<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">
Review Article
No access
Published Online: 27 February 2014

Hematopoietic Stem Cell Injury Induced by Ionizing Radiation

Publication: Antioxidants & Redox Signaling
Volume 20, Issue Number 9

Abstract

Significance: Exposure to ionizing radiation (IR) as the result of nuclear accidents or terrorist attacks is a significant threat and a major medical concern. Hematopoietic stem cell (HSC) injury is the primary cause of death after accidental or intentional exposure to a moderate or high dose of IR. Protecting HSCs from IR should be a primary goal in the development of novel medical countermeasures against radiation. Recent Advances: Significant progress has been made in our understanding of the mechanisms by which IR causes HSC damage. The mechanisms include (i) induction of HSC apoptosis via the p53-Puma pathway; (ii) promotion of HSC differentiation via the activation of the G-CSF/Stat3/BATF-dependent differentiation checkpoint; (iii) induction of HSC senescence via the ROS-p38 pathway; and (iv) damage to the HSC niche. Critical Issues: Induction of apoptosis in HSCs and hematopoietic progenitor cells is primarily responsible for IR-induced acute bone marrow (BM) injury. Long-term BM suppression caused by IR is mainly attributable to the induction of HSC senescence. However, the promotion of HSC differentiation and damage to the HSC niche can contribute to both the acute and long-term effects of IR on the hematopoietic system. Future Directions: In this review, we have summarized a number of recent findings that provide new insights into the mechanisms whereby IR damages HSCs. These findings will provide new opportunities for developing a mechanism-based strategy to prevent and/or mitigate IR-induced BM suppression. Antioxid. Redox Signal. 20, 1447–1462.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Abbas HA, Maccio DR, Coskun S, Jackson JG, Hazen AL, Sills TM, You MJ, Hirschi KK, and Lozano G. Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity. Cell Stem Cell 7: 606–617, 2010.
2.
Allsopp RC and Weissman IL. Replicative senescence of hematopoietic stem cells during serial transplantation: does telomere shortening play a role? Oncogene 21: 3270–3273, 2002.
3.
Allsopp RC, Morin GB, DePinho R, Harley CB, and Weissman IL. Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 102: 517–520, 2003.
4.
Allsopp RC, Morin GB, Horner JW, DePinho R, Harley CB, and Weissman IL. Effect of TERT over-expression on the long-term transplantation capacity of hematopoietic stem cells. Nat Med 9: 369–371, 2003.
5.
Andersen CA. Noninvasive assessment of lower extremity hemodynamics in individuals with diabetes mellitus. J Vasc Surg 52: 76S–80S, 2010.
6.
Antonchuk J, Sauvageau G, and Humphries RK. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109: 39–45, 2002.
7.
Arai F and Suda T. Maintenance of quiescent hematopoietic stem cells in the osteoblastic niche. Ann N Y Acad Sci 1106: 41–53, 2007.
8.
Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, and Suda T. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118: 149–161, 2004.
9.
Avecilla ST, Hattori K, Heissig B, Tejada R, Liao F, Shido K, Jin DK, Dias S, Zhang F, Hartman TE, Hackett NR, Crystal RG, Witte L, Hicklin DJ, Bohlen P, Eaton D, Lyden D, de Sauvage F, and Rafii S. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10: 64–71, 2004.
10.
Aykin-Burns N, Slane BG, Liu AT, Owens KM, O'Malley MS, Smith BJ, Domann FE, and Spitz DR. Sensitivity to low-dose/low-LET ionizing radiation in mammalian cells harboring mutations in succinate dehydrogenase subunit C is governed by mitochondria-derived reactive oxygen species. Radiat Res 175: 150–158, 2011.
11.
Azzam EI, Jay-Gerin JP, and Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 327: 48–60, 2012.
12.
Balaban RS, Nemoto S, and Finkel T. Mitochondria, oxidants, and aging. Cell 120: 483–495, 2005.
13.
Barria E, Mikels A, and Haas M. Maintenance and self-renewal of long-term reconstituting hematopoietic stem cells supported by amniotic fluid. Stem Cells Dev 13: 548–562, 2004.
14.
Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, and Campisi J. Reversal of human cellular senescence: roles of the p53 and p16 pathways. Embo J 22: 4212–4222, 2003.
15.
