Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

The CBS/CSE system: a potential therapeutic target in NAFLD?

Publication: Canadian Journal of Physiology and Pharmacology
17 November 2014

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a broad spectrum liver disorder diagnosed in patients without a history of alcohol abuse. NAFLD is growing at alarming rates worldwide. Its pathogenesis is complex and incompletely understood. The cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) system regulates homocysteine and cysteine metabolism and contributes to endogenous hydrogen sulfide (H2S) biosynthesis. This review summarizes our current understanding of the hepatic CBS/CSE system, and for the first time, positions this system as a potential therapeutic target in NAFLD. As will be discussed, the CBS/CSE system is highly expressed and active in the liver. Its dysregulation, presenting as alterations in circulating homocysteine and (or) H2S levels, has been reported in NAFLD patients and in NAFLD-associated co-morbidities such as obesity and type 2 diabetes. Intricate links between the CBS/CSE system and a number of metabolic and stress related molecular mediators have also emerged. Various dysfunctions in the hepatic CBS/CSE system have been reported in animal models representative of each NAFLD spectrum. It is anticipated that a newfound appreciation for the hepatic CBS/CSE system will emerge that will improve our understanding of NAFLD pathogenesis, and give rise to new prospective targets for management of this disorder.

Résumé

La stéatose hépatique non alcoolique (NAFLD, Non-alcoholic fatty liver disease) comprend un large spectre de maladies hépatiques diagnostiquées chez des patients sans historique d’abus d’alcool. La NAFLD croit à un rythme alarmant à travers le monde. Sa pathogenèse est complexe et incomplètement comprise. Le système constitué de la cystathionine-β-synthase (CBS) et la cystathionine-γ-lyase régule le métabolisme de l’homocystéine et de la cystéine et contribue à la biosynthèse de sulfure d’hydrogène (H2S) endogène. Cet article de revue résume ce qui est actuellement compris du système CBS/CSE hépatique et, pour la première fois, situe ce système comme cible thérapeutique potentielle de la NAFLD. Comme il sera discuté, le système CBS/CSE est exprimé fortement dans le foie où il est très actif. Sa dérégulation, qui se présente sous forme de modifications des niveaux circulants d’homocystéine et/ou de H2S, a été rapportée chez des patients souffrant de NAFLD et dans des comorbidités associées à la NAFLD comme l’obésité et le diabète de type 2. Des liens complexes entre le système CBS/CSE et un certain nombre de médiateurs moléculaires du métabolisme et du stress ont aussi émergé. Différentes dysfonctions du système CBS/CSE ont été rapportées dans des modèles animaux représentatifs de tout le spectre de NAFLD. On anticipe qu’une nouvelle appréciation du système CBS/CSE hépatique qui améliorera notre compréhension de la pathogenèse de la NAFLD émergera, et qu’elle donnera lieu à l’identification de nouvelles cibles prospectives pour contrôler cette maladie. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Adams L.A. and Angulo P. 2005. Recent concepts in non-alcoholic fatty liver disease. Diabet. Med. 22(9): 1129–1133.
Anstee Q.M., Targher G., and Day C.P. 2013. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 10(6): 330–344.
Armstrong M.J., Adams L.A., Canbay A., and Syn W.K. 2014. Extrahepatic complications of nonalcoholic fatty liver disease. Hepatology, 59(3): 1174–1197.
Beltowski J. and Jamroz-Wisniewska A. 2012. Modulation of H(2)S metabolism by statins: a new aspect of cardiovascular pharmacology. Antioxid. Redox Signal. 17(1): 81–94.
Berson A., De Beco V., Letteron P., Robin M.A., Moreau C., El Kahwaji J., et al. 1998. Steatohepatitis-inducing drugs cause mitochondrial dysfunction and lipid peroxidation in rat hepatocytes. Gastroenterology, 114(4): 764–774.
Bosy-Westphal A., Petersen S., Hinrichsen H., Czech N., and M J.M. 2001. Increased plasma homocysteine in liver cirrhosis. Hepatol. Res. 20(1): 28–38.
Braunersreuther V., Viviani G.L., Mach F., and Montecucco F. 2012. Role of cytokines and chemokines in non-alcoholic fatty liver disease. World J. Gastroenterol. 18(8): 727–735.
Bravo E., Palleschi S., Aspichueta P., Buque X., Rossi B., Cano A., et al. 2011. High fat diet-induced non alcoholic fatty liver disease in rats is associated with hyperhomocysteinemia caused by down regulation of the transsulphuration pathway. Lipids Health Dis. 10: 60.
Brunt E.M. and Tiniakos D.G. 2010. Histopathology of nonalcoholic fatty liver disease. World J. Gastroenterol. 16(42): 5286–5296.
Cai D., Yuan M., Frantz D.F., Melendez P.A., Hansen L., Lee J., et al. 2005. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat. Med. 11(2): 183–190.
Caliendo G., Cirino G., Santagada V., and Wallace J.L. 2010. Synthesis and biological effects of hydrogen sulfide (H2S): development of H2S-releasing drugs as pharmaceuticals. J. Med. Chem. 53(17): 6275–6286.
Carballal S., Trujillo M., Cuevasanta E., Bartesaghi S., Moller M.N., Folkes L.K., et al. 2011. Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest. Free Radic. Biol. Med. 50(1): 196–205.
Chalasani N., Younossi Z., Lavine J.E., Diehl A.M., Brunt E.M., Cusi K., et al. 2012. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology, 55(6): 2005–2023.
Chen Y., Chen Y., Zhao L., Chen Y., Mei M., Li Q., et al. 2012. Inflammatory stress exacerbates hepatic cholesterol accumulation via disrupting cellular cholesterol export. J. Gastroenterol. Hepatol. 27(5): 974–984.
Cohen J.C., Horton J.D., and Hobbs H.H. 2011. Human fatty liver disease: old questions and new insights. Science, 332(6037): 1519–1523.
Collin M., Anuar F.B., Murch O., Bhatia M., Moore P.K., and Thiemermann C. 2005. Inhibition of endogenous hydrogen sulfide formation reduces the organ injury caused by endotoxemia. Br. J. Pharmacol. 146(4): 498–505.
Crespo J., Cayon A., Fernandez-Gil P., Hernandez-Guerra M., Mayorga M., Dominguez-Diez A., et al. 2001. Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology, 34(6): 1158–1163.
Dal-Secco D., Cunha T.M., Freitas A., Alves-Filho J.C., Souto F.O., Fukada S.Y., et al. 2008. Hydrogen sulfide augments neutrophil migration through enhancement of adhesion molecule expression and prevention of CXCR2 internