regulation of EMT by Notch signaling pathway in tumor progression. Curr. Cancer Drug Targets 13, 957–962 (2013).

    CAS  PubMed  Google Scholar 

  90. Palagani, V. et al. Epithelial mesenchymal transition and pancreatic tumor initiating CD44+/EpCAM+ cells are inhibited by γ-secretase inhibitor IX. PLoS ONE 7, e46514 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Xie, G. Z. et al. IL-6-induced epithelial−mesenchymal transition promotes the generation of breast cancer stem-like cells analogous to mammosphere cultures. Int. J. Oncol. 40, 1171–1179 (2012).

    CAS  PubMed  Google Scholar 

  92. Devarajan, E., Song, Y. H., Krishnappa, S. & Alt, E. Epithelial−mesenchymal transition in breast cancer lines is mediated through PDGF-D released by tissue-resident stem cells. Int. J. Cancer 131, 1023–1031 (2012).

    CAS  PubMed  Google Scholar 

  93. Jechlinger, M. et al. Autocrine PDGFR signaling promotes mammary cancer metastasis. J. Clin. Invest. 116, 1561–1570 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, Z. C., Dong, Z. H., Lauxen, I. S., St'Ana, M. & Nor, J. E. Endothelial cell-secreted EGF induces epithelial to mesenchymal transition and endows head and neck cancer cells with stem-like phenotype. Cancer Res. 74, 2869–2881 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen, J. et al. TGF-β1 and FGF2 stimulate the epithelial−mesenchymal transition of HERS cells through a MEK-dependent mechanism. J. Cell. Physiol. 229, 1647–1659 (2014).

    CAS  PubMed  Google Scholar 

  96. Bhowmick, N. A., Zent, R., Ghiassi, M., McDonnell, M. & Moses, H. L. Integrin β1 signaling is necessary for transforming growth factor-β activation of p38MAPK and epithelial plasticity. J. Biol. Chem. 276, 46707–46713 (2001).

    CAS  PubMed  Google Scholar 

  97. Bianchi, A., Gervasi, M. E. & Bakin, A. Role of β5-integrin in epithelial−mesenchymal transition in response to TGF-β. Cell Cycle 9, 1647–1659 (2010).

    CAS  PubMed  Google Scholar 

  98. Parvani, J. G., Galliher-Beckley, A. J., Schiemann, B. J. & Schiemann, W. P. Targeted inactivation of β1 integrin induces β3 integrin switching, which drives breast cancer metastasis by TGF-β. Mol. Biol. Cell 24, 3449–3459 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Goyal, L., Muzumdar, M. D. & Zhu, A. X. Targeting the HGF/c-MET pathway in hepatocellular carcinoma. Clin. Cancer Res. 19, 2310–2318 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lobry, C., Oh, P., Mansour, M. R., Look, A. T. & Aifantis, I. Notch signaling: switching an oncogene to a tumor suppressor. Blood 123, 2451–2459 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Rampias, T. et al. A new tumor suppressor role for the Notch pathway in bladder cancer. Nat. Med. 20, 1199–1205 (2014).

    CAS  PubMed  Google Scholar 

  102. Anastas, J. N. & Moon, R. T. WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer 13, 11–26 (2013).

    CAS  PubMed  Google Scholar 

  103. Chen, E. Y. et al. Glycogen synthase kinase 3 inhibitors induce the canonical WNT/β-catenin pathway to suppress growth and self-renewal in embryonal rhabdomyosarcoma. Proc. Natl Acad. Sci. USA 111, 5349–5354 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Rudin, C. M. Vismodegib. Clin. Cancer Res. 18, 3218–3222 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Grygielewicz, P. et al. Epithelial−mesenchymal transition confers resistance to selective FGFR inhibitors in SNU-16 gastric cancer cells. Gastr. Cancer 19, 53–62 (2016).

    CAS  Google Scholar 

  106. Leight, J. L., Wozniak, M. A., Chen, S., Lynch, M. L. & Chen, C. S. Matrix rigidity regulates a switch between TGF-β1-induced apoptosis and epithelial−mesenchymal transition. Mol. Biol. Cell 23, 781–791 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhong, Z. J. et al. Anti-transforming growth factor β receptor II antibody has therapeutic efficacy against primary tumor growth and metastasis through multieffects on cancer, stroma, and immune cells. Clin. Cancer Res. 16, 1191–1205 (2010).

