Mitochondria: the birth place, battle ground and the site of melatonin metabolism in cells

Mitochondria and melatonin

  • Dun-Xian Tan Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
  • Russel. J. Reiter Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
Keywords: mitochondria, melatonin, oxidative stress, serotonin N-acetyltransferase (SNAT), plant, bacteria, archaea

Abstract

     It was a surprising discovery when mitochondria, as the power houses of cells, were also found to synthesize the potent mitochondrial targeted antioxidant, melatonin. The melatonin synthetic enzyme serotonin N-acetyltransferase (SNAT) was found in matrix and also in the intermembrane space of mitochondria. We hypothesize that the melatonin synthesis occurs in the matrix due to substrate (N-acetyl co-enzyme A) availability while the intermembrane space may serve as the recycling pool of SNAT to regulate the melatonin circadian rhythm. Another surprise was that the melatonin membrane receptors, including MT1 and MT2, were also present in mitochondria. The protective effects of melatonin against neuronal injury induced by brain ischemia/reperfusion were proven to be mainly mediated by mitochondrial melatonin receptors rather than the cell surface membrane receptors which is contrary to the classical principle. In addition, melatonin metabolic enzyme has also been identified in the mitochondria. This enzyme can convert melatonin to N-acetylserotonin to strengthen the antitumor effects of melatonin. Thus, mitochondria are the generator, battle ground and metabolic sites of melatonin. The biological significance of the strong association between mitochondria and melatonin should be intensively investigated.

 

References

1. Tan D-X, Hardeland R, Manchester LC, et al (2010) The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol Rev Camb Philos Soc 85: 607–623. doi: 10.1111/j.1469-185X.2009.00118.x.
2. Biarrotte-Sorin S, Mayer C (2005) Cloning, purification, crystallization and preliminary crystallographic analysis of a hypothetical acetyltransferase from Pyrococcus furiosus. Acta Crystallogr Sect F Struct Biol Cryst Commun 61: 269–270. doi: 10.1107/S174430910500223X.
3. Ma C, Pathak C, Jang S, et al (2014) Structure of Thermoplasma volcanium Ard1 belongs to N-acetyltransferase family member suggesting multiple ligand binding modes with acetyl coenzyme A and coenzyme A. Biochim. Biophys. Acta Proteins Proteomics 1844: 1790–1797. doi: 10.1016/j.bbapap.2014.07.011.
4. Tan D-X, Zheng X, Kong J, et al (2014) Fundamental Issues Related to the Origin of Melatonin and Melatonin Isomers during Evolution: Relation to Their Biological Functions. Int. J. Mol. Sci. 15: 15858–15890. doi: 10.3390/ijms150915858.
5. Tan D-X, Manchester LC, Liu X, et al (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J. Pineal Res. 54: 127–138. doi: 10.1111/jpi.12026.
6. Coon SL, Klein DC (2006) Evolution of arylalkylamine N-acetyltransferase: emergence and divergence. Mol. Cell. Endocrinol. 252: 2–10. doi: 10.1016/j.mce.2006.03.039.
7. Lei Q, Wang L, Tan D-X, et al (2013) Identification of genes for melatonin synthetic enzymes in “Red Fuji” apple (Malus domestica Borkh.cv.Red) and their expression and melatonin production during fruit development. J. Pineal. Res. 55: 443–451. doi: 10.1111/jpi.12096.
8. Byeon Y, Lee H-J, Lee HY, Back K (2016) Cloning and functional characterization of the Arabidopsis N-acetylserotonin O-methyltransferase responsible for melatonin synthesis. J. Pineal Res. 60:.65–73. doi: 10.1111/jpi.12289.
9. Kang K, Lee K, Park S, et al (2013) Molecular cloning of rice serotonin N-acetyltransferase, the penultimate gene in plant melatonin biosynthesis. J. Pineal Res. 55: 7–13. doi: 10.1111/jpi.12011.
10. Byeon Y, Lee K, Park Y-I, et al (2013) Molecular cloning and functional analysis of serotonin N-acetyltransferase from the cyanobacterium Synechocystis sp. PCC 6803. J. Pineal Res. 55: 371–6 . doi: 10.1111/jpi.12080.
11. Park S, Byeon Y, Lee HY, et al (2014) Cloning and characterization of a serotonin N-acetyltransferase from a gymnosperm, loblolly pine (Pinus taeda). J. Pineal Res. 57: 348–55. doi: 10.1111/jpi.12174.
12. Byeon Y, Yool Lee H, Choi D-W, Back K (2015) Chloroplast-encoded serotonin N-acetyltransferase in the red alga Pyropia yezoensis: gene transition to the nucleus from chloroplasts. J. Exp. Bot. 66: 709–17. doi: 10.1093/jxb/eru357.
13. Hastings MH, Herbert J, Martensz ND, Roberts AC (1985) Melatonin and the brain in photoperiodic mammals. Ciba Found Symp. 117: 57–77.
14. Kumar V (1997) Photoperiodism in higher vertebrates: an adaptive strategy in temporal environment. Indian J. Exp. Biol. 35: 427–437.
15. Reiter RJ (1991) Melatonin: the chemical expression of darkness. Mol. Cell. Endocrinol. 79: C153-158.
16. Calvo JR, González-Yanes C, Maldonado MD (2013) The role of melatonin in the cells of the innate immunity: a review. J. Pineal Res. 55: 103–120. doi: 10.1111/jpi.12075.
17. Hardeland R (2018) Melatonin and inflammation - story of a double-edged blade. J. Pineal Res. 65: e12525. doi: 10.1111/jpi.12525.
18. Jehan S, Jean-Louis G, Zizi F, et al (2017) Sleep, Melatonin, and the Menopausal Transition: What Are the Links? Sleep Sci. (Sao Paulo, Brazil) 10: 11–18. doi: 10.5935/1984-0063.20170003.
19. Singer C, Tractenberg RE, Kaye J, et al (2003) A multicenter, placebo-controlled trial of melatonin for sleep disturbance in Alzheimer’s disease. Sleep 26: 893–901.
20. Zhang W, Chen X, Su S, et al (2016) Exogenous melatonin for sleep disorders in neurodegenerative diseases: a meta-analysis of randomized clinical trials. Neurol. Sci. 37: 57–65. doi: 10.1007/s10072-015-2357-0.
21. Reiter RJ, Tan D-X, Manchester LC, et al (2009) Melatonin and Reproduction Revisited. Biol. Reprod. 81: 445–456. doi: 10.1095/biolreprod.108.075655.
22. Lindblom R, Higgins G, Coughlan M, de Haan JB (2015) Targeting mitochondria and reactive oxygen species-driven pathogenesis in diabetic nephropathy. Rev. Diabet. Stud. 12: 134–156. doi: 10.1900/RDS.2015.12.134.
23. Angelova PR, Abramov AY (2018) Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett. 592: 692–702. doi: 10.1002/1873-3468.12964.
24. Giorgi C, Marchi S, Simoes ICM, et al (2018) Mitochondria and reactive oxygen species in aging and age-related diseases. Int. Rev. Cell. Mol. Biol. 340: 209–344. doi: 10.1016/bs.ircmb.2018.05.006.
25. Reiter RJ, Tan D-X, Manchester LC, et al (2003) Melatonin: detoxification of oxygen and nitrogen-based toxic reactants. Adv. Exp. Med. Biol. 527: 539–48.
26. Rosen J, Than NN, Koch D, et al (2006) Interactions of melatonin and its metabolites with the ABTS cation radical: extension of the radical scavenger cascade and formation of a novel class of oxidation products, C2-substituted 3-indolinones. J. Pineal Res. 41: 374–381. doi: 10.1111/j.1600-079X.2006.00379.x.
27. Tan D-X, Manchester LC, Terron MP, et al (2007) One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species? J. Pineal Res. 42: 28–42. doi: 10.1111/j.1600-079X.2006.00407.x.
28. Arora D, Bhatla SC (2017) Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and Mn SOD. Free Radic. Biol. Med. 106: 315–328. doi: 10.1016/j.freeradbiomed.2017.02.042.
29. Kim CH, Jeung EB, Yoo YM (2018) Combined fluid shear stress and melatonin enhances the erk/akt/mtor signal in cilia-less mc3t3-e1 preosteoblast cells. Int. J. Mol. Sci. 19 (10). pii: E2929. doi: 10.3390/ijms19102929.
30. Feng J, Chen X, Liu R, et al (2018) Melatonin protects against myocardial ischemia–reperfusion injury by elevating Sirtuin3 expression and manganese superoxide dismutase activity. Free Radic. Res. 52: 840–849. doi: 10.1080/10715762.2018.1461215.
31. Mayo JC, Sainz RM, Antoli I, et al (2002) Melatonin regulation of antioxidant enzyme gene expression. Cell. Mol. Life Sci. 59: 1706–1713.
32. Germann SM, Baallal Jacobsen SA, Schneider K, et al (2016) Glucose-based microbial production of the hormone melatonin in yeast Saccharomyces cerevisiae. Biotechnol. J. 11: 717–724. doi: 10.1002/biot.201500143.
33. Tan D-X, Hardeland R, Back K, et al (2016) On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species. J. Pineal Res. 61: 27–40. doi: 10.1111/jpi.12336.
34. Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr. Rev. 12: 151–180. doi: 10.1210/edrv-12-2-151.
35. Manchester LC, Poeggeler B, Alvares FL, et al (1995) Melatonin immunoreactivity in the photosynthetic prokaryote Rhodospirillum rubrum: implications for an ancient antioxidant system. Cell. Mol. Biol. Res. 41: 391–395.
36. Tilden AR, Becker MA, Amma LL, et al (1997) Melatonin production in an aerobic photosynthetic bacterium: an evolutionarily early association with darkness. J. Pineal Res. 22: 102–106.
37. He C, Wang J, Zhang Z, et al (2016) Mitochondria synthesize melatonin to ameliorate its function and improve mice oocyte’s quality under in vitro conditions. Int. J. Mol. Sci. 17: 939. doi: 10.3390/ijms17060939.
38. Suofu Y, Li W, Jean-Alphonse FG, et al (2017) Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc. Natl. Acad. Sci. 114:.E7997–E8006. doi: 10.1073/pnas.1705768114.
39. Quintela T, Gonçalves I, Silva M, et al (2018) Choroid plexus is an additional source of melatonin in the brain. J. Pineal Res. 65: e12528. doi: 10.1111/jpi.12528.
40. Wang L, Feng C, Zheng X, et al (2017) Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress. J. Pineal. Res. 63: e12429. doi: 10.1111/jpi.12429.
41. Rosengarten H, Meller E, Friedhoff AJ (1972) In vitro enzymatic formation of melatonin by human erythrocytes. Res. Commun. Chem. Pathol. Pharmacol. 4: 457–465.
42. Yang M, Tao J, Wu H, et al (2018) Aanat knockdown and melatonin supplementation in embryo development: involvement of mitochondrial function and DNA methylation. Antioxid. Redox. Signalars 2018.7555. doi: 10.1089/ars.2018.7555
43. Kerényi NA, Sótonyi P, Somogyi E (1975) Localizing acethyl-serotonin transferase by electron microscopy. Histochemistry 46: 77–80. doi: 10.1007/BF02463562.
44. Kerényi NA, Balogh I, Somogyi E, Sótonyi P (1979) Cytochemical investigation of acetyl-serotonin-transferase activity in the pineal gland. Cell. Mol. Biol. Incl. Cyto. Enzymol. 25: 259–262.
45. Beddoe T, Lithgow T (2002) Delivery of nascent polypeptides to the mitochondrial surface. Biochim. Biophys. Acta 1592: 35–39.
46. Schatz G, Dobberstein B (1996) Common principles of protein translocation across membranes. Science 271: 1519–1526.
47. Schomerus C, Korf H-W (2005) Mechanisms regulating melatonin synthesis in the mammalian pineal organ. Ann. N. Y. Acad. Sci. 1057: 372–383. doi: 10.1196/annals.1356.028.
48. Choi G-H, Lee HY, Back K (2017) Chloroplast overexpression of rice caffeic acid O -methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants. J. Pineal Res. 63: e12412. doi: 10.1111/jpi.12412.
49. Ye T, Yin X, Yu L, et al (2018) Metabolic analysis of the melatonin biosynthesis pathway using chemical labeling coupled with liquid chromatography-mass spectrometry. J. Pineal Res. 66: e12531 . doi: 10.1111/jpi.12531.
50. Tan D-X, Manchester LC, Reiter RJ, et al (1999) High physiological levels of melatonin in the bile of mammals. Life Sci. 65: 2523–2529.
51. Ma X, Chen C, Krausz KW, et al (2008) A metabolomic perspective of melatonin metabolism in the mouse. Endocrinology 149: 1869–1879. doi: 10.1210/en.2007-1412.
52. Ma X, Idle JR, Krausz KW, Gonzalez FJ (2005) Metabolism of melatonin by human cytochromes P450. Drug Metab. Dispos. 33: 489–494. doi: 10.1124/dmd.104.002410.
53. Ma X, Idle JR, Krausz KW, et al (2006) Urinary metabolites and antioxidant products of exogenous melatonin in the mouse. J. Pineal Res. 40: 343–349. doi: 10.1111/j.1600-079X.2006.00321.x.
54. Harthé C, Claudy D, Déchaud H, et al (2003) Radioimmunoassay of N-acetyl-N-formyl-5-methoxykynuramine (AFMK): a melatonin oxidative metabolite. Life Sci. 73: 1587–1597.
55. Kim T-K, Lin Z, Tidwell WJ, et al (2015) Melatonin and its metabolites accumulate in the human epidermis in vivo and inhibit proliferation and tyrosinase activity in epidermal melanocytes in vitro. Mol. Cell Endocrinol. 404: 1–8. doi: 10.1016/j.mce.2014.07.024.
56. de Oliveira Silva S, Ximenes VF, Livramento JA, et al (2005) High concentrations of the melatonin metabolite, N1-acetyl-N 2-formyl-5-methoxykynuramine, in cerebrospinal fluid of patients with meningitis: a possible immunomodulatory mechanism. J. Pineal Res. 39: 302–306. doi: 10.1111/j.1600-079X.2005.00247.x.
57. Tan D-X, Manchester LC, Burkhardt S, et al (2001) N 1 -acetyl- N 2 -formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant. FASEB J. 15: 2294–2296. doi: 10.1096/fj.01-0309fje.
58. Hardeland R, Pandi-Perumal SR, Cardinali DP (2006) Melatonin. Int. J. Biochem. Cell. Biol. 38: 313–316. doi: 10.1016/j.biocel.2005.08.020.
59. Tan D-X, Hardeland R, Manchester LC, Poeggeler B, Lopez-Burillo S, Mayo JC, Sainz RM, Reiter RJ. (2003) Mechanistic and comparative studies of melatonin and classic antioxidants in terms of their interactions with the ABTS cation radical. J. Pineal Res. 34: 249-259.
60. Semak I, Korik E, Antonova M, et al (2008) Metabolism of melatonin by cytochrome P450s in rat liver mitochondria and microsomes. J. Pineal Res. 45: 515–523. doi: 10.1111/j.1600-079X.2008.00630.x.
61. Semak I, Naumova M, Korik E, et al (2005) A novel metabolic pathway of melatonin: oxidation by cytochrome. Biochemistry 44: 9300–9307. doi: 10.1021/bi050202d.
62. Hardeland R, Tan D-X, Reiter RJ (2009) Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines. J. Pineal Res. 47: 109–126. doi: 10.1111/j.1600-079X.2009.00701.x.
63. Tan D-X, Manchester L, Esteban-Zubero E, et al (2015) Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 20: 18886–18906. doi: 10.3390/molecules201018886.
64. Yu Z, Tian X, Peng Y, et al (2018) Mitochondrial cytochrome P450 (CYP) 1B1 is responsible for melatonin-induced apoptosis in neural cancer cells. J. Pineal Res. 65: e12478 . doi: 10.1111/jpi.12478.
65. Galley HF, McCormick B, Wilson KL, et al (2017) Melatonin limits paclitaxel-induced mitochondrial dysfunction in vitro and protects against paclitaxel-induced neuropathic pain in the rat. J. Pineal Res. 63: e12444. doi: 10.1111/jpi.12444.
66. Han L, Wang H, Li L, et al (2017) Melatonin protects against maternal obesity-associated oxidative stress and meiotic defects in oocytes via the SIRT3-SOD2-dependent pathway. J. Pineal Res. 63: e12431. doi: 10.1111/jpi.12431.
67. Chang C-C, Huang T-Y, Chen H-Y, et al (2018) Protective effect of melatonin against oxidative stress-induced apoptosis and enhanced autophagy in human retinal pigment epithelium cells. Oxid. Med. Cell. Longev. 2018: 9015765. doi: 10.1155/2018/9015765.
68. Zhang J-L, Hui Y, Zhou F, Hou J-Q (2018) Neuroprotective effects of melatonin on erectile dysfunction in streptozotocin-induced diabetic rats. Int. Urol. Nephrol. 50: 1981-1988 doi: 10.1007/s11255-018-1989-4.
69. Cabrera J, Reiter RJ, Tan D-X, et al (2000) Melatonin reduces oxidative neurotoxicity due to quinolinic acid: in vitro and in vivo findings. Neuropharmacology 39: 507–514.
70. Codenotti S, Battistelli M, Burattini S, et al (2015) Melatonin decreases cell proliferation, impairs myogenic differentiation and triggers apoptotic cell death in rhabdomyosarcoma cell lines. Oncol. Rep. 34: 279–287. doi: 10.3892/or.2015.3987.
71. Liu V, Yau W, Tam C, et al (2017) Melatonin inhibits androgen receptor splice variant-7 (ar-v7)-induced nuclear factor-kappa B (NF-κB) activation and NF-κB activator-induced AR-V7 expression in prostate cancer cells: potential implications for the use of melatonin in Castration-Resistant Prostate Cancer (CRPC) therapy. Int. J. Mol. Sci. 18: 1130. doi: 10.3390/ijms18061130.
72. Jang H, Na Y, Hong K, et al (2017) Synergistic effect of melatonin and ghrelin in preventing cisplatin-induced ovarian damage via regulation of FOXO3a phosphorylation and binding to the p27 Kip1 promoter in primordial follicles. J. Pineal Res. 63: e12432. doi: 10.1111/jpi.12432.
73. Chen C-C, Chen C-Y, Wang S-H, et al (2018) Melatonin sensitizes hepatocellular carcinoma cells to chemotherapy through long non-coding RNA RAD51-AS1-mediated suppression of DNA repair. Cancers (Basel) 10: 320. doi: 10.3390/cancers10090320.
74. Yun CW, Kim S, Lee JH, Lee SH (2018) Melatonin promotes apoptosis of colorectal cancer cells via superoxide-mediated er stress by inhibiting cellular prion protein expression. Anticancer Res. 38: 3951–3960. doi: 10.21873/anticanres.12681.
75. Lu J-J, Fu L, Tang Z, et al (2016) Melatonin inhibits AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells. Oncotarget 7: 2985–3001. doi: 10.18632/oncotarget.6407.
76. Quintana C, Cabrera J, Perdomo J, et al (2016) Melatonin enhances hyperthermia-induced apoptotic cell death in human leukemia cells. J. Pineal Res. 61: 381–395. doi: 10.1111/jpi.12356.
77. Shrestha S, Zhu J, Wang Q, et al (2017) Melatonin potentiates the antitumor effect of curcumin by inhibiting IKKβ/NF-κB/COX-2 signaling pathway. Int. J. Oncol. 51: 1249–1260. doi: 10.3892/ijo.2017.4097.
78. Ali T, Badshah H, Kim TH, Kim MO (2015) Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF- K B/JNK signaling pathway in aging mouse model. J. Pineal Res. 58: 71–85. doi: 10.1111/jpi.12194.
79. Pang Y-W, Sun Y-Q, Sun W-J, et al (2016) Melatonin inhibits paraquat-induced cell death in bovine preimplantation embryos. J. Pineal Res. 60: 155–166. doi: 10.1111/jpi.12297.
80. Chen H-H, Chen Y-T, Yang C-C, et al (2016) Melatonin pretreatment enhances the therapeutic effects of exogenous mitochondria against hepatic ischemia-reperfusion injury in rats through suppression of mitochondrial permeability transition. J. Pineal Res. 61: 52–68. doi: 10.1111/jpi.12326.
81. Haghi-Aminjan H, Farhood B, Rahimifard M, et al (2018) The protective role of melatonin in chemotherapy‐induced nephrotoxicity: a systematic review of non-clinical studies. Expert. Opin. Drug. Metab. Toxicol. 14: 937–950. doi: 10.1080/17425255.2018.1513492.
82. Madhu P, Reddy KP, Reddy PS (2015) Melatonin reduces oxidative stress and restores mitochondrial function in the liver of rats exposed to chemotherapeutics. J. Exp. Zool. Part A Ecol. Genet. Physiol. 323: 301–308. doi: 10.1002/jez.1917.
83. Farhood B, Goradel NH, Mortezaee K, et al (2018) Melatonin and cancer: From the promotion of genomic stability to use in cancer treatment. J. Cell. Physiol. doi: 10.1002/jcp.27391.
84. Shen Y-Q, Guerra-Librero A, Fernandez-Gil BI, et al (2018) Combination of melatonin and rapamycin for head and neck cancer therapy: Suppression of AKT/mTOR pathway activation, and activation of mitophagy and apoptosis via mitochondrial function regulation. J. Pineal Res. 64: e12461. doi: 10.1111/jpi.12461.
