Skip to main content

Advertisement

Log in

Therapeutic Roles of Statins in Gynecology and Obstetrics: The Current Evidence

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Introduction

Statins are a class of drugs, which act by inhibiting the rate-limiting enzyme of cholesterol biosynthesis (3-hydroxy- 3-methyl-glutaryl-CoA reductase). The inhibition of mevalonate synthesis leads to subsequent inhibition of downstream products of this pathway, which explains the pleiotropic effects of these agents in addition to their well-known lipid-lowering effects. Accumulating evidence suggests that statins might be beneficial in various obstetric and gynecologic conditions.

Methods

Literature searches were performed in PubMed and EMBASE for articles with content related to statins in obstetrics and gynecology. The findings are hereby reviewed and discussed.

Results

Inhibition of mevalonate pathway leads to subsequent inhibition of downstream products such as geranyl pyrophosphate, farnesyl pyrophosphate, and geranylgeranyl pyrophosphate. These products are required for proper intracellular localization of several proteins, which play important roles in signaling pathways by regulating membrane trafficking, motility, proliferation, differentiation, and cytoskeletal organization. The pleiotropic effects of statins can be summarized in 4 categories: antiproliferative, anti-invasive, anti-inflammatory, and antiangiogenic. The growing body of evidence is promising for these agents to be beneficial in endometriosis, polycystic ovary syndrome, adhesion prevention, ovarian cancer, preeclampsia, and antiphospholipid syndrome. Although in vivo studies showed varying degrees of benefit on fibroids and preterm birth, appropriately designed clinical trials are needed to make definitive conclusions.

Conclusion

Statins might play a role in the treatment of endometriosis, polycystic ovary syndrome, adhesion prevention, ovarian cancer, preeclampsia, and antiphospholipid syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990;343(6257):425–430.

    Article  CAS  PubMed  Google Scholar 

  2. McFarlane SI, Muniyappa R, Francisco R, Sowers JR. Clinical review 145: pleiotropic effects of statins: lipid reduction and beyond. J Clin Endocrinol Metab. 2002;87(4):1451–1458.

    Article  CAS  PubMed  Google Scholar 

  3. Van Aelst L, D’Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev. 1997;11(18):2295–2322.

    Article  PubMed  Google Scholar 

  4. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364(9447): 1789–1799.

    Article  PubMed  Google Scholar 

  5. Adachi M, Nasu K, Tsuno A, Yuge A, Kawano Y, Narahara H. Attachment to extracellular matrices is enhanced in human endometriotic stromal cells: a possible mechanism underlying the pathogenesis of endometriosis. Eur J Obstet Gynecol Reprod Biol. 2011;155(1):85–88.

    Article  CAS  PubMed  Google Scholar 

  6. Hasegawa A, Yoshino O, Osuga Y, Hirata T, Yano T, Taketani Y. High soluble CD44 concentration in peritoneal fluid in endometriosis. Fertil Steril. 2008;89(5):1267–1268.

    Article  CAS  PubMed  Google Scholar 

  7. Griffith JS, Liu YG, Tekmal RR, Binkley PA, Holden AE, Schenken RS. Menstrual endometrial cells from women with endometriosis demonstrate increased adherence to peritoneal cells and increased expression of CD44 splice variants. Fertil Steril. 2010;93(6):1745–1749.

    Article  CAS  PubMed  Google Scholar 

  8. Kim HO, Yang KM, Kang IS, et al. Expression of CD44s, vascular endothelial growth factor, matrix metalloproteinase- 2 and Ki-67 in peritoneal, rectovaginal and ovarian endometriosis. J Reprod Med. 2007;52(3):207–213. Zeybek et al 813

    CAS  PubMed  Google Scholar 

  9. Sokalska A, Cress A, Bruner-Tran KL, et al. Simvastatin decreases invasiveness of human endometrial stromal cells. Biol Reprod. 2012;87(1):1–6.

    Article  CAS  Google Scholar 

  10. Nasu K, Yuge A, Tsuno A, Narahara H. Simvastatin inhibits the proliferation and the contractility of human endometriotic stromal cells: a promising agent for the treatment of endometriosis. Fertil Steril. 2009;92(6):2097–2099.

    Article  CAS  PubMed  Google Scholar 

  11. Yilmaz B, Ozat M, Kilic S, et al. Atorvastatin causes regression of endometriotic implants in a rat model. Reprod Biomed Online. 2010;20(2):291–299.

    Article  CAS  PubMed  Google Scholar 

  12. Sokalska A, Wong DH, Cress A, et al. Simvastatin induces apoptosis and alters cytoskeleton in endometrial stromal cells. J Clin Endocrinol Metab. 2010;95(7):3453–3459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rutishauser J. The role of statins in clinical medicine–LDL–cholesterol lowering and beyond. Swiss Med Wkly. 2006;136(3-4): 41–49.

    CAS  PubMed  Google Scholar 

  14. Weis M, Heeschen C, Glassford AJ, Cooke JP. Statins have biphasic effects on angiogenesis. Circulation. 2002;105(6):739–745.

    Article  CAS  PubMed  Google Scholar 

  15. Oktem M, Esinler I, Eroglu D, Haberal N, Bayraktar N, Zeyneloglu HB. High-dose atorvastatin causes regression of endometriotic implants: a rat model. Hum Reprod. 2007;22(5): 1474–1480.

    Article  CAS  PubMed  Google Scholar 

  16. Esfandiari N, Khazaei M, Ai J, et al. Effect of a statin on an in vitro model of endometriosis. Fertil Steril. 2007;87(2):257–262.

    Article  CAS  PubMed  Google Scholar 

  17. Sharma I, Dhawan V, Mahajan N, Saha SC, Dhaliwal LK. In vitro effects of atorvastatin on lipopolysaccharide-induced gene expression in endometriotic stromal cells. Fertil Steril. 2010; 94(5):1639–1646.

    Article  CAS  PubMed  Google Scholar 

  18. Taylor HS, Alderman III M, D’Hooghe TM, Fazleabas AT, Duleba AJ. Effect of simvastatin on baboon endometriosis. Biol Reprod. 2017;97(1):32–38.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cakmak H, Basar M, Seval-Celik Y, et al. Statins inhibit monocyte chemotactic protein 1 expression in endometriosis. Reprod Sci. 2012;19(6):572–579.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Simsek Y, Gul M, Yilmaz E, Ozerol IH, Ozerol E, Parlakpinar H. Atorvastatin exerts anti-nociceptive activity and decreases serum levels of high-sensitivity C-reactive protein and tumor necrosis factor-a in a rat endometriosis model. Arch Gynecol Obstet. 2014; 290(5):999–1006.

    Article  CAS  PubMed  Google Scholar 

  21. Piotrowski PC, Kwintkiewicz J, Rzepczynska IJ, et al. Statins inhibit growth of human endometrial stromal cells independently of cholesterol availability. Biol Reprod. 2006;75(1): 107–111.

    Article  CAS  PubMed  Google Scholar 

  22. Almassinokiani F, Mehdizadeh A, Sariri E, et al. Effects of simvastatin in prevention of pain recurrences after surgery for endometriosis. Med Sci Monit. 2013;19:534–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoekstra AV, Sefton EC, Berry E, et al. Progestins activate the AKT pathway in leiomyoma cells and promote survival. J Clin Endocrinol Metab. 2009;94(5):1768–1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Murtola TJ, Visvanathan K, Artama M, Vainio H, Pukkala E. Statin use and breast cancer survival: a nationwide cohort study from Finland. PLoS One. 2014;9(10):e110231.

    Google Scholar 

  25. Liu Y, Qin A, Li T, Qin X, Li S. Effect of statin on risk of gynecologic cancers: a meta-analysis of observational studies and randomized controlled trials. Gynecol Oncol. 2014;133(3): 647–655.

    Article  CAS  PubMed  Google Scholar 

  26. Hoque A, Chen H, Xu XC. Statin induces apoptosis and cell growth arrest in prostate cancer cells. Cancer Epidemiol Biomarkers Prev. 2008;17(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  27. Cho SJ, Kim JS, Kim JM, Lee JY, Jung HC, Song IS. Simvastatin induces apoptosis in human colon cancer cells and in tumor xenografts, and attenuates colitis-associated colon cancer in mice. Int J Cancer. 2008;123(4):951–957.

    Article  CAS  PubMed  Google Scholar 

  28. Chapman-Shimshoni D, Yuklea M, Radnay J, Shapiro H, Lishner M. Simvastatin induces apoptosis of B-CLL cells by activation of mitochondrial caspase 9. Exp Hematol. 2003;31(9):779–783.

    Article  CAS  PubMed  Google Scholar 

  29. Borahay MA, Kilic GS, Yallampalli C, et al. Simvastatin potently induces calcium-dependent apoptosis of human leiomyoma cells. J Biol Chem. 2014;289(51):35075–35086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Burroughs KD, Howe SR, Okubo Y, Fuchs-Young R, LeRoith D, Walker CL. Dysregulation of IGF-I signaling in uterine leiomyoma. J. Endocrinol. 2002;172(1):83–93.

    Article  CAS  PubMed  Google Scholar 

  31. Peng L, Wen Y, Han Y, et al. Expression of insulin-like growth factors (IGFs) and IGF signaling: molecular complexity in uterine leiomyomas. Fertil Steril. 2009;91(6):2664–2675.

    Article  CAS  PubMed  Google Scholar 

  32. Sozen I, Arici A. Interactions of cytokines, growth factors, and the extracellular matrix in the cellular biology of uterine leiomyomata. Ferti Steril. 2002;78(1):1–12.

    Article  Google Scholar 

  33. Rossi MJ, Chegini N, Masterson BJ. Presence of epidermal growth factor, platelet-derived growth factor, and their receptors in human myometrial tissue and smooth muscle cells: their action in smooth muscle cells in vitro. Endocrinology. 1992;130(3): 1716–1727.

    CAS  PubMed  Google Scholar 

  34. Borahay MA, Vincent K, Motamedi M, et al. Novel effects of simvastatin on uterine fibroid tumors: in vitro and patient-derived xenograft mouse model study. Am J Obstet Gynecol. 2015;213(2): 196.e1-e8.

    Google Scholar 

  35. Borahay MA, Fang X, Baillargeon JG, Kilic GS, Boehning DF, Kuo YF. Statin use and uterine fibroid risk in hyperlipidemia patients: a nested case-control study. Am J Obstet Gynecol. 2016;215(6):750.e1-750.e8.

    Google Scholar 

  36. March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ, Davies MJ. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod. 2010;25(2):544–551.

    Article  PubMed  Google Scholar 

  37. Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R. Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol. 2011;7(4):219–231.

    Article  CAS  PubMed  Google Scholar 

  38. Engelhardt H, Gore-Langton RE, Armstrong DT. Mevinolin (lovastatin) inhibits androstenedione production by porcine ovarian theca cells at the level of the 17 alpha-hydroxylase: C-17,20- lyase complex. Endocrinology. 1989;124(5):2297–2304.

    Article  CAS  PubMed  Google Scholar 

  39. Izquierdo D, Foyouzi N, Kwintkiewicz J, Duleba AJ. Mevastatin inhibits ovarian theca-interstitial cell proliferation and steroidogenesis. Fertil Steril. 2004;82(suppl 3):1193–1197.

    Article  CAS  PubMed  Google Scholar 

  40. Ortega I, Cress AB, Wong DH, et al. Simvastatin reduces steroidogenesis by inhibiting Cyp17a1 gene expression in rat ovarian theca-interstitial cells. Biol Reprod. 2012;86(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  41. Rzepczynska IJ, Piotrowski PC, Wong DH, Cress AB, Villanueva J, Duleba AJ. Role of isoprenylation in simvastatin-induced inhibition of ovarian theca-interstitial growth in the rat. Biol Reprod. 2009;81(5):850–855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Raval AD, Hunter T, Stuckey B, Hart RJ. Statins for women with polycystic ovary syndrome not actively trying to conceive. Cochrane Database Syst Rev. 2011;(10):CD008565.

    Google Scholar 

  43. Gao L, Zhao FL, Li SC. Statin is a reasonable treatment option for patients with polycystic ovary syndrome: a meta-analysis of randomized controlled trials. Exp Clin Endocrinol Diabetes. 2012; 120(6):367–375.

    Article  CAS  PubMed  Google Scholar 

  44. Sun J, Yuan Y, Cai R, et al. An investigation into the therapeutic effects of statins with metformin on polycystic ovary syndrome: a meta-analysis of randomized controlled trials. BMJ Open. 2015; 5(3):e007280.

    Google Scholar 

  45. Joshi HN, Fakes MG, Serajuddin ATM. Differentiation of 3- hydroxy-3-methylglutaryl coenzyme A reductase inhibitors by their relative lipophilicity. Pharm Pharmacol Commun. 1999;5: 269–271.

    Google Scholar 

  46. Sokalska A, Stanley SD, Villanueva JA, Ortega I, Duleba AJ. Comparison of effects of different statins on growth and steroidogenesis of rat ovarian theca-interstitial cells. Biol Reprod. 2014;90(2):44.

    Google Scholar 

  47. Duleba AJ, Banaszewska B, Spaczynski RZ, Pawelczyk L. Simvastatin improves biochemical parameters in women with polycystic ovary syndrome: results of a prospective, randomized trial. Fertil Steril. 2006;85(4):996–1001.