    CAS  PubMed  Google Scholar 

  108. Liu, J. Q. et al. TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc. Natl Acad. Sci. USA 109, 16618–16623 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Anderton, M. J. et al. Induction of heart valve lesions by small-molecule ALK5 inhibitors. Toxicol. Pathol. 39, 916–924 (2011).

    CAS  PubMed  Google Scholar 

  110. Fransvea, E., Angelotti, U., Antonaci, S. & Giannelli, G. Blocking transforming growth factor-beta up-regulates E-cadherin and reduces migration and invasion of hepatocellular carcinoma cells. Hepatology 47, 1557–1566 (2008).

    CAS  PubMed  Google Scholar 

  111. Rodon, J. et al. First-in-human dose study of the novel transforming growth factor-β receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin. Cancer Res. 21, 553–560 (2015).

    CAS  PubMed  Google Scholar 

  112. Giannelli, G., Villa, E. & Lahn, M. Transforming growth factor-β as a therapeutic target in hepatocellular carcinoma. Cancer Res. 74, 1890–1894 (2014).

    CAS  PubMed  Google Scholar 

  113. Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9, 798–809 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Sulzmaier, F. J., Jean, C. & Schlaepfer, D. D. FAK in cancer: mechanistic findings and clinical applications. Nat. Rev. Cancer 14, 598–610 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Fan, H., Zhao, X., Sun, S., Luo, M. & Guan, J. L. Function of focal adhesion kinase scaffolding to mediate endophilin A2 phosphorylation promotes epithelial−mesenchymal transition and mammary cancer stem cell activities in vivo. J. Biol. Chem. 288, 3322–3333 (2013).

    CAS  PubMed  Google Scholar 

  116. Bailey, K. M. & Liu, J. Caveolin-1 up-regulation during epithelial to mesenchymal transition is mediated by focal adhesion kinase. J. Biol. Chem. 283, 13714–13724 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Shapiro, I. M. et al. Merlin deficiency predicts FAK inhibitor sensitivity: a synthetic lethal relationship. Sci. Transl Med. 6, 237ra68 (2014).

    PubMed  PubMed Central  Google Scholar 

  118. Infante, J. R. et al. Safety, pharmacokinetic, and pharmacodynamic Phase I dose-escalation trial of PF-00562271, an inhibitor of focal adhesion kinase, in advanced solid tumors. J. Clin. Oncol. 30, 1527–1533 (2012).

    CAS  PubMed  Google Scholar 

  119. Guarino, M. Src signaling in cancer invasion. J. Cell. Physiol. 223, 14–26 (2010).

    CAS  PubMed  Google Scholar 

  120. Kim, L. C., Song, L. & Haura, E. B. Src kinases as therapeutic targets for cancer. Nat. Rev. Clin. Oncol. 6, 587–595 (2009).

    PubMed  Google Scholar 

  121. Zhong, L. et al. A preclinical evaluation of a novel multikinase inhibitor, SKLB-329, as a therapeutic agent against hepatocellular carcinoma. Int. J. Cancer 135, 2972–2983 (2014).

    CAS  PubMed  Google Scholar 

  122. Vultur, A. et al. SKI-606 (bosutinib), a novel Src kinase inhibitor, suppresses migration and invasion of human breast cancer cells. Mol. Cancer Ther. 7, 1185–1194 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Lu, H. et al. IGFBP2/FAK pathway is causally associated with dasatinib resistance in non-small cell lung cancer cells. Mol. Cancer Ther. 12, 2864–2873 (2013).

    CAS  PubMed  Google Scholar 

  124. Gucalp, A. et al. Phase II trial of saracatinib (AZD0530), an oral SRC-inhibitor for the treatment of patients with hormone receptor-negative metastatic breast cancer. Clin. Breast Cancer 11, 306–311 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Puls, L. N., Eadens, M. & Messersmith, W. Current status of SRC inhibitors in solid tumor malignancies. Oncologist 16, 566–578 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Somlo, G. et al. Dasatinib plus capecitabine for advanced breast cancer: safety and efficacy in Phase I study CA180004. Clin. Cancer Res. 19, 1884–1893 (2013).

    CAS  PubMed  Google Scholar 

  127. Chang, L. et al. Acquisition of epithelial−mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis. 4, e875 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Ning, J., Liu, W., Zhang, J., Lang, Y. & Xu, S. Ran GTPase induces EMT and enhances invasion in non-small cell lung cancer cells through activation of PI3K−AKT pathway. Oncol. Res. 21, 67–72 (2013).

    CAS  PubMed  Google Scholar 

  129. Lin, G. et al. The dual PI3K/mTOR inhibitor NVP-BEZ235 prevents epithelial−mesenchymal transition induced by hypoxia and TGF-β1. Eur. J. Pharmacol. 729, 45–53 (2014).

    CAS  PubMed  Google Scholar 

  130. Chen, W., Wu, S., Zhang, G., Wang, W. & Shi, Y. Effect of AKT inhibition on epithelial−mesenchymal transition and ZEB1-potentiated radiotherapy in nasopharyngeal carcinoma. Oncol. Lett. 6, 1234–1240 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Gulhati, P. et al. mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res. 71, 3246–3256 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Zeuner, A., Todaro, M., Stassi, G. & De Maria, R. Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell 15, 692–705 (2014).

    CAS  PubMed  Google Scholar 

  133. Leconet, W. et al. Preclinical validation of AXL receptor as a target for antibody-based pancreatic cancer immunotherapy. Oncogene 33, 5405–5414 (2014).

    CAS  PubMed  Google Scholar 

  134. Wilson, C. et al. AXL inhibition sensitizes mesenchymal cancer cells to antimitotic drugs. Cancer Res. 74, 5878–5890 (2014).

    CAS  PubMed  Google Scholar 

  135. Gjerdrum, C. et al. Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proc. Natl Acad. Sci. USA 107, 1124–1129 (2010).

    CAS  PubMed  Google Scholar 

  136. Sheridan, C. First Axl inhibitor enters clinical trials. Nat. Biotechnol. 31, 775–776 (2013).

    CAS  PubMed  Google Scholar 

  137. Bosurgi, L. et al. Paradoxical role of the proto-oncogene Axl and Mer receptor tyrosine kinases in colon cancer. Proc. Natl Acad. Sci. USA 110, 13091–13096 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Mulholland, D. J. et al. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res. 72, 1878–1889 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Arvizo, R. R. et al. Inhibition of tumor growth and metastasis by a self-therapeutic nanoparticle. Proc. Natl Acad. Sci. USA 110, 6700–6705 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Holderfield, M., Deuker, M. M., McCormick, F. & McMahon, M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat. Rev. Cancer 14, 455–467 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Shimojo, Y. et al. Attenuation of reactive oxygen species by antioxidants suppresses hypoxia-induced epithelial−mesenchymal transition and metastasis of pancreatic cancer cells. Clin. Exp. Metastasis 30, 143–154 (2013).

    CAS  PubMed  Google Scholar 

  142. Kim, Y. M. & Cho, M. Activation of NADPH oxidase subunit NCF4 induces ROS-mediated EMT signaling in HeLa cells. Cell. Signal. 26, 784–796 (2014).

    CAS  PubMed  Google Scholar 

  143. Dong, C. et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23, 316–331 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Libby, G. et al. New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care 32, 1620–1625 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Hirsch, H. A., Iliopoulos, D., Tsichlis, P. N. & Struhl, K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 69, 7507–7511 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Li, L. et al. Metformin sensitizes EGFR-TKI-resistant human lung cancer cells in vitro and in vivo through inhibition of IL-6 signaling and EMT reversal. Clin. Cancer Res. 20, 2714–2726 (2014).

    CAS  PubMed  Google Scholar 

  147. Qu, C. et al. Metformin reverses multidrug resistance and epithelial−mesenchymal transition (EMT) via activating AMP-activated protein kinase (AMPK) in human breast cancer cells. Mol. Cell. Biochem. 386, 63–71 (2014).

    CAS  PubMed  Google Scholar 

  148. Zheng, L. et al. Prognostic significance of AMPK activation and therapeutic effects of metformin in hepatocellular carcinoma. Clin. Cancer Res. 19, 5372–5380 (2013).

    CAS  PubMed  Google Scholar 

  149. Del Barco, S. et al. Metformin: multi-faceted protection against cancer. Oncotarget 2, 896–917 (2011).

    PubMed  PubMed Central  Google Scholar 

  150. Chou, C. C. et al. AMPK reverses the mesenchymal phenotype of cancer cells by targeting the Akt−MDM2−Foxo3a signaling axis. Cancer Res. 74, 4783–4795 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Madiraju, A. K. et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542–546 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Shin, S. R., Sanchez-Velar, N., Sherr, D. H. & Sonenshein, G. E. 7,12-dimethylbenz(a)anthracene treatment of a c-rel mouse mammary tumor cell line induces epithelial to mesenchymal transition via activation of nuclear factor-κB. Cancer Res. 66, 2570–2575 (2006).