85. Reiter RJ, Tan D, Sainz RM, et al (2002) Melatonin: reducing the toxicity and increasing the efficacy of drugs. J. Pharm. Pharmacol. 54: 1299–1321. doi: 10.1211/002235702760345374.
86. Huo X, Wang C, Yu Z, et al (2017) Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: An implication of the therapeutic potential. J. Pineal Res. 62: e12390. doi: 10.1111/jpi.12390.
87. Reiter R, Tan D, Rosales-Corral S, et al (2018) Mitochondria: central organelles for melatonin′s antioxidant and anti-aging actions. Molecules 23: 509. doi: 10.3390/molecules23020509.
88. Díaz-Casado ME, Rusanova I, Aranda P, et al (2018) In Vivo determination of mitochondrial respiration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated zebrafish reveals the efficacy of melatonin in restoring mitochondrial normalcy. Zebrafish 15: 15–26. doi: 10.1089/zeb.2017.1479.
89. Reiter RJ, Rosales-Corral S, Tan DX, et al (2017) Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell. Mol. Life Sci. 74: 3863–3881 . doi: 10.1007/s00018-017-2609-7.
90. Reiter RJ, Tan DX, Rosales-Corral S, et al (2018) Melatonin mitigates mitochondrial meltdown: interactions with SIRT3. Int. J. Mol. Sci. 19: 2439. doi: 10.3390/ijms19082439.
91. Tan D-X, Manchester LC, Qin L, Reiter RJ (2016) Melatonin: a mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int. J. Mol. Sci. 17: 2124. doi: 10.3390/ijms17122124.
92. Huang W-Y, Jou M-J, Tsung IP, Tsung IP (2013) mtDNA T8993G mutation-induced F1F0-ATP synthase defect augments mitochondrial dysfunction associated with hypoxia/reoxygenation: the protective role of melatonin. PLoS One 8: e81546. doi: 10.1371/journal.pone.0081546.
93. Pei H-F, Hou J-N, Wei F-P, et al (2017) Melatonin attenuates postmyocardial infarction injury via increasing Tom70 expression. J. Pineal Res. 62: e12371. doi: 10.1111/jpi.12371.
94. Wongprayoon P, Govitrapong P (2017) Melatonin as a mitochondrial protector in neurodegenerative diseases. Cell. Mol. Life Sci. 74: 3999–4014. doi: 10.1007/s00018-017-2614-x.
95. Hardeland R (2017) Melatonin and the electron transport chain. Cell. Mol. Life Sci. 74: 3883–3896. doi: 10.1007/s00018-017-2615-9.
96. Idowu AJ, Kumar SL, Yidong B, Russel R (2017) Melatonin modulates neuronal mitochondria function during normal ageing in mice. Niger. J. Physiol. Sci. 32: 145–152.
97. Acuña-Castroviejo D, Rahim I, Acuña-Fernández C, et al (2017) Melatonin, clock genes and mitochondria in sepsis. Cell. Mol. Life Sci. 74: 3965–3987. doi: 10.1007/s00018-017-2610-1.
98. Ma Z, Xin Z, Di W, et al (2017) Melatonin and mitochondrial function during ischemia/reperfusion injury. Cell. Mol. Life Sci. 74: 3989–3998. doi: 10.1007/s00018-017-2618-6.
99. Akinci A, Esrefoglu M, Cetin A, Ates B (2015) Melatonin is more effective than ascorbic acid and β-carotene in improvement of gastric mucosal damage induced by intensive stress. Arch. Med. Sci. 11: 1129–1136. doi: 10.5114/aoms.2015.54870.
100. Jou M-J, Peng T-I, Yu P-Z, et al (2007) Melatonin protects against common deletion of mitochondrial DNA-augmented mitochondrial oxidative stress and apoptosis. J. Pineal Res. 43: 389–403. doi: 10.1111/j.1600-079X.2007.00490.x.
101. Lowes DA, Webster NR, Murphy MP, Galley HF (2013) Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. Br. J. Anaesth. 110: 472–480. doi: 10.1093/bja/aes577.
102. Slominski AT, Zmijewski MA, Semak I, et al (2017) Melatonin, mitochondria, and the skin. Cell. Mol. Life Sci. 74: 3913–3925. doi: 10.1007/s00018-017-2617-7.
103. Cardinali DP, Vigo DE (2017) Melatonin, mitochondria, and the metabolic syndrome. Cell. Mol. Life Sci. 74: 3941–3954. doi: 10.1007/s00018-017-2611-0.
104. Zhu H, Jin Q, Li Y, et al (2018) Melatonin protected cardiac microvascular endothelial cells against oxidative stress injury via suppression of IP3R-[Ca2+]c/VDAC-[Ca2+]m axis by activation of MAPK/ERK signaling pathway. Cell Stress Chaperones 23: 101–113. doi: 10.1007/s12192-017-0827-4.
105. Zhou H, Zhang Y, Hu S, et al (2017) Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis. J. Pineal Res. 63: e12413. doi: 10.1111/jpi.12413.
106. Su L-Y, Li H, Lv L, et al (2015) Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/α-synuclein aggregation. Autophagy 11: 1745–1759. doi: 10.1080/15548627.2015.1082020.
107. Angelova PR, Abramov AY (2014) Interaction of neurons and astrocytes underlies the mechanism of Aβ-induced neurotoxicity. Biochem. Soc. Trans. 42: 1286–1290. doi: 10.1042/BST20140153.
