Advertisement
No access
Research Articles

The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of Metformin

Science
9 Dec 2005
Vol 310, Issue 5754
pp. 1642-1646

Abstract

The Peutz-Jegher syndrome tumor-suppressor gene encodes a protein-threonine kinase, LKB1, which phosphorylates and activates AMPK [adenosine monophosphate (AMP)–activated protein kinase]. The deletion of LKB1 in the liver of adult mice resulted in a nearly complete loss of AMPK activity. Loss of LKB1 function resulted in hyperglycemia with increased gluconeogenic and lipogenic gene expression. In LKB1-deficient livers, TORC2, a transcriptional coactivator of CREB (cAMP response element–binding protein), was dephosphorylated and entered the nucleus, driving the expression of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), which in turn drives gluconeogenesis. Adenoviral small hairpin RNA (shRNA) for TORC2 reduced PGC-1α expression and normalized blood glucose levels in mice with deleted liver LKB1, indicating that TORC2 is a critical target of LKB1/AMPK signals in the regulation of gluconeogenesis. Finally, we show that metformin, one of the most widely prescribed type 2 diabetes therapeutics, requires LKB1 in the liver to lower blood glucose levels.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (shaw.som.pdf)

References and Notes

1
B. B. Kahn, T. Alquier, D. Carling, D. G. Hardie, Cell Metab.1, 15 (2005).
2
Y. Minokoshi et al., Nature428, 569 (2004).
3
U. Andersson et al., J. Biol. Chem.279, 12005 (2004).
4
E. K. Kim et al., J. Biol. Chem.279, 19970 (2004).
5
S. A. Hawley et al., J. Biol.2, 28 (2003).
6
R. J. Shaw et al., Proc. Natl. Acad. Sci. U.S.A.101, 3329 (2004).
7
A. Woods et al., Curr. Biol.13, 2004 (2003).
8
T. Yamauchi et al., Nat. Med.8, 1288 (2002).
9
R. R. Banerjee et al., Science303, 1195 (2004).
10
T. Hayashi, M. F. Hirshman, E. J. Kurth, W. W. Winder, L. J. Goodyear, Diabetes47, 1369 (1998).
11
G. Zhou et al., J. Clin. Invest.108, 1167 (2001).
12
L. G. Fryer, A. Parbu-Patel, D. Carling, J. Biol. Chem.277, 25226 (2002).
13
H. Park et al., J. Biol. Chem.277, 32571 (2002).
14
A. K. Saha et al., Biochem. Biophys. Res. Commun.314, 580 (2004).
15
M. E. Cleasby et al., Diabetes53, 3258 (2004).
16
R. Pold et al., Diabetes54, 928 (2005).
17
S. A. Hawley et al., Cell Metab.2, 9 (2005).
18
R. L. Hurley et al., J. Biol. Chem.280, 29060 (2005).
19
A. Woods et al., Cell Metab.2, 21 (2005).
20
M. J. Birnbaum, Mol. Cell19, 289 (2005).
21
S. P. Hong, F. C. Leiper, A. Woods, D. Carling, M. Carlson, Proc. Natl. Acad. Sci. U.S.A.100, 8839 (2003).
22
C. M. Sutherland et al., Curr. Biol.13, 1299 (2003).
23
S. P. Hong, M. Momcilovic, M. Carlson, J. Biol. Chem.280, 21804 (2005).
24
R. R. McCartney, E. M. Rubenstein, M. C. Schmidt, Curr. Genet.47, 335 (2005).
25
N. Bardeesy et al., Nature419, 162 (2002).
26
Materials and methods are available as supporting materials on Science Online.
27
J. Huard et al., Gene Ther.2, 107 (1995).
28
K. Inoki, T. Zhu, K. L. Guan, Cell115, 577 (2003).
29
R. J. Shaw et al., Cancer Cell6, 91 (2004).
30
M. N. Corradetti, K. Inoki, N. Bardeesy, R. A. DePinho, K. L. Guan, Genes Dev.18, 1533 (2004).
31
M. Foretz et al., Diabetes54, 1331 (2005).
32
S. Herzig et al., Nature413, 179 (2001).
33
S. H. Koo et al., Nat. Med.10, 530 (2004).
34
J. C. Yoon et al., Nature413, 131 (2001).
35
J. Lin, C. Handschin, B. M. Spiegelman, Cell Metab.1, 361 (2005).
36
J. Rhee et al., Proc. Natl. Acad. Sci. U.S.A.100, 4012 (2003).
37
P. Puigserver et al., Nature423, 550 (2003).
38
L. Zhang, N. E. Rubins, R. S. Ahima, L. E. Greenbaum, K. H. Kaestner, Cell Metab.2, 141 (2005).
39
J. Nakae, T. Kitamura, D. L. Silver, D. Accili, J. Clin. Invest.108, 1359 (2001).
40
S. H. Koo et al., Nature437, 1109 (2005).
41
R. A. Screaton et al., Cell119, 61 (2004).
42
J. M. Lizcano et al., EMBO J.23, 833 (2004).
43
L. A. Witters, J. Clin. Invest.108, 1105 (2001).
44
M. Zang et al., J. Biol. Chem.279, 47898 (2004).
45
K. Sakamoto et al., EMBO J.24, 1810 (2005).
46
L. Wu et al., EMBO J.24, 2391 (2005).
47
J. Zucman et al., Nat. Genet.4, 341 (1993).
48
M. D. Conkright, M. Montminy, Trends Cell Biol.15, 457 (2005).
49
R. J. Shaw, K. A. Lamia, data not shown.
50
We thank M. Loda for the FAS antibody; J. Luo, A. Shaywitz, and O. Peroni for technical advice; K. Cichowski for help with the manuscript; D. Gwinn and C. Mealmaker for technical assistance; and the University of Iowa Gene Transfer Vector Core, supported in part by NIH and the Roy J. Carver Foundation, for adenoviral Cre preparations. This work was supported by grants GM056203, GM37828, and CA84313 from the NIH to L.C.C., M.M., and R.A.D., respectively. M.M. also was supported in part by the Hillblom Foundation.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 310 | Issue 5754
9 December 2005