    CAS  PubMed  Google Scholar 

  153. Cheng, Z. X. et al. Nuclear factor-κB-dependent epithelial to mesenchymal transition induced by HIF-1α activation in pancreatic cancer cells under hypoxic conditions. PLoS ONE 6, e23752 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Fang, H. et al. Toll-like receptor 4 (TLR4) is essential for Hsp70-like protein 1 (HSP70L1) to activate dendritic cells and induce Th1 response. J. Biol. Chem. 286, 30393–30400 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Kortylewski, M. et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat. Med. 11, 1314–1321 (2005).

    CAS  PubMed  Google Scholar 

  156. Zhong, Z., Wen, Z. & Darnell, J. E. Jr. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264, 95–98 (1994).

    CAS  PubMed  Google Scholar 

  157. Bowman, T. et al. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc. Natl Acad. Sci. USA 98, 7319–7324 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Yu, C. L. et al. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 269, 81–83 (1995).

    CAS  PubMed  Google Scholar 

  159. Lee, H. et al. Persistently activated Stat3 maintains constitutive NF-κB activity in tumors. Cancer Cell 15, 283–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Colomiere, M. et al. Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial−mesenchymal transition in ovarian carcinomas. Br. J. Cancer 100, 134–144 (2009).

    CAS  PubMed  Google Scholar 

  161. Yue, P. et al. Hyperactive EGF receptor, Jaks and Stat3 signaling promote enhanced colony-forming ability, motility and migration of cisplatin-resistant ovarian cancer cells. Oncogene 31, 2309–2322 (2012).

    CAS  PubMed  Google Scholar 

  162. Drake, J. M., Strohbehn, G., Bair, T. B., Moreland, J. G. & Henry, M. D. ZEB1 enhances transendothelial migration and represses the epithelial phenotype of prostate cancer cells. Mol. Biol. Cell 20, 2207–2217 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Azmi, A. S. et al. Systems analysis reveals a transcriptional reversal of the mesenchymal phenotype induced by SNAIL-inhibitor GN-25. BMC Syst. Biol. 7, 85 (2013).

    PubMed  PubMed Central  Google Scholar 

  164. Shi, Z. D. et al. AC1MMYR2, an inhibitor of Dicer-mediated biogenesis of Oncomir mir-21, reverses epithelial−mesenchymal transition and suppresses tumor growth and progression. Cancer Res. 73, 5519–5531 (2013).

    CAS  PubMed  Google Scholar 

  165. Song, X. et al. LBH589 inhibits proliferation and metastasis of hepatocellular carcinoma via inhibition of gankyrin/stat3/akt pathway. Mol. Cancer 12, 114 (2013).

    PubMed  PubMed Central  Google Scholar 

  166. Eades, G. et al. miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J. Biol. Chem. 286, 25992–26002 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Jiang, G. M. et al. Histone deacetylase inhibitor induction of epithelial−mesenchymal transitions via up-regulation of Snail facilitates cancer progression. Biochim. Biophys. Acta 1833, 663–671 (2013).

    CAS  PubMed  Google Scholar 

  168. Kong, D. J. et al. Histone deacetylase inhibitors induce epithelial-to-mesenchymal transition in prostate cancer cells. PLoS ONE 7, e45045 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Cui, B. et al. Targeting ROR1 inhibits epithelial−mesenchymal transition and metastasis. Cancer Res. 73, 3649–3660 (2013).

    CAS  PubMed  Google Scholar 

  170. Zhang, S. P. et al. Ovarian cancer stem cells express ROR1, which can be targeted for anti-cancer-stem-cell therapy. Proc. Natl Acad. Sci. USA 111, 17266–17271 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Taube, J. H. et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc. Natl Acad. Sci. USA 107, 15449–15454 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Jeong, H., Ryu, Y. J., An, J., Lee, Y. & Kim, A. Epithelial−mesenchymal transition in breast cancer correlates with high histological grade and triple-negative phenotype. Histopathology 60, E87–E95 (2012).

    PubMed  Google Scholar 

  173. Tan, T. Z. et al. Epithelial−mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol. Med. 6, 1279–1293 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Kolev, V. N. et al. PI3K/mTOR dual inhibitor VS-5584 preferentially targets cancer stem cells. Cancer Res. 75, 446–455 (2015).

    CAS  PubMed  Google Scholar 

  175. Smith, D. C. et al. A Phase I dose escalation and expansion study of the anticancer stem cell agent demcizumab (anti-DLL4) in patients with previously treated solid tumors. Clin. Cancer Res. 20, 6295–6303 (2014).