108. Asghari MH, Abdollahi M, de Oliveira MR, Nabavi SM (2017) A review of the protective role of melatonin during phosphine-induced cardiotoxicity: focus on mitochondrial dysfunction, oxidative stress and apoptosis. J. Pharm. Pharmacol. 69: 236–243. doi: 10.1111/jphp.12682.
109. Camacho ME, Carrion MD, Lopez-Cara LC, et al (2012) Melatonin synthetic analogs as nitric oxide synthase inhibitors. Mini. Rev. Med. Chem. 12: 600–617.
110. Waseem M, Tabassum H, Parvez S (2016) Melatonin modulates permeability transition pore and 5-hydroxydecanoate induced KATP channel inhibition in isolated brain mitochondria. Mitochondrion 31: 1–8. doi: 10.1016/j.mito.2016.08.005.
111. Carretero M, Escames G, López LC, et al (2009) Long-term melatonin administration protects brain mitochondria from aging. J. Pineal Res. 47: 192–200 . doi: 10.1111/j.1600-079X.2009.00700.x
112. Andrabi SA, Sayeed I, Siemen D, et al (2004) Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for anti-apoptotic effects of melatonin. FASEB J. 18: 869–871. doi: 10.1096/fj.03-1031fje.
113. Paradies G, Petrosillo G, Paradies V, et al (2010) Melatonin, cardiolipin and mitochondrial bioenergetics in health and disease. J. Pineal Res. 48: 297–310. doi: 10.1111/j.1600-079X.2010.00759.x.
114. Petrosillo G, De Benedictis V, Ruggiero FM, Paradies G (2013) Decline in cytochrome c oxidase activity in rat-brain mitochondria with aging. Role of peroxidized cardiolipin and beneficial effect of melatonin. J. Bioenerg. Biomembr. 45: 431–440. doi: 10.1007/s10863-013-9505-0.
115. Hsiao C-W, Peng T-I, Peng AC, et al (2013) Long-term Aβ exposure augments mCa 2+ -independent mROS-mediated depletion of cardiolipin for the shift of a lethal transient mitochondrial permeability transition to its permanent mode in NARP cybrids: a protective targeting of melatonin. J. Pineal Res. 54: 107–125. doi: 10.1111/jpi.12004.
116. Klingenspor M, Fromme T, Hughes DA, et al (2008) An ancient look at UCP1. Biochim. Biophys. Acta Bioenerg. 1777: 637–641. doi: 10.1016/J.BBABIO.2008.03.006.
117. Woyda-Ploszczyca AM, Jarmuszkiewicz W (2017) The conserved regulation of mitochondrial uncoupling proteins: From unicellular eukaryotes to mammals. Biochim. Biophys. Acta Bioenerg. 1858: 21–33. doi: 10.1016/j.bbabio.2016.10.003.
118. Gaudry MJ, Campbell KL, Jastroch M (2018) Evolution of UCP1. Springer, Berlin, Heidelberg, pp 1–15
119. Bouillaud F, Alves-Guerra M-C, Ricquier D (2016) UCPs, at the interface between bioenergetics and metabolism. Biochim. Biophys. Acta Mol. Cell. Res. 1863: 2443–2456. doi: 10.1016/j.bbamcr.2016.04.013.
120. Slocinska M, Barylski J, Jarmuszkiewicz W (2016) Uncoupling proteins of invertebrates: A review. IUBMB Life 68: 691–699. doi: 10.1002/iub.1535.
121. Rui L (2017) Brown and Beige Adipose Tissues in Health and Disease. In: Comprehensive Physiology. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp 1281–1306.
122. Busiello RA, Savarese S, Lombardi A (2015) Mitochondrial uncoupling proteins and energy metabolism. Front. Physiol. 6: 36. doi: 10.3389/fphys.2015.00036.
123. Tan D-X, Manchester LC, Fuentes-Broto L, et al (2011) Significance and application of melatonin in the regulation of brown adipose tissue metabolism: relation to human obesity. Obes Rev 12: 167–188. doi: 10.1111/j.1467-789X.2010.00756.x.
124. Jiménez-Aranda A, Fernández-Vázquez G, Campos D, et al (2013) Melatonin induces browning of inguinal white adipose tissue in Zucker diabetic fatty rats. J. Pineal Res. 55: 416–423. doi: 10.1111/jpi.12089.
125. Ryu V, Zarebidaki E, Albers HE, et al (2018) Short photoperiod reverses obesity in Siberian hamsters via sympathetically induced lipolysis and Browning in adipose tissue. Physiol. Behav. 190: 11–20. doi: 10.1016/j.physbeh.2017.07.011.
126. Fernández Vázquez G, Reiter RJ, Agil A (2018) Melatonin increases brown adipose tissue mass and function in Zücker diabetic fatty rats: implications for obesity control. J. Pineal Res. 64: e12472. doi: 10.1111/jpi.12472.
127. Kim SH, Plutzky J (2016) Brown fat and browning for the treatment of obesity and related metabolic disorders. diabetes Metab. J. 40: 12. doi: 10.4093/dmj.2016.40.1.12.
128. Lidell ME, Betz MJ, Enerbäck S (2014) Two types of brown adipose tissue in humans. Adipocyte 3: 63–66. doi: 10.4161/adip.26896.
129. Cedikova M, Kripnerová M, Dvorakova J, et al (2016) Mitochondria in White, Brown, and Beige Adipocytes. Stem. Cells Int. 2016: 1–11. doi: 10.1155/2016/6067349.
