Skip to main content

Advertisement

Log in

Vitamin D Supplementation is a Promising Therapy for Pancreatic Ductal Adenocarcinoma in Conjunction with Current Chemoradiation Therapy

  • Pancreatic Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

The cancer-associated fibroblasts (CAFs) in pancreatic ductal adenocarcinoma (PDAC) are well known to play a dominant role in distant metastasis. Nevertheless, the effect on CAFs with current chemoradiation therapies remains uncertain.

Objective

This study aimed to reveal the role of CAFs under current chemoradiation therapy (CRT) and investigate the factors regulating CAFs.

Methods

α-SMA-positive cells in 86 resected PDAC specimens with/without preoperative CRT were evaluated by immunohistochemistry. Various factors, including the plasma levels of vitamin D, were investigated for association with the number of CAFs or distant metastasis-free survival (DMFS). Human pancreatic satellite cells (hPSCs) extracted from clinical specimens were used to validate the factors.

Results

All PDAC samples contained CAFs but the number varied widely. Multivariate analysis for DMFS indicated a larger number of CAFs was a significant risk factor. Univariate analysis for the number of CAFs identified two clinical factors: preoperative CRT and lower plasma levels of vitamin D. In subgroup analysis, the higher plasma level of vitamin D was a dominant factor for longer DMFS in PDAC patients after preoperative CRT. These results were validated by using extracted hPSCs. Irradiation activated stromal cells into CAFs facilitating malignant characteristics of PDAC and the change was inhibited by vitamin D supplementation in vitro.

Conclusion

In conjunction with established current therapies, vitamin D supplementation may be an effective treatment for PDAC patients by inactivating CAFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Colvin H, Mizushima T, Eguchi H, Takiguchi S, Doki Y, Mori M. Gastroenterological surgery in Japan: the past, the present and the future. Ann Gastroenterol Surg. 2017;1(1):5–10.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–386.

    Article  PubMed  CAS  Google Scholar 

  3. Ilic M, Ilic I. Epidemiology of pancreatic cancer. World J Gastroenterol. 2016;22(44):9694–9705.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gillen S, Schuster T, Meyer Zum Buschenfelde C, Friess H, Kleeff J. Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med. 2010;7(4):e1000267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Stathis A, Moore MJ. Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol. 2010;7(3):163–172.

    Article  PubMed  CAS  Google Scholar 

  6. Sherman MH, Yu RT, Engle DD, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 2014;159(1):80–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bachem MG, Schunemann M, Ramadani M, et al. Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology. 2005;128(4):907–921.

    Article  PubMed  CAS  Google Scholar 

  8. Nielsen MF, Mortensen MB, Detlefsen S. Key players in pancreatic cancer-stroma interaction: cancer-associated fibroblasts, endothelial and inflammatory cells. World J Gastroenterol. 2016;22(9):2678–2700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Pietras K, Ostman A. Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res. 2010;316(8):1324–1331.

    Article  PubMed  CAS  Google Scholar 

  10. Rasanen K, Vaheri A. Activation of fibroblasts in cancer stroma. Exp Cell Res. 2010;316(17):2713–2722.

    Article  PubMed  CAS  Google Scholar 

  11. Shimoda M, Mellody KT, Orimo A. Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol. 2010;21(1):19–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Xu Z, Vonlaufen A, Phillips PA, et al. Role of pancreatic stellate cells in pancreatic cancer metastasis. Am J Pathol. 2010;177(5):2585–2596.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Conroy T, Desseigne F, Ychou M, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364(19):1817–1825.

    Article  PubMed  CAS  Google Scholar 

  14. Von Hoff DD, Ervin T, Arena FP, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369(18):1691–1703.

    Article  CAS  Google Scholar 

  15. Ozdemir BC, Pentcheva-Hoang T, Carstens JL, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 2014;25(6):719–734.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ohuchida K, Mizumoto K, Murakami M, et al. Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res. 2004;64(9):3215–3222.