Becker AJ, Mcculloch EA, and Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197: 452–454, 1963.
16.
Bedard K and Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87: 245–313, 2007.
17.
Bierkens JG, Hendry JH, and Testa NG. The radiation response and recovery of bone marrow stroma with particular reference to long-term bone marrow cultures. Eur J Haematol 43: 95–107, 1989.
18.
Broudy VC. Stem cell factor and hematopoiesis. Blood 90: 1345–1364, 1997.
19.
Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120: 513–522, 2005.
20.
Campisi J, Kim SH, Lim CS, and Rubio M. Cellular senescence, cancer and aging: the telomere connection. Exp Gerontol 36: 1619–1637, 2001.
21.
Carbonneau CL, Despars G, Rojas-Sutterlin S, Fortin A, Le O, Hoang T, and Beausejour CM. Ionizing radiation-induced expression of INK4a/ARF in murine bone marrow-derived stromal cell populations interferes with bone marrow homeostasis. Blood 119: 717–726, 2012.
22.
Cartron G, Herault O, Benboubker L, Clement N, Bernard MC, Roingeard F, Desbois I, Colombat P, Binet C, and Domenech J. Quantitative and qualitative analysis of the human primitive progenitor cell compartment after autologous stem cell transplantation. J Hematother Stem Cell Res 11: 359–368, 2002.
23.
Chen C, Liu Y, Liu R, Ikenoue T, Guan KL, Liu Y, and Zheng P. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 205: 2397–2408, 2008.
24.
Chiang E, Dang O, Anderson K, Matsuzawa A, Ichijo H, and David M. Cutting edge: apoptosis-regulating signal kinase 1 is required for reactive oxygen species-mediated activation of IFN regulatory factor 3 by lipopolysaccharide. J Immunol 176: 5720–5724, 2006.
25.
Chow A, Lucas D, Hidalgo A, Mendez-Ferrer S, Hashimoto D, Scheiermann C, Battista M, Leboeuf M, Prophete C, van Rooijen N, Tanaka M, Merad M, and Frenette PS. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208: 261–271, 2011.
26.
Christensen JL and Weissman IL. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci U S A 98: 14541–14546, 2001.
27.
Christophorou MA, Ringshausen I, Finch AJ, Swigart LB, and Evan GI. The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443: 214–217, 2006.
28.
Chute JP, Muramoto GG, Salter AB, Meadows SK, Rickman DW, Chen B, Himburg HA, and Chao NJ. Transplantation of vascular endothelial cells mediates the hematopoietic recovery and survival of lethally irradiated mice. Blood 109: 2365–2372, 2007.
29.
Cui YF, Zhou PK, Woolford LB, Lord BI, Hendry JH, and Wang DW. Apoptosis in bone marrow cells of mice with different p53 genotypes after gamma-rays irradiation in vitro. J Environ Pathol Toxicol Oncol 14: 159–163, 1995.
30.
Dainiak N. Hematologic consequences of exposure to ionizing radiation. Exp Hematol 30: 513–528, 2002.
31.
Danet GH, Pan Y, Luongo JL, Bonnet DA, and Simon MC. Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest 112: 126–135, 2003.
32.
Diaz-Montero CM, Wang Y, Shao L, Feng W, Zidan AA, Pazoles CJ, Montero AJ, and Zhou D. The glutathione disulfide mimetic NOV-002 inhibits cyclophosphamide-induced hematopoietic and immune suppression by reducing oxidative stress. Free Radic Biol Med 52: 1560–1568, 2012.
33.
Ditch S and Paull TT. The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends Biochem Sci 37: 15–22, 2012.
34.
Domen J, Gandy KL, and Weissman IL. Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation. Blood 91: 2272–2282, 1998.
35.
Domenech J, Cartron G, Clement N, Estienne MH, Herault O, Truglio D, Benboubker L, Roingeard F, Desbois I, Colombat P, and Binet C. Persistent decrease in proliferative potential of marrow CD34(+)cells exposed to early-acting growth factors after autologous bone marrow transplantation. Bone Marrow Transplant 29: 557–562, 2002.
36.
Domenech J, Linassier C, Gihana E, Dayan A, Truglio D, Bout M, Petitdidier C, Delain M, Petit A, Bremond JL, and Et A. Prolonged impairment of hematopoiesis after high-dose therapy followed by autologous bone marrow transplantation. Blood 85: 3320–3327, 1995.
37.
Dominici M, Rasini V, Bussolari R, Chen X, Hofmann TJ, Spano C, Bernabei D, Veronesi E, Bertoni F, Paolucci P, Conte P, and Horwitz EM. Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation. Blood 114: 2333–2343, 2009.
38.
Du W, Adam Z, Rani R, Zhang X, and Pang Q. Oxidative stress in Fanconi anemia hematopoiesis and disease progression. Antioxid Redox Signal 10: 1909–1921, 2008.
39.
Effros RB and Globerson A. Hematopoietic cells and replicative senescence. Exp Gerontol 37: 191–196, 2002.
40.
Epperly MW, Cao S, Zhang X, Franicola D, Shen H, Greenberger EE, Epperly LD, and Greenberger JS. Increased longevity of hematopoiesis in continuous bone marrow cultures derived from NOS1 (nNOS, mtNOS) homozygous recombinant negative mice correlates with radioresistance of hematopoietic and marrow stromal cells. Exp Hematol 35: 137–145, 2007.
41.
Erlacher M, Michalak EM, Kelly PN, Labi V, Niederegger H, Coultas L, Adams JM, Strasser A, and Villunger A. BH3-only proteins Puma and Bim are rate-limiting for gamma-radiation- and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood 106: 4131–4138, 2005.
42.
Fleenor CJ, Marusyk A, and DeGregori J. Ionizing radiation and hematopoietic malignancies: altering the adaptive landscape. Cell Cycle 9: 3005–3011, 2010.
43.
Ford CE, Hamerton JL, Barnes DW, and Loutit JF. Cytological identification of radiation-chimaeras. Nature 177: 452–454, 1956.
44.
Fujisaki J, Wu J, Carlson AL, Silberstein L, Putheti P, Larocca R, Gao W, Saito TI, Lo CC, Tsuyuzaki H, Sato T, Cote D, Sykes M, Strom TB, Scadden DT, and Lin CP. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474: 216–219, 2011.
45.
Gardner RV, Lerner C, Astle CM, and Harrison DE. Assessing permanent damage to primitive hematopoietic stem cells after chemotherapy using the competitive repopulation assay. Cancer Chemother Pharmacol 32: 450–454, 1993.
46.
Geest CR and Coffer PJ. MAPK signaling pathways in the regulation of hematopoiesis. J Leukoc Biol 86: 237–250, 2009.
47.
Gil-Perotin S, Marin-Husstege M, Li J, Soriano-Navarro M, Zindy F, Roussel MF, Garcia-Verdugo JM, and Casaccia-Bonnefil P. Loss of p53 induces changes in the behavior of subventricular zone cells: implication for the genesis of glial tumors. J Neurosci 26: 1107–1116, 2006.
48.
Gius D and Spitz DR. Redox signaling in cancer biology. Antioxid Redox Signal 8: 1249–1252, 2006.
49.
Goldman DC, Bailey AS, Pfaffle DL, Al MA, Christian JL, and Fleming WH. BMP4 regulates the hematopoietic stem cell niche. Blood 114: 4393–4401, 2009.
50.
Goodell MA, Brose K, Paradis G, Conner AS, and Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183: 1797–1806, 1996.
51.
Gorbunov NV, Pogue-Geile KL, Epperly MW, Bigbee WL, Draviam R, Day BW, Wald N, Watkins SC, and Greenberger JS. Activation of the nitric oxide synthase 2 pathway in the response of bone marrow stromal cells to high doses of ionizing radiation. Radiat Res 154: 73–86, 2000.
52.
Goytisolo FA, Samper E, Martin-Caballero J, Finnon P, Herrera E, Flores JM, Bouffler SD, and Blasco MA. Short telomeres result in organismal hypersensitivity to ionizing radiation in mammals. J Exp Med 192: 1625–1636, 2000.
53.
Greenberger JS. Toxic effects on the hematopoietic microenvironment. Exp Hematol 19: 1101–1109, 1991.
54.
Greenwood MJ and Lansdorp PM. Telomeres, telomerase, and hematopoietic stem cell biology. Arch Med Res 34: 489–495, 2003.
55.
Harms-Ringdahl M, Nicotera P, and Radford IR. Radiation induced apoptosis. Mutat Res 366: 171–179, 1996.
56.
Hasper HJ, Weghorst RM, Richel DJ, Meerwaldt JH, Olthuis FM, and Schenkeveld CE. A new four-color flow cytometric assay to detect apoptosis in lymphocyte subsets of cultured peripheral blood cells. Cytometry 40: 167–171, 2000.
57.
Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B, Hicklin DJ, Zhu Z, Bohlen P, Witte L, Hendrikx J, Hackett NR, Crystal RG, Moore MA, Werb Z, Lyden D, and Rafii S. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med 8: 841–849, 2002.
58.
Haug JS, He XC, Grindley JC, Wunderlich JP, Gaudenz K, Ross JT, Paulson A, Wagner KP, Xie Y, Zhu R, Yin T, Perry JM, Hembree MJ, Redenbaugh EP, Radice GL, Seidel C, and Li L. N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells. Cell Stem Cell 2: 367–379, 2008.
59.
Hellman S and Botnick LE. Stem cell depletion: an explanation of the late effects of cytotoxins. Int J Radiat Oncol Biol Phys 2: 181–184, 1977.
60.
Hendry JH. The cellular basis of long-term marrow injury after irradiation. Radiother Oncol 3: 331–338, 1985.
61.
Himburg HA, Harris JR, Ito T, Daher P, Russell JL, Quarmyne M, Doan PL, Helms K, Nakamura M, Fixsen E, Herradon G, Reya T, Chao NJ, Harroch S, and Chute JP. Pleiotrophin regulates the retention and self-renewal of hematopoietic stem cells in the bone marrow vascular niche. Cell Rep 2: 964–975, 2012.
62.
Himburg HA, Muramoto GG, Daher P, Meadows SK, Russell JL, Doan P, Chi JT, Salter AB, Lento WE, Reya T, Chao NJ, and Chute JP. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nat Med 16: 475–482, 2010.
63.
Hirabayashi Y, Matsuda M, Matumura T, Mitsui H, Sasaki H, Tukada T, Aizawa S, Yoshida K, and Inoue T. The p53-deficient hemopoietic stem cells: their resistance to radiation-apoptosis, but lasted transiently. Leukemia 11 Suppl 3: 489–492, 1997.
64.
Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, Kobayashi M, Kopp HG, Shido K, Petit I, Yanger K, James D, Witte L, Zhu Z, Wu Y, Pytowski B, Rosenwaks Z, Mittal V, Sato TN, and Rafii S. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4: 263–274, 2009.
65.
Hoyes KP, Cai WB, Potten CS, and Hendry JH. Effect of bcl-2 deficiency on the radiation response of clonogenic cells in small and large intestine, bone marrow and testis. Int J Radiat Biol 76: 1435–1442, 2000.
66.
Inomata K, Aoto T, Binh NT, Okamoto N, Tanimura S, Wakayama T, Iseki S, Hara E, Masunaga T, Shimizu H, and Nishimura EK. Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell 137: 1088–1099, 2009.
67.
Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I, Nomiyama K, Hosokawa K, Sakurada K, Nakagata N, Ikeda Y, Mak TW, and Suda T. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431: 997–1002, 2004.
68.
Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, Ohmura M, Naka K, Hosokawa K, Ikeda Y, and Suda T. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12: 446–451, 2006.
69.
Ito K, Takubo K, Arai F, Satoh H, Matsuoka S, Ohmura M, Naka K, Azuma M, Miyamoto K, Hosokawa K, Ikeda Y, Mak TW, Suda T, and Hirao A. Regulation of reactive oxygen species by Atm is essential for proper response to DNA double-strand breaks in lymphocytes. J Immunol 178: 103–110, 2007.
70.
Iwasa H, Han J, and Ishikawa F. Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway. Genes Cells 8: 131–144, 2003.
71.
Jacobson LO. Evidence for a humoral factor (or factors) concerned in recovery from radiation injury: a review. Cancer Res 12: 315–325, 1952.
72.
Jacobson LO. Hematopoietic responses to radiation injury. Annu Rev Med 7: 345–352, 1956.
73.
Hayflick L and Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 25: 585–621, 1961.
74.
Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM, Cheng T, DePinho RA, Sharpless NE, and Scadden DT. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443: 421–426, 2006.
75.
Kanzawa T, Iwado E, Aoki H, Iwamaru A, Hollingsworth EF, Sawaya R, Kondo S, and Kondo Y. Ionizing radiation induces apoptosis and inhibits neuronal differentiation in rat neural stem cells via the c-Jun NH2-terminal kinase (JNK) pathway. Oncogene 25: 3638–3648, 2006.
76.
Kerr JF, Wyllie AH, and Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257, 1972.
77.
Keyse SM. Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev 27: 253–261, 2008.
78.
Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, and Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121: 1109–1121, 2005.
79.
Kirito K, Fox N, and Kaushansky K. Thrombopoietin stimulates Hoxb4 expression: an explanation for the favorable effects of TPO on hematopoietic stem cells. Blood 102: 3172–3178, 2003.
80.
Kobashigawa S, Suzuki K, and Yamashita S. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells. Biochem Biophys Res Commun 414: 795–800, 2011.
81.
Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV, and Gudkov AV. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285: 1733–1737, 1999.
82.
Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF, Shizuru JA, and Weissman IL. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 21: 759–806, 2003.
83.
Kyriakis JM and Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81: 807–869, 2001.
84.
Labi V, Erlacher M, Krumschnabel G, Manzl C, Tzankov A, Pinon J, Egle A, and Villunger A. Apoptosis of leukocytes triggered by acute DNA damage promotes lymphoma formation. Genes Dev 24: 1602–1607, 2010.
85.
Lambeth JD. Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med 43: 332–347, 2007.
86.
Lee JM and Bernstein A. p53 mutations increase resistance to ionizing radiation. Proc Natl Acad Sci U S A 90: 5742–5746, 1993.