    Article  CAS  PubMed  Google Scholar 

  48. Banaszewska B, Pawelczyk L, Spaczynski RZ, Dziura J, Duleba AJ. Effects of simvastatin and oral contraceptive agent on polycystic ovary syndrome: prospective, randomized, crossover trial. J Clin Endocrinol Metab. 2007;92(2):456–461.

    Article  CAS  PubMed  Google Scholar 

  49. Sathyapalan T, Kilpatrick ES, Coady AM, Atkin SL. The effect of atorvastatin in patients with polycystic ovary syndrome: a randomized double-blind placebo-controlled study. J Clin Endocrinol Metab. 2009;94(1):103–108.

    Article  CAS  PubMed  Google Scholar 

  50. Sathyapalan T, Shepherd J, Arnett C, Coady AM, Kilpatrick ES, Atkin SL. Atorvastatin increases 25-hydroxy vitamin D concentrations in patients with polycystic ovary syndrome. Clin Chem. 2010;56(11):1696–1700.

    Article  CAS  PubMed  Google Scholar 

  51. Kazerooni T, Shojaei-Baghini A, Dehbashi S, Asadi N, Ghaffarpasand F, Kazerooni Y. Effects of metformin plus simvastatin on polycystic ovary syndrome: a prospective, randomized, doubleblind, placebo-controlled study. Fertil Steril. 2010;94(6): 2208–2213.

    Article  CAS  PubMed  Google Scholar 

  52. Rashidi B, Abediasl J, Tehraninejad E, Rahmanpour H, Sills ES. Simvastatin effects on androgens, inflammatory mediators, and endogenous pituitary gonadotropins among patients with PCOS undergoing IVF: results from a prospective, randomized, placebocontrolled clinical trial. J Investig Med. 2011;59(6):912–916.

    Article  CAS  PubMed  Google Scholar 

  53. Navali N, Pourabolghasem S, Fouladi RF, Nikpour MA. Therapeutic effects of biguanide vs. statin in polycystic ovary syndrome: a randomized clinical trial. Pak J Biol Sci. 2011;14(11): 658–663.

    Article  CAS  PubMed  Google Scholar 

  54. Raja-Khan N, Kunselman AR, Hogeman CS, Stetter CM, Demers LM, Legro RS. Effects of atorvastatin on vascular function, inflammation, and androgens in women with polycystic ovary syndrome: a double-blind, randomized, placebo-controlled trial. Fertil Steril. 2011;95(5):1849–1845.

    Google Scholar 

  55. Banaszewska B, Pawelczyk L, Spaczynski RZ, Duleba AJ. Effects of simvastatin and metformin on polycystic ovary syndrome after six months of treatment. J Clin Endocrinol Metab. 2011;96(11):3493–3501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sathyapalan T, Shepherd J, Coady AM, Kilpatrick ES, Atkin SL. Atorvastatin reduces malondialdehyde concentrations in patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2012; 97(11):3951–3955.

    Article  CAS  PubMed  Google Scholar 

  57. Sathyapalan T, Smith KA, Coady AM, Kilpatrick ES, Atkin SL. Atorvastatin therapy decreases androstenedione and dehydroepiandrosterone sulphate concentrations in patients with polycystic ovary syndrome: randomized controlled study. Ann Clin Biochem. 2012;49(pt 1):80–85.

    Google Scholar 

  58. Puurunen J, Piltonen T, Puukka K, et al. Statin therapy worsens insulin sensitivity in women with polycystic ovary syndrome (PCOS): a prospective, randomized, double-blind, placebocontrolled study. J Clin Endocrinol Metab. 2013;98(12): 4798–4807.

    Article  CAS  PubMed  Google Scholar 

  59. Karakas SE, Banaszewska B, Spaczynski RZ, Pawelczyk L, Duleba A. Free fatty acid binding protein-4 and retinol binding protein-4 in polycystic ovary syndrome: response to simvastatin and metformin therapies. Gynecol Endocrinol. 2013;29(12): 483–487.

    Article  CAS  PubMed  Google Scholar 

  60. Ghazeeri G, Abbas HA, Skaff B, Harajly S, Awwad J. Inadequacy of initiating rosuvastatin then metformin on biochemical profile of polycystic ovarian syndrome patients. J Endocrinol Invest. 2015;38(6):643–65.

    Article  CAS  PubMed  Google Scholar 

  61. Cheong YC, Laird SM, Li TC, Shelton JB, Ledger WL, Cooke ID. Peritoneal healing and adhesion formation/reformation. Hum Reprod Update. 2001;7(6):556–566.

    Article  CAS  PubMed  Google Scholar 

  62. Parker MC, Ellis H, Moran BJ, et al. Postoperative adhesions: tenyear follow-up of 12,584 patients undergoing lower abdominal surgery. Dis Colon Rectum. 2001;44(6):822–829.

    Article  CAS  PubMed  Google Scholar 

  63. Ghellai AM, Stucchi AF, Chegini N, et al. Role of transforming growth factor beta-1 in peritonitis-induced adhesions. J Gastrointest Surg. 2000;4(3):316–323.

    Article  CAS  PubMed  Google Scholar 

  64. Di Filippo C, Falsetto A, De Pascale V, et al. Plasma levels of t-PA and PAI-1 correlate with the formation of experimental postsurgical peritoneal adhesions. Mediators Inflamm. 2006;2006(4): 13901.

    Google Scholar 

  65. Aaron CB, Cohen PA, Gower A, et al. Statins (HMG-CoA reductase inhibitors) decrease postoperative adhesions by increasing peritoneal fibrinolytic activity. Ann Surg. 2007; 245(2):176–184.

    Article  Google Scholar 

  66. Lalountas M, Ballas KD, Michalakis A, et al. Postoperative adhesion prevention using a statin-containing cellulose film in an experimental model. Br J Surg. 2012;99(3):423–429.

    Article  CAS  PubMed  Google Scholar 

  67. Arslan E, Talih T, Oz B, Halaclar B, Caglayan K, Sipahi M. Comparison of lovastatin and hyaluronic acid/carboxymethyl cellulose on experimental created peritoneal adhesion model in rats. Int J Surg. 2014;12(9):120–124.

    Article  PubMed  Google Scholar 

  68. Taylor-Harding B, Orsulic S, Karlan BY, Li AJ. Fluvastatin and cisplatin demonstrate synergistic cytotoxicity in epithelial ovarian cancer cells. Gynecol Oncol. 2010;119(3):549–556.

    Article  CAS  PubMed  Google Scholar 

  69. Horiuchi A, Kikuchi N, Osada R, et al. Overexpression of RhoA enhances peritoneal dissemination: RhoA suppression with Lovastatin may be useful for ovarian cancer. Cancer Sci. 2008; 99(12):2532–2539. Zeybek et al 815

    Article  CAS  PubMed  Google Scholar 

  70. Liu H, Liang SL, Kumar S, Weyman CM, Liu W, Zhou A. Statins induce apoptosis in ovarian cancer cells through activation of JNK and enhancement of Bim expression. Cancer Chemother Pharmacol. 2009;63(6):997–1005.

    Article  CAS  PubMed  Google Scholar 

  71. Matsuura M, Suzuki T, Suzuki M, Tanaka R, Ito E, Saito T. Statin-mediated reduction of osteopontin expression induces apoptosis and cell growth arrest in ovarian clear cell carcinoma. Oncol Rep. 2011;25(1):41–47.

    PubMed  Google Scholar 

  72. Martirosyan A, Clendening JW, Goard CA, Penn LZ. Lovastatin induces apoptosis of ovarian cancer cells and synergizes with doxorubicin: potential therapeutic relevance. BMC Cancer. 2010;10:103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Schointuch MN, Gilliam TP, Stine JE, et al. Simvastatin, an HMG-CoA reductase inhibitor, exhibits anti-metastatic and anti-tumorigenic effects in endometrial cancer. Gynecol Oncol. 2014;134(2):346–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stine JE, Guo H, Sheng X, et al. The HMG-CoA reductase inhibitor, simvastatin, exhibits anti-metastatic and antitumorigenic effects in ovarian cancer. Oncotarget. 2016;7(1): 946–960.

    Article  PubMed  Google Scholar 

  75. Karlic H, Thaler R, Gerner C, et al. Inhibition of the mevalonate pathway affects epigenetic regulation in cancer cells. Cancer Genet. 2015;208(5):241–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kobayashi Y, Kashima H, Wu RC, et al. Mevalonate pathway antagonist suppresses formation of serous tubal intraepithelial carcinoma and ovarian carcinoma in mouse models. Clin Cancer Res. 2015;21(20):4652–4662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kato S, Smalley S, Sadarangani A, et al. Lipophilic but not hydrophilic statins selectively induce cell death in gynaecological cancers expressing high levels of HMGCoA reductase. J Cell Mol Med. 2010;14(5):1180–1193.