    Article  PubMed  CAS  Google Scholar 

  17. Jacobetz MA, Chan DS, Neesse A, et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut. 2013;62(1):112–120.

    Article  PubMed  CAS  Google Scholar 

  18. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;21(3):418–429.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hwang RF, Moore TT, Hattersley MM, et al. Inhibition of the hedgehog pathway targets the tumor-associated stroma in pancreatic cancer. Mol Cancer Res. 2012;10(9):1147–1157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Deeb KK, Trump DL, Johnson CS. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer. 2007;7(9):684–700.

    Article  PubMed  CAS  Google Scholar 

  21. Eguchi H, Nagano H, Tanemura M, et al. Preoperative chemoradiotherapy, surgery and adjuvant therapy for resectable pancreatic cancer. Hepatogastroenterology. 2013;60(124):904–911.

    PubMed  CAS  Google Scholar 

  22. Eguchi H, Nagano H, Kobayashi S, et al. A phase I trial of combination therapy using gemcitabine and S-1 concurrent with full-dose radiation for resectable pancreatic cancer. Cancer Chemother Pharmacol. 2014;73(2):309–315.

    Article  PubMed  CAS  Google Scholar 

  23. Iwagami Y, Eguchi H, Nagano H, et al. miR-320c regulates gemcitabine-resistance in pancreatic cancer via SMARCC1. Br J Cancer. 2013;109(2):502–511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bachem MG, Schneider E, Gross H, et al. Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology. 1998;115(2):421–432.

    Article  PubMed  CAS  Google Scholar 

  25. Brunner SM, Rubner C, Kesselring R, et al. Tumor-infiltrating, interleukin-33-producing effector-memory CD8(+) T cells in resected hepatocellular carcinoma prolong patient survival. Hepatology. 2015;61(6):1957–1967.

    Article  PubMed  CAS  Google Scholar 

  26. Nishizawa Y, Nishida N, Konno M, et al. Clinical significance of histone demethylase NO66 in invasive colorectal cancer. Ann Surg Oncol. 2017; 24(3):841–849.

    Article  PubMed  Google Scholar 

  27. Li D, Qu C, Ning Z, et al. Radiation promotes epithelial-to-mesenchymal transition and invasion of pancreatic cancer cell by activating carcinoma-associated fibroblasts. Am J Cancer Res. 2016;6(10):2192–2206.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Tomihara H, Yamada D, Eguchi H, et al. MiR-181b-5p, ETS1 and c-Met pathway exacerbates the prognosis of pancreatic ductal adenocarcinoma after radiation therapy. Cancer Sci. 2017;108(3):398–407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Cui YH, Suh Y, Lee HJ, et al. Radiation promotes invasiveness of non-small-cell lung cancer cells through granulocyte-colony-stimulating factor. Oncogene. 2015;34(42):5372–5382.

    Article  PubMed  CAS  Google Scholar 

  30. Kawamoto A, Yokoe T, Tanaka K, et al. Radiation induces epithelial-mesenchymal transition in colorectal cancer cells. Oncol Rep. 2012;27(1):51–57.

    PubMed  CAS  Google Scholar 

  31. Camphausen K, Moses MA, Beecken WD, Khan MK, Folkman J, O’Reilly MS. Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res. 2001;61(5):2207–2211.

    PubMed  CAS  Google Scholar 

  32. Cheng JC, Chou CH, Kuo ML, Hsieh CY. Radiation-enhanced hepatocellular carcinoma cell invasion with MMP-9 expression through PI3 K/Akt/NF-kappaB signal transduction pathway. Oncogene. 2006;25(53):7009–7018.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the members of our laboratories for their helpful discussions. No external sources of funding were received for this study.

Disclosures

The authors have no commercial interests in the subject matter of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Eguchi MD, PhD.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukai, Y., Yamada, D., Eguchi, H. et al. Vitamin D Supplementation is a Promising Therapy for Pancreatic Ductal Adenocarcinoma in Conjunction with Current Chemoradiation Therapy. Ann Surg Oncol 25, 1868–1879 (2018). https://doi.org/10.1245/s10434-018-6431-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-018-6431-8

Keywords

Navigation