87.
Lessard J and Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423: 255–260, 2003.
88.
Li B, Bailey AS, Jiang S, Liu B, Goldman DC, and Fleming WH. Endothelial cells mediate the regeneration of hematopoietic stem cells. Stem Cell Res 4: 17–24, 2010.
89.
Li D, Wang Y, Wu H, Lu L, Zhang H, Chang J, Zhai Z, Zhang J, Wang Y, Zhou D, and Meng A. Mitigation of ionizing radiation-induced bone marrow suppression by p38 inhibition and G-CSF administration. J Radiat Res 52: 712–716, 2011.
90.
Li H, Wang Y, Pazhanisamy SK, Shao L, Batinic-Haberle I, Meng A, and Zhou D. Mn(III) meso-tetrakis-(N-ethylpyridinium-2-yl) porphyrin mitigates total body irradiation-induced long-term bone marrow suppression. Free Radic Biol Med 51: 30–37, 2011.
91.
Li L and Xie T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21: 605–631, 2005.
92.
Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E, and Xu Y. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7: 165–171, 2005.
93.
Liu D and Xu Y. p53, oxidative stress, and aging. Antioxid Redox Signal 15: 1669–1678, 2011.
94.
Liu J, Cao L, Chen J, Song S, Lee IH, Quijano C, Liu H, Keyvanfar K, Chen H, Cao LY, Ahn BH, Kumar NG, Rovira II, Xu XL, van Lohuizen M, Motoyama N, Deng CX, and Finkel T. Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 459: 387–392, 2009.
95.
Lorenz E, Uphoff D, Reid TR, and Shelton E. Modification of irradiation injury in mice and guinea pigs by bone marrow injections. J Natl Cancer Inst 12: 197–201, 1951.
96.
Lorimore SA, Coates PJ, and Wright EG. Radiation-induced genomic instability and bystander effects: inter-related nontargeted effects of exposure to ionizing radiation. Oncogene 22: 7058–7069, 2003.
97.
Lowe SW and Sherr CJ. Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 13: 77–83, 2003.
98.
Maas RA, Oei HL, Venema-Kemper S, Koch G, and Bongers J. Dose-response effects of inactivated Newcastle disease vaccines: influence of serologic assay, time after vaccination, and type of chickens. Avian Dis 43: 670–677, 1999.
99.
Madlambayan GJ, Rogers I, Kirouac DC, Yamanaka N, Mazurier F, Doedens M, Casper RF, Dick JE, and Zandstra PW. Dynamic changes in cellular and microenvironmental composition can be controlled to elicit in vitro human hematopoietic stem cell expansion. Exp Hematol 33: 1229–1239, 2005.
100.
Main JM and Prehn RT. Successful skin homografts after the administration of high dosage X radiation and homologous bone marrow. J Natl Cancer Inst 15: 1023–1029, 1955.
101.
Majno G and Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146: 3–15, 1995.
102.
Marcotte R and Wang E. Replicative senescence revisited. J Gerontol A Biol Sci Med Sci 57: B257–B269, 2002.
103.
Matsuzawa A and Ichijo H. Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta 1780: 1325–1336, 2008.
104.
Mauch P, Constine L, Greenberger J, Knospe W, Sullivan J, Liesveld JL, and Deeg HJ. Hematopoietic stem cell compartment: acute and late effects of radiation therapy and chemotherapy. Int J Radiat Oncol Biol Phys 31: 1319–1339, 1995.
105.
Mauch P, Rosenblatt M, and Hellman S. Permanent loss in stem cell self renewal capacity following stress to the marrow. Blood 72: 1193–1196, 1988.
106.
Mcculloch EA and Till JE. The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiat Res 13: 115–125, 1960.
107.
Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma'Ayan A, Enikolopov GN, and Frenette PS. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466: 829–834, 2010.
108.
Meng A, Wang Y, Brown SA, Van Zant G, and Zhou D. Ionizing radiation and busulfan inhibit murine bone marrow cell hematopoietic function via apoptosis-dependent and -independent mechanisms. Exp Hematol 31: 1348–1356, 2003.
109.
Meng A, Wang Y, Van Zant G, and Zhou D. Ionizing radiation and busulfan induce premature senescence in murine bone marrow hematopoietic cells. Cancer Res 63: 5414–5419, 2003.
110.
Mercher T, Cornejo MG, Sears C, Kindler T, Moore SA, Maillard I, Pear WS, Aster JC, and Gilliland DG. Notch signaling specifies megakaryocyte development from hematopoietic stem cells. Cell Stem Cell 3: 314–326, 2008.
111.
Michalak EM, Vandenberg CJ, Delbridge AR, Wu L, Scott CL, Adams JM, and Strasser A. Apoptosis-promoted tumorigenesis: gamma-irradiation-induced thymic lymphomagenesis requires Puma-driven leukocyte death. Genes Dev 24: 1608–1613, 2010.