    CAS  PubMed  Google Scholar 

  78. Wagner BJ, Lo¨b S, Lindau D, et al. Simvastatin reduces tumor cell adhesion to human peritoneal mesothelial cells by decreased expression of VCAM-1 and b1 integrin. Int J Oncol. 2011;39(6): 1593–1600.

    CAS  PubMed  Google Scholar 

  79. Elmore RG, Ioffe Y, Scholes DR, Karlan BY, Li AJ. Impact of statin therapy on survival in epithelial ovarian cancer. Gynecol Oncol. 2008;111(1):102–105.

    Article  CAS  PubMed  Google Scholar 

  80. Lavie O, Pinchev M, Rennert HS, Segev Y, Rennert G. The effect of statins on risk and survival of gynecological malignancies. Gynecol Oncol. 2013;130(3):615–619.

    Article  CAS  PubMed  Google Scholar 

  81. Baandrup L, Dehlendorff C, Friis S, Olsen JH, Kjaer SK. Statin use and risk for ovarian cancer: a Danish nationwide case-control study. Br J Cancer. 2015;112(1):157–161.

    Article  CAS  PubMed  Google Scholar 

  82. Fang Z, Tang Y, Fang J, et al. Simvastatin inhibits renal cancer cell growth and metastasis via AKT/mTOR, ERK and JAK2/ STAT3 pathway. PloS One. 2013;8(5):e62823.

    Google Scholar 

  83. Shitara Y, Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther. 2006;112(1):71–105.

    Article  CAS  PubMed  Google Scholar 

  84. Watanabe T, Kusuhara H, Maeda K, et al. Physiologically based pharmacokinetic modeling to predict transporter-mediated clearance and distribution of pravastatin in humans. J Pharmacol Exp Ther. 2009;328(2):652–662.

    Article  CAS  PubMed  Google Scholar 

  85. Kusuhara H, Sugiyama Y. Role of transporters in the tissueselective distribution and elimination of drugs: transporters in the liver, small intestine, brain and kidney. J Control Release. 2002;78(1-3):43–54.

    Article  CAS  PubMed  Google Scholar 

  86. Hector S, Nava ME, Clark K, Murphy M, Pendyala L. Characterization of a clonal isolate of an oxaliplatin resistant ovarian carcinoma cell line A2780/C10. Cancer Lett. 2007;245(1-2): 195–204.

    Article  CAS  PubMed  Google Scholar 

  87. Hatanaka T. Clinical pharmacokinetics of pravastatin: mechanisms of pharmacokinetic events. Clin Pharmacokinet. 2000; 39(6):397–412.

    Article  CAS  PubMed  Google Scholar 

  88. Costantine MM, Tamayo E, Lu F, et al. Using pravastatin to improve the vascular reactivity in a mouse model of soluble fms-like tyrosine kinase-1-induced preeclampsia. Obstet Gynecol. 2010;116(1):114–120.

    Article  CAS  PubMed  Google Scholar 

  89. Nanovskaya TN, Patrikeeva SL, Paul J, Costantine MM, Hankins GD, Ahmed MS. Transplacental transfer and distribution of pravastatin. Am J Obstet Gynecol. 2013;209(4):373.e1-e5.

    Google Scholar 

  90. Zarek J, DeGorter MK, Lubetsky A, et al. The transfer of pravastatin in the dually perfused human placenta. Placenta. 2013; 34(8):719–721.

    Article  CAS  PubMed  Google Scholar 

  91. Saad AF, Kechichian T, Yin H, et al. Effects of pravastatin on angiogenic and placental hypoxic imbalance in a mouse model of preeclampsia. Reprod Sci. 2014;21(1):138–145.

    Article  CAS  PubMed  Google Scholar 

  92. Fox KA, Longo M, Tamayo E, et al. Effects of pravastatin on mediators of vascular function in a mouse model of soluble Fmslike tyrosine kinase-1-induced preeclampsia. Am J Obstet Gynecol. 2011;205(4):366.e1-e5.

    Google Scholar 

  93. Greenwood J, Steinman L, Zamivil SS. Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol. 2006;6(5):358–370.

    Article  CAS  PubMed  Google Scholar 

  94. Ahmed A, Singh J, Khan Y, Seshan SV, Girardi G. A new mouse model to explore therapies for preeclampsia. PLoS One. 2010; 5(10):e13663.

    Google Scholar 

  95. Ghaffari N, Ball C, Kennedy JA, Stafford I, Beltrame JF. Acute modulation of vasoconstrictor responses by pravastatin in small vessels. Circ J. 2011;75(6):1506–1514.