130. Kajimura S, Seale P, Kubota K, et al (2009) Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 460: 1154–1158. doi: 10.1038/nature08262.
131. Xu P, Wang J, Hong F, et al (2017) Melatonin prevents obesity through modulation of gut microbiota in mice. J Pineal Res 62: e12399. doi: 10.1111/jpi.12399.
132. Romo-Nava F, Alvarez-Icaza González D, Fresán-Orellana A, et al (2014) Melatonin attenuates antipsychotic metabolic effects: an eight-week randomized, double-blind, parallel-group, placebo-controlled clinical trial. Bipolar. Disord. 16: 410–421. doi: 10.1111/bdi.12196.
133. Thomas AP, Hoang J, Vongbunyong K, et al (2016) Administration of melatonin and metformin prevents deleterious effects of circadian disruption and obesity in male rats. Endocrinology 157: 4720–4731. doi: 10.1210/en.2016-1309.
134. Lo C-C, Lin S-H, Chang J-S, Chien Y-W (2017) Effects of melatonin on glucose homeostasis, antioxidant ability, and adipokine secretion in ICR mice with NA/STZ-induced hyperglycemia. Nutrients 9: 1187. doi: 10.3390/nu9111187.
135. Al-Sarraf IAK, Kasabri V, Akour A, Naffa R (2018) Melatonin and cryptochrome 2 in metabolic syndrome patients with or without diabetes: a cross-sectional study. Horm. Mol. Biol. Clin. Investig. 35: doi: 10.1515/hmbci-2018-0016.
136. Pan P, Zhang H, Su L, et al (2018) Melatonin balance the autophagy and apoptosis by regulating UCP2 in the LPS-induced cardiomyopathy. Molecules 23: 675. doi: 10.3390/molecules23030675.
137. Liu D, Ma Z, Di S, et al (2018) AMPK/PGC1α activation by melatonin attenuates acute doxorubicin cardiotoxicity via alleviating mitochondrial oxidative damage and apoptosis. Free Radic. Biol. Med. 129: 59–72. doi: 10.1016/j.freeradbiomed.2018.08.032.
138. Wang B-Q, Yang Q-H, Xu R-K, Xu J-N (2013) Elevated levels of mitochonrial respiratory complexes activities and ATP production in 17-β-estradiol-induced prolactin-secretory tumor cells in male rats are inhibited by melatonin in vivo and in vitro. Chin. Med. J. (Engl) 126: 4724–4730
139. Sarti P, Magnifico M, Altieri F, et al (2013) New evidence for cross talk between melatonin and mitochondria mediated by a circadian-compatible interaction with nitric oxide. Int. J. Mol. Sci. 14: 11259–11276. doi: 10.3390/ijms140611259.
140. Casteilla L, Rigoulet M, Pénicaud L (2001) Mitochondrial ROS Metabolism: Modulation by Uncoupling Proteins. IUBMB Life 52: 181–188. doi: 10.1080/15216540152845984.
141. Cadenas S (2018) Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim. Biophys. Acta Bioenerg. 1859: 940–950. doi: 10.1016/j.bbabio.2018.05.019.
142. Hardeland R (2009) Neuroprotection by radical avoidance: search for suitable agents. Molecules 14: 5054–5102. doi: 10.3390/molecules14125054.
143. Jin J-X, Lee S, Taweechaipaisankul A, et al (2017) Melatonin regulates lipid metabolism in porcine oocytes. J. Pineal Res. 62: e12388. doi: 10.1111/jpi.12388.
144. Zhao X-M, Wang N, Hao H-S, et al (2018) Melatonin improves the fertilization capacity and developmental ability of bovine oocytes by regulating cytoplasmic maturation events. J. Pineal Res. 64: e12445. doi: 10.1111/jpi.12445.
145. Yang M, Tao J, Chai M, et al (2017) Melatonin improves the quality of inferior bovine oocytes and promoted their subsequent ivf embryo development: mechanisms and results. Molecules 22: 2059 . doi: 10.3390/molecules22122059.
146. Mendivil-Perez M, Soto-Mercado V, Guerra-Librero A, et al (2017) Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. J. Pineal Res. 63: e12415. doi: 10.1111/jpi.12415.
147. Krakowski G, Cieciura L (1985) Ultrastructural studies on the pinealocyte mitochondria during the daytime and at night. J. Pineal Res. 2: 315–324.
148. Kato H, Tanaka G, Masuda S, et al (2015) Melatonin promotes adipogenesis and mitochondrial biogenesis in 3T3-L1 preadipocytes. J. Pineal Res. 59: 267–275. doi: 10.1111/jpi.12259.
149. Figueiro-Silva J, Antequera D, Pascual C, et al (2018) The melatonin analog iqm316 may induce adult hippocampal neurogenesis and preserve recognition memories in mice. Cell Transplant. 27: 423–437. doi: 10.1177/0963689717721217.
150. Corbet C, Feron O (2017) Cancer cell metabolism and mitochondria: Nutrient plasticity for TCA cycle fueling. Biochim. Biophys. Acta Rev. Cancer 1868 (1): 7-15. doi: 10.1016/j.bbcan.2017.01.002.
151. Pei H, Du J, Song X, et al (2016) Melatonin prevents adverse myocardial infarction remodeling via Notch1/Mfn2 pathway. Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2016.06.015.
152. Xu S, Pi H, Zhang L, et al (2016) Melatonin prevents abnormal mitochondrial dynamics resulting from the neurotoxicity of cadmium by blocking calcium-dependent translocation of Drp1 to the mitochondria. J. Pineal Res. 60: 291–302. doi: 10.1111/jpi.12310.
153. Kashani IR, Rajabi Z, Akbari M, et al (2014) Protective effects of melatonin against mitochondrial injury in a mouse model of multiple sclerosis. Exp. Brain. Res. 232: 2835–2846. doi: 10.1007/s00221-014-3946-5.
154. Govender J, Loos B, Marais E, Engelbrecht A-M (2018) Melatonin improves cardiac and mitochondrial function during doxorubicin-induced cardiotoxicity: A possible role for peroxisome proliferator-activated receptor gamma coactivator 1-alpha and sirtuin activity? Toxicol. Appl. Pharmacol. 358: 86–101. doi: 10.1016/j.taap.2018.06.031
155. Scarpelli PH, Tessarin-Almeida G, Viçoso KL, et al (2018) Melatonin activate FIS1, DYN1 and DYN2 Plasmodium falciparum related-genes for mitochondria fission: mitoemerald-GFP as a tool to visualize mitochondria structure. J. Pineal Res e12484 . doi: 10.1111/jpi.12484.
156. Ding M, Feng N, Tang D, et al (2018) Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1α pathway. J. Pineal Res. 65: e12491. doi: 10.1111/jpi.12491.
157. Prieto-Domínguez N, Méndez-Blanco C, Carbajo-Pescador S, et al (2017) Melatonin enhances sorafenib actions in human hepatocarcinoma cells by inhibiting mTORC1/p70S6K/HIF-1α and hypoxia-mediated mitophagy. Oncotarget 8: 91402–91414. doi: 10.18632/oncotarget.20592.
158. Ma S, Chen J, Feng J, et al (2018) Melatonin ameliorates the progression of atherosclerosis via mitophagy activation and NLRP3 inflammasome inhibition. Oxid. Med. Cell Longev. 2018: 1–12. doi: 10.1155/2018/9286458.
159. Sun B, Yang S, Li S, Hang C (2018) Melatonin upregulates nuclear factor erythroid-2 related factor 2 (Nrf2) and mediates mitophagy to protect against early brain injury after subarachnoid hemorrhage. Med. Sci. Monit. 24: 6422–6430. doi: 10.12659/MSM.909221.
160. Boga JA, Caballero B, Potes Y, et al (2018) Therapeutic potential of melatonin related to its role as an autophagy regulator: A review. J. Pineal Res. 66: e12534. doi: 10.1111/jpi.12534.
161. Mor M, Plazzi P V, Spadoni G, Tarzia G (1999) Melatonin. Curr. Med. Chem. 6: 501–518.
162. Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, et al (2012) Melatonin membrane receptors in peripheral tissues: Distribution and functions. Mol. Cell. Endocrinol. 351: 152–166 . doi: 10.1016/j.mce.2012.01.004.
163. Yu L, Liang H, Lu Z, et al (2015) Membrane receptor-dependent Notch1/Hes1 activation by melatonin protects against myocardial ischemia-reperfusion injury: in vivo and in vitro studies. J. Pineal Res. 59: 420–433. doi: 10.1111/jpi.12272.
164. Yu L, Fan C, Li Z, et al (2017) Melatonin rescues cardiac thioredoxin system during ischemia-reperfusion injury in acute hyperglycemic state by restoring Notch1/Hes1/Akt signaling in a membrane receptor-dependent manner. J. Pineal Res. 62: e12375 . doi: 10.1111/jpi.12375.
165. Yu L, Di W, Dong X, et al (2018) Melatonin protects diabetic heart against ischemia-reperfusion injury, role of membrane receptor-dependent cGMP-PKG activation. Biochim. Biophys. Acta Mol. Basis. Dis. 1864: 563–578. doi: 10.1016/j.bbadis.2017.11.023.
166. Ahluwalia A, Brzozowska IM, Hoa N, et al (2018) Melatonin signaling in mitochondria extends beyond neurons and neuroprotection: Implications for angiogenesis and cardio/gastroprotection. Proc. Natl. Acad. Sci. 115: E1942–E1943. doi: 10.1073/pnas.1722131115.
167. Zheng C, Dalla Man C, Cobelli C, et al (2015) A common variant in the MTNR1b gene is associated with increased risk of impaired fasting glucose (IFG) in youth with obesity. Obesity 23: n/a-n/a. doi: 10.1002/oby.21030.
168. Goni L, Cuervo M, Milagro FI, Martínez JA. gene-gene interplay and gene-diet interactions involving the MTNR1B rs10830963 variant with body weight loss. J. Nutrigenet. Nutrigenomics 7: 232–242. doi: 10.1159/000380951.
169. Karamitri A, Plouffe B, Bonnefond A, et al (2018) Type 2 diabetes–associated variants of the MT2 melatonin receptor affect distinct modes of signaling. Sci. Signal 11: eaan6622. doi: 10.1126/scisignal.aan6622.
170. Hukic DS, Lavebratt C, Frisén L, et al (2016) Melatonin receptor 1B gene associated with hyperglycemia in bipolar disorder. Psychiatr. Genet. 26: 136–139. doi: 10.1097/YPG.0000000000000131.
Published
2019-02-28
How to Cite
[1]
Tan, D.-X. and Reiter, R.J. 2019. Mitochondria: the birth place, battle ground and the site of melatonin metabolism in cells. Melatonin Research. 2, 1 (Feb. 2019), 44-66. DOI:https://doi.org/https://doi.org/10.32794/mr11250011.