112.
Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S, Matsuoka S, Miyamoto T, Ito K, Ohmura M, Chen C, Hosokawa K, Nakauchi H, Nakayama K, Nakayama KI, Harada M, Motoyama N, Suda T, and Hirao A. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1: 101–112, 2007.
113.
Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, and Morrison SJ. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425: 962–967, 2003.
114.
Monje ML, Mizumatsu S, Fike JR, and Palmer TD. Irradiation induces neural precursor-cell dysfunction. Nat Med 8: 955–962, 2002.
115.
Morgan WF. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat Res 159: 581–596, 2003.
116.
Moroni M, Coolbaugh TV, Lombardini E, Mitchell JM, Moccia KD, Shelton LJ, Nagy V, and Whitnall MH. Hematopoietic radiation syndrome in the Gottingen minipig. Radiat Res 176: 89–101, 2011.
117.
Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, and Lowe SW. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113: 703–716, 2003.
118.
Navas TA, Mohindru M, Estes M, Ma JY, Sokol L, Pahanish P, Parmar S, Haghnazari E, Zhou L, Collins R, Kerr I, Nguyen AN, Xu Y, Platanias LC, List AA, Higgins LS, and Verma A. Inhibition of overactivated p38 MAPK can restore hematopoiesis in myelodysplastic syndrome progenitors. Blood 108: 4170–4177, 2006.
119.
Neben S, Hellman S, Montgomery M, Ferrara J, and Mauch P. Hematopoietic stem cell deficit of transplanted bone marrow previously exposed to cytotoxic agents. Exp Hematol 21: 156–162, 1993.
120.
Norbury CJ and Hickson ID. Cellular responses to DNA damage. Annu Rev Pharmacol Toxicol 41: 367–401, 2001.
121.
Nowell PC, Cole LJ, Habermeyer JG, and Roan PL. Growth and continued function of rat marrow cells in x-radiated mice. Cancer Res 16: 258–261, 1956.
122.
Okada S, Nakauchi H, Nagayoshi K, Nishikawa S, Miura Y, and Suda T. In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood 80: 3044–3050, 1992.
123.
Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, and Nagasawa T. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33: 387–399, 2010.
124.
Osawa M, Hanada K, Hamada H, and Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273: 242–245, 1996.
125.
Ostman A, Frijhoff J, Sandin A, and Bohmer FD. Regulation of protein tyrosine phosphatases by reversible oxidation. J Biochem 150: 345–356, 2011.
126.
Ozeki A, Suzuki K, Suzuki M, Ozawa H, and Yamashita S. Acceleration of astrocytic differentiation in neural stem cells surviving X-irradiation. Neuroreport 23: 290–293, 2012.
127.
Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, and Clarke MF. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423: 302–305, 2003.
128.
Patterson KI, Brummer T, O'Brien PM, and Daly RJ. Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418: 475–489, 2009.
129.
Piccoli C, D'Aprile A, Ripoli M, Scrima R, Lecce L, Boffoli D, Tabilio A, and Capitanio N. Bone-marrow derived hematopoietic stem/progenitor cells express multiple isoforms of NADPH oxidase and produce constitutively reactive oxygen species. Biochem Biophys Res Commun 353: 965–972, 2007.
130.
Piccoli C, Ria R, Scrima R, Cela O, D'Aprile A, Boffoli D, Falzetti F, Tabilio A, and Capitanio N. Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity. J Biol Chem 280: 26467–26476, 2005.
131.
Reya T. Regulation of hematopoietic stem cell self-renewal. Recent Prog Horm Res 58: 283–295, 2003.
132.
Robles SJ and Adami GR. Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16: 1113–1123, 1998.
133.
Salter AB, Meadows SK, Muramoto GG, Himburg H, Doan P, Daher P, Russell L, Chen B, Chao NJ, and Chute JP. Endothelial progenitor cell infusion induces hematopoietic stem cell reconstitution in vivo. Blood 113: 2104–2107, 2009.
134.
Samper E, Fernandez P, Eguia R, Martin-Rivera L, Bernad A, Blasco MA, and Aracil M. Long-term repopulating ability of telomerase-deficient murine hematopoietic stem cells. Blood 99: 2767–2775, 2002.
135.
Santana P, Pena LA, Haimovitz-Friedman A, Martin S, Green D, McLoughlin M, Cordon-Cardo C, Schuchman EH, Fuks Z, and Kolesnick R. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86: 189–199, 1996.
136.
Schuringa JJ and Vellenga E. Role of the polycomb group gene BMI1 in normal and leukemic hematopoietic stem and progenitor cells. Curr Opin Hematol 17: 294–299, 2010.