    CAS  PubMed  Google Scholar 

  176. Yen, W. C. et al. Targeting Notch signaling with a Notch2/Notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clin. Cancer Res. 21, 2084–2095 (2015).

    CAS  PubMed  Google Scholar 

  177. Li, Y. et al. Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc. Natl Acad. Sci. USA 112, 1839–1844 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Fleuren, E. D. G. et al. The role of AXL and the in vitro activity of the receptor tyrosine kinase inhibitor BGB324 in Ewing sarcoma. Oncotarget 5, 12753–12768 (2014).

    PubMed  PubMed Central  Google Scholar 

  179. Yokobori, T. et al. Plastin3 is a novel marker for circulating tumor cells undergoing the epithelial−mesenchymal transition and is associated with colorectal cancer prognosis. Cancer Res. 73, 2059–2069 (2013).

    CAS  PubMed  Google Scholar 

  180. Steinert, G. et al. Immune escape and survival mechanisms in circulating tumor cells of colorectal cancer. Cancer Res. 74, 1694–1704 (2014).

    CAS  PubMed  Google Scholar 

  181. Diaz, L. A. et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Shiwarski, D. J. et al. To 'grow' or 'go': TMEM16A expression as a switch between tumor growth and metastasis in SCCHN. Clin. Cancer Res. 20, 4673–4688 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Veiseh, M. et al. Cellular heterogeneity profiling by hyaluronan probes reveals an invasive but slow-growing breast tumor subset. Proc. Natl Acad. Sci. USA 111, E1731–E1739 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Bhowmick, N. A., Neilson, E. G. & Moses, H. L. Stromal fibroblasts in cancer initiation and progression. Nature 432, 332–337 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    CAS  PubMed  Google Scholar 

  186. Su, S. C. et al. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell 25, 605–620 (2014).

    PubMed  Google Scholar 

  187. Toh, B. et al. Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS Biol. 9, e1001162 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Giannoni, E. et al. Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial−mesenchymal transition and cancer stemness. Cancer Res. 70, 6945–6956 (2010).

    CAS  PubMed  Google Scholar 

  189. Grosse-Steffen, T. et al. Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma and pancreatic tumor cell lines: the role of neutrophils and neutrophil-derived elastase. Clin. Dev. Immunol. 2012, 720768 (2012).

    PubMed  PubMed Central  Google Scholar 

  190. Park, J. & Scherer, P. E. Adipocyte-derived endotrophin promotes malignant tumor progression. J. Clin. Invest. 122, 4243–4256 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Comito, G. et al. Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene 33, 2423–2431 (2014).

    CAS  PubMed  Google Scholar 

  192. Yamashina, T. et al. Cancer stem-like cells derived from chemoresistant tumors have a unique capacity to prime tumorigenic myeloid cells. Cancer Res. 74, 2698–2709 (2014).

    CAS  PubMed  Google Scholar 

  193. Ries, C. H. et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25, 846–859 (2014).

    CAS  PubMed  Google Scholar 

  194. Casazza, A. et al. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24, 695–709 (2013).

    CAS  PubMed  Google Scholar 

  195. Klug, F. et al. Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24, 589–602 (2013).

    CAS  PubMed  Google Scholar 

  196. Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinomaassociated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Germano, G. et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 23, 249–262 (2013).

    CAS  PubMed  Google Scholar 

  198. Vanharanta, S. et al. Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer. Nat. Med. 19, 50–56 (2013).

    CAS  PubMed  Google Scholar 

  199. Pantuck, A. J., An, J. B., Liu, H. R. & Rettig, M. B. NF-κ-dependent plasticity of the epithelial to mesenchymal transition induced by Von HippelLindau inactivation in renal cell carcinomas. Cancer Res. 70, 752–761 (2010).

    CAS  PubMed  Google Scholar 

  200. Salgia, R. et al. Phase I dose-escalation study of onartuzumab as a single agent and in combination with bevacizumab in patients with advanced solid malignancies. Clin. Cancer Res. 20, 1666–1675 (2014).

    CAS  PubMed  Google Scholar 

  201. Ling, H., Fabbri, M. & Calin, G. A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Drug Discov. 12, 847–865 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Fischer, K. R. et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472–476 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Zheng, X. et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527, 525–530 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R.D.M. and G.S. are supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fabrizio Marcucci or Ruggero De Maria.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcucci, F., Stassi, G. & De Maria, R. Epithelial–mesenchymal transition: a new target in anticancer drug discovery. Nat Rev Drug Discov 15, 311–325 (2016). https://doi.org/10.1038/nrd.2015.13

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2015.13

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research