    Article  CAS  PubMed  Google Scholar 

  96. Kumasawa K, Ikawa M, Kidoya H, et al. Pravastatin induces placental growth factor (PGF) and ameliorates preeclampsia in a mouse model. Proc Natl Acad Sci USA. 2011;108(4): 1451–1455.

    Article  CAS  PubMed  Google Scholar 

  97. Singh J, Ahmed A, Girardi G. Role of complement component C1q in the onset of preeclampsia in mice. Hypertension. 2011; 58(4):716–724.

    Article  CAS  PubMed  Google Scholar 

  98. Bauer AJ, Banek CT, Needham K, et al. Pravastatin attenuates hypertension, oxidative stress, and angiogenic imbalance in rat model of placental ischemia-induced hypertension. Hypertension. 2013;61(5):1103–1110.

    Article  CAS  PubMed  Google Scholar 

  99. Saad AF, Diken ZM, Kechichian TB, et al. Pravastatin effects on placental prosurvival molecular pathways in a mouse model of preeclampsia. Reprod Sci. 2016;23(11):1593–1599.

    Article  CAS  PubMed  Google Scholar 

  100. Carver AR, Tamayo E, Perez-Polo JR, Saade GR, Hankins GDV, Costantine MM. The effect of maternal pravastatin therapy on adverse sensorimotor outcomes of the offspring in a murine model of preeclampsia. Int J Dev Neurosci. 2014;33:33–40.

    Article  CAS  PubMed  Google Scholar 

  101. Carver AR, Andrikopoulou M, Lei J, et al. Maternal pravastatin prevents altered fetal brain development in a preeclamptic CD-1 mouse model. PLoS One. 2014;9(6):e100873.

    Google Scholar 

  102. Girardi G, Berman J, Redecha P, et al. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest. 2003;112(11):1644–1654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Girardi G, Redecha P, Salmon JE. Heparin prevents antiphospholipid antibody-induced fetal loss by inhibiting complement activation. Nat Med. 2004;10(11):1222–1226.

    Article  CAS  PubMed  Google Scholar 

  104. Redecha P, Tilley R, Tencati M, et al. Tissue factor: a link between C5a and neutrophil activation in antiphospholipid antibody induced fetal injury. Blood. 2007;110(7):2423–2431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Redecha P, Franzke CW, Ruf W, Mackman N, Girardi G. Neutrophil activation by the tissue factor/Factor VIIa/PAR2 axis mediates fetal death in a mouse model of antiphospholipid syndrome. J Clin Invest. 2008;118(10):3453–3461.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Pierangeli SS, Ferrara DE. More on: fluvastatin inhibits upregulation of tissue factor expression by antiphospholipid antibodies on endothelial cells. J Thromb Haemost. 2005;3(5): 1112–1113.

    Article  CAS  PubMed  Google Scholar 

  107. Kunieda Y, Nakagawa K, Nishimura H, et al. HMG CoAreductase inhibitor suppresses the expression of tissue factor and plasminogen activator inhibitor-1 induced by angiotensin II in cultured rat aortic endothelial cells. Thromb Res. 2003;110(4):227–234.

    Article  CAS  PubMed  Google Scholar 

  108. Odiari EA, Mulla MJ, Sfakianaki AK, et al. Pravastatin does not prevent antiphospholipid antibody-mediated changes in human first trimester trophoblast function. Hum Reprod. 2012;27(10): 2933–2940.

    Article  CAS  PubMed  Google Scholar 

  109. Lefkou E, Mamopoulos A, Dagklis T, Vosnakis C, Rousso D, Girardi G. Pravastatin improves pregnancy outcomes in obstetric antiphospholipid syndrome refractory to antithrombotic therapy. J Clin Invest. 2016;126(8):2933–2940.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Martin JA, Hamilton BE, Ventura SJ, et al. Births: final data for 2009. Natl Vital Stat Rep. 2011;60(1):1–70.

    PubMed  Google Scholar 

  111. Basraon SK, Menon R, Makhlouf M, et al. Can statins reduce the inflammatory response associated with preterm birth in an animal model? Am J Obstet Gynecol. 2012;207(3):224.e1-e7.

    Google Scholar 

  112. Gonzalez JM, Pedroni SM, Girardi G. Statins prevent cervical remodeling, myometrial contractions and preterm labor through a mechanism that involves hemoxygenase-1 and complement inhibition. Mol Hum Reprod. 2014;20(6):579–589.