137.
Serrander L, Cartier L, Bedard K, Banfi B, Lardy B, Plastre O, Sienkiewicz A, Forro L, Schlegel W, and Krause KH. NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem J 406: 105–114, 2007.
138.
Serrano M and Blasco MA. Putting the stress on senescence. Curr Opin Cell Biol 13: 748–753, 2001.
139.
Shao L, Li H, Pazhanisamy SK, Meng A, Wang Y, and Zhou D. Reactive oxygen species and hematopoietic stem cell senescence. Int J Hematol 94: 24–32, 2011.
140.
Shao L, Sun Y, Zhang Z, Feng W, Gao Y, Cai Z, Wang ZZ, Look AT, and Wu WS. Deletion of proapoptotic Puma selectively protects hematopoietic stem and progenitor cells against high-dose radiation. Blood 115: 4707–4714, 2010.
141.
Sharpless NE and DePinho RA. The INK4A/ARF locus and its two gene products. Curr Opin Genet Dev 9: 22–30, 1999.
142.
Sherr CJ and Weber JD. The ARF/p53 pathway. Curr Opin Genet Dev 10: 94–99, 2000.
143.
Shouse SS, Warren SL, and Whipple GH. II. Aplasia of marrow and fatal intoxication in dogs produced by roentgen radiation of all bones. J Exp Med 53: 421–435, 1931.
144.
Stepanova L and Sorrentino BP. A limited role for p16Ink4a and p19Arf in the loss of hematopoietic stem cells during proliferative stress. Blood 106: 827–832, 2005.
145.
Sugimura R, He XC, Venkatraman A, Arai F, Box A, Semerad C, Haug JS, Peng L, Zhong XB, Suda T, and Li L. Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell 150: 351–365, 2012.
146.
Te PR, Okorokov AL, Jardine L, Cummings J, and Joel SP. DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62: 1876–1883, 2002.
147.
Testa NG, Hendry JH, and Molineux G. Long-term bone marrow damage in experimental systems and in patients after radiation or chemotherapy. Anticancer Res 5: 101–110, 1985.
148.
Till JE and Mcculloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14: 213–222, 1961.
149.
Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, McDowell EP, Lazo-Kallanian S, Williams IR, Sears C, Armstrong SA, Passegue E, DePinho RA, and Gilliland DG. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128: 325–339, 2007.
150.
Trentin JJ. Mortality and skin transplantability in x-irradiated mice receiving isologous, homologous or heterologous bone marrow. Proc Soc Exp Biol Med 92: 688–693, 1956.
151.
van Os R, Robinson S, Sheridan T, Mislow JM, Dawes D, and Mauch PM. Granulocyte colony-stimulating factor enhances bone marrow stem cell damage caused by repeated administration of cytotoxic agents. Blood 92: 1950–1956, 1998.
152.
Verheij M and Bartelink H. Radiation-induced apoptosis. Cell Tissue Res 301: 133–142, 2000.
153.
von Wangenheim KH, Peterson HP, and Feinendegen LE. Residual radiation effect in the murine hematopoietic stem cell compartment. Radiat Environ Biophys 25: 93–106, 1986.
154.
Waegell WO, Higley HR, Kincade PW, and Dasch JR. Growth acceleration and stem cell expansion in Dexter-type cultures by neutralization of TGF-beta. Exp Hematol 22: 1051–1057, 1994.
155.
Wang J, Sun Q, Morita Y, Jiang H, Gross A, Lechel A, Hildner K, Guachalla LM, Gompf A, Hartmann D, Schambach A, Wuestefeld T, Dauch D, Schrezenmeier H, Hofmann WK, Nakauchi H, Ju Z, Kestler HA, Zender L, and Rudolph KL. A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage. Cell 148: 1001–1014, 2012.
156.
Wang Y, Liu L, and Zhou D. Inhibition of p38 MAPK attenuates ionizing radiation-induced hematopoietic cell senescence and residual bone marrow injury. Radiat Res 176: 743–752, 2011.
157.
Wang Y, Liu L, Pazhanisamy SK, Li H, Meng A, and Zhou D. Total body irradiation causes residual bone marrow injury by induction of persistent oxidative stress in murine hematopoietic stem cells. Free Radic Biol Med 48: 348–356, 2010.
158.
Wang Y, Probin V, and Zhou D. Cancer therapy-induced residual bone marrow injury-mechanisms of induction and implication for therapy. Curr Cancer Ther Rev 2: 271–279, 2006.
159.
Wang Y, Schulte BA, and Zhou D. Hematopoietic stem cell senescence and long-term bone marrow injury. Cell Cycle 5: 35–38, 2006.
160.
Wang Y, Schulte BA, LaRue AC, Ogawa M, and Zhou D. Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood 107: 358–366, 2006.
161.
Warren SL and Whipple GH. Roentgen ray intoxication: I. unit dose over thorax negative-over abdomen lethal. Epithelium of small intestine sensitive to x-rays. J Exp Med 35: 187–202, 1922.