Article versions

You are viewing the most recent version of this article.

Submission history

Received: 30 September 2005
Accepted: 9 November 2005
Published in print: 9 December 2005

Permissions

Request permissions for this article.

Notes

Supporting Online Material
www.sciencemag.org/cgi/content/full/1120781/DC1
Materials and Methods
Figs. S1 to S6
References

Authors

Affiliations

Reuben J. Shaw*,† [email protected]
Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.
Katja A. Lamia
Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.
Debbie Vasquez
Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.
Seung-Hoi Koo
Peptide Biology Laboratories, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea.
Nabeel Bardeesy
Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.
Ronald A. DePinho
Center for Applied Cancer Science and Department of Medical Oncology, Dana Farber Cancer Institute and Departments of Medicine and Genetics, Harvard Medical School, Boston, MA 02115, USA.
Marc Montminy
Peptide Biology Laboratories, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
Lewis C. Cantley
Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Cardiovascular Disease as a Consequence or a Cause of Cancer: Potential Role of Extracellular Vesicles, Biomolecules, 13, 2, (321), (2023).https://doi.org/10.3390/biom13020321
    Crossref
  2. Action Mechanism of Metformin and Its Application in Hematological Malignancy Treatments: A Review, Biomolecules, 13, 2, (250), (2023).https://doi.org/10.3390/biom13020250
    Crossref
  3. Extracellular vesicles regulate the transmission of insulin resistance and redefine noncommunicable diseases, Frontiers in Molecular Biosciences, 9, (2023).https://doi.org/10.3389/fmolb.2022.1024786
    Crossref
  4. Metformin: A Promising Antidiabetic Medication for Cancer Treatment, Current Drug Targets, 24, 1, (41-54), (2023).https://doi.org/10.2174/1389450124666221104094918
    Crossref
  5. The Potential Therapeutic Impact of Metformin in Glioblastoma Multiforme, Current Medicinal Chemistry, 30, 7, (857-877), (2023).https://doi.org/10.2174/0929867329666220707103525
    Crossref
  6. Pancreatic Lkb1 Deletion Leads to Acinar Polarity Defects and Cystic Neoplasms, Molecular and Cellular Biology, 28, 7, (2414-2425), (2023).https://doi.org/10.1128/MCB.01621-07
    Crossref
  7. Identification of the Serine 307 of LKB1 as a Novel Phosphorylation Site Essential for Its Nucleocytoplasmic Transport and Endothelial Cell Angiogenesis, Molecular and Cellular Biology, 29, 13, (3582-3596), (2023).https://doi.org/10.1128/MCB.01417-08
    Crossref
  8. Skeletal Muscle-Selective Knockout of LKB1 Increases Insulin Sensitivity, Improves Glucose Homeostasis, and Decreases TRB3, Molecular and Cellular Biology, 26, 22, (8217-8227), (2023).https://doi.org/10.1128/MCB.00979-06
    Crossref
  9. Platelets and endothelial dysfunction in gestational diabetes mellitus, Acta Physiologica, 237, 4, (2023).https://doi.org/10.1111/apha.13940
    Crossref
  10. AMPK inhibits liver gluconeogenesis: fact or fiction?, Biochemical Journal, 480, 1, (105-125), (2023).https://doi.org/10.1042/BCJ20220582
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media