    Article  CAS  PubMed  Google Scholar 

  113. Bainbridge SA, Smith GN. HO in pregnancy. Free Radic Biol Med. 2005;38(8):979–988.

    Article  CAS  PubMed  Google Scholar 

  114. Lappas M, Woodruff TM, Taylor SM, Permezel M. Complement C5a regulates prolabor mediators in human placenta. Biol Reprod. 2012;86(6):190–196.

    Article  PubMed  CAS  Google Scholar 

  115. Pacheco LD, Hankins GDV, Costantine MM, et al. The role of human decay-accelerating factor in the pathogenesis of preterm Labor. Am J Perinatol. 2011;28(7):565–570.

    Article  PubMed  Google Scholar 

  116. Basraon SK, Costantine MM, Saade G, Menon R. The effect of simvastatin on infection-induced inflammatory response of human fetal membranes. Am J Reprod Immunol. 2015;74(1): 54–61.

    Article  CAS  PubMed  Google Scholar 

  117. Menon R, Fortunato SJ. The role of matrix degrading enzymes and apoptosis in rupture of membranes. J Soc Gynecol Investig. 2004;11(7):427–437.

    Article  CAS  PubMed  Google Scholar 

  118. Dostal LA, Schardein JL, Anderson JA. Developmental toxicity of the HMG-CoA reductase inhibitor, atorvastatin, in rats and rabbits. Teratology. 1994;50(6):387–394.

    Article  CAS  PubMed  Google Scholar 

  119. Minsker DH, MacDonald JS, Robertson RT, Bokelman DL. Mevalonate supplementation in pregnant rats suppresses the teratogenicity of mevinolinic acid, an inhibitor of 3-hydroxy-3- methylglutaryl-coenzyme a reductase. Teratology. 1983;28(3): 449–456.

    Article  CAS  PubMed  Google Scholar 

  120. Pollack PS, Shields KE, Burnett DM, Osborne MJ, Cunningham ML, Stepanavage ME. Pregnancy outcomes after maternal exposure to simvastatin and lovastatin. Birth Defects Res A Clin Mol Teratol. 2005;73(11):888–896.

    Article  CAS  PubMed  Google Scholar 

  121. Ofori B, Ray E, Berard A. Risk of congenital anomalies in pregnant users of statin drugs. Br J Clin Pharmacol. 2007; 64(4):496–509.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kusters DM, Lahsinoui HH, van de Post JAM, et al. Statin use during pregnancy: a systematic review and meta-analysis. Expert Rev Cardiovasc Ther. 2012;10(3):363–378.

    Article  CAS  PubMed  Google Scholar 

  123. Taguchi N, Rubin ET, Hosokawa A, et al. Prenatal exposure to HMG-CoA reductase inhibitors: effects on fetal and neonatal outcomes. Reprod Toxicol. 2008;26(2):175–177.

    Article  CAS  PubMed  Google Scholar 

  124. Winterfield U, Allignol A, Panchaud A, et al. Pregnancy outcome following maternal exposure to statins: a multicenter prospective study. BJOG. 2013;120(4):463–471.

    Article  CAS  Google Scholar 

  125. Bateman BT, Hernandez-Diaz S, Fischer MA, et al. Statins and congenital malformations: cohort study. Br Med J. 2015;350: h1035.

    Google Scholar 

  126. Macintosh MC, Fleming KM, Bailey JA, et al. Perinatal mortality and congenital anomalies in babies of women with Type 1 or Type 2 diabetes in England, Wales, and Northern Ireland: population based study. BMJ. 2006;333(7560):177.

    Google Scholar 

  127. Satpathy HK, Fleming A, Frey D, Barsoom M, Satpathy C, Khandalavala J. Maternal obesity and pregnancy. Postgrad Med. 2008;120(3):E01-E09.

    Google Scholar 

  128. Karalis DG, Hill AN, Clifton S, Wild RA. The risks of statin use in pregnancy: a systematic review. J Clin Lipidol. 2016;10(5): 1081–1090.

    Article  PubMed  Google Scholar 

  129. McDonnold M, Tamayo E, Kechichian T, et al. The effect of prenatal pravastatin treatment on altered fetal programming of postnatal growth and metabolic function in a preeclampsia-like murine model. Am J Obstet Gynecol. 2014;210(6):542.e1-e7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa A. Borahay MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeybek, B., Costantine, M., Kilic, G.S. et al. Therapeutic Roles of Statins in Gynecology and Obstetrics: The Current Evidence. Reprod. Sci. 25, 802–817 (2018). https://doi.org/10.1177/1933719117750751

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117750751

Keywords

Navigation