162.
Waselenko JK, MacVittie TJ, Blakely WF, Pesik N, Wiley AL, Dickerson WE, Tsu H, Confer DL, Coleman CN, Seed T, Lowry P, Armitage JO, and Dainiak N. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann Intern Med 140: 1037–1051, 2004.
163.
Weissman IL, Anderson DJ, and Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 17: 387–403, 2001.
164.
Wickremasinghe RG and Hoffbrand AV. Biochemical and genetic control of apoptosis: relevance to normal hematopoiesis and hematological malignancies. Blood 93: 3587–3600, 1999.
165.
Wilson A, Laurenti E, and Trumpp A. Balancing dormant and self-renewing hematopoietic stem cells. Curr Opin Genet Dev 19: 461–468, 2009.
166.
Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, Offner S, Dunant CF, Eshkind L, Bockamp E, Lio P, Macdonald HR, and Trumpp A. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135: 1118–1129, 2008.
167.
Yalcin S, Zhang X, Luciano JP, Mungamuri SK, Marinkovic D, Vercherat C, Sarkar A, Grisotto M, Taneja R, and Ghaffari S. Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells. J Biol Chem 283: 25692–25705, 2008.
168.
Yamaguchi H, Calado RT, Ly H, Kajigaya S, Baerlocher GM, Chanock SJ, Lansdorp PM, and Young NS. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med 352: 1413–1424, 2005.
169.
Yamamori T, Yasui H, Yamazumi M, Wada Y, Nakamura Y, Nakamura H, and Inanami O. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free Radic Biol Med 53: 260–270, 2012.
170.
Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo MM, Karlsson S, Iwama A, and Nakauchi H. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147: 1146–1158, 2011.
171.
Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y, Gomei Y, Iwasaki H, Matsuoka S, Miyamoto K, Miyazaki H, Takahashi T, and Suda T. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1: 685–697, 2007.
172.
Yu H, Shen H, Yuan Y, XuFeng R, Hu X, Garrison SP, Zhang L, Yu J, Zambetti GP, and Cheng T. Deletion of Puma protects hematopoietic stem cells and confers long-term survival in response to high-dose gamma-irradiation. Blood 115: 3472–3480, 2010.
173.
Zhang H, Zhai Z, Wang Y, Zhang J, Wu H, Wang Y, Li C, Li D, Lu L, Wang X, Chang J, Hou Q, Ju Z, Zhou D, and Meng A. Resveratrol ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic Biol Med 54: 40–50, 2013.
174.
Zheng J, Huynh H, Umikawa M, Silvany R, and Zhang CC. Angiopoietin-like protein 3 supports the activity of hematopoietic stem cells in the bone marrow niche. Blood 117: 470–479, 2011.
175.
Zhou L, Opalinska J, and Verma A. p38 MAP kinase regulates stem cell apoptosis in human hematopoietic failure. Cell Cycle 6: 534–537, 2007.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 20Issue Number 9March 20, 2014
Pages: 1447 - 1462
PubMed: 24124731

History

Published in print: March 20, 2014
Published online: 27 February 2014
Published ahead of print: 10 February 2014
Published ahead of production: 14 October 2013
Accepted: 13 October 2013
Received: 2 October 2013

Permissions

Request permissions for this article.

Topics

    Authors

    Affiliations

    Lijian Shao
    Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
    Yi Luo
    Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
    Daohong Zhou
    Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas.

    Notes

    Address correspondence to:Dr. Daohong ZhouDivision of Radiation HealthDepartment of Pharmaceutical SciencesUniversity of Arkansas for Medical Sciences4301 W Markham, #607Little Rock, AR 72205E-mail: [email protected]

    Metrics & Citations

    Metrics

    Citations

    Export citation

    Select the format you want to export the citations of this publication.

    View Options

    Get Access

    Access content

    To read the fulltext, please use one of the options below to sign in or purchase access.

    Society Access

    If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

    Restore your content access

    Enter your email address to restore your content access:

    Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

    View options

    PDF/EPUB

    View PDF/ePub

    Full Text

    View Full Text

    Media

    Figures

    Other

    Tables

    Share

    Share

    Copy the content Link

    Share on social media

    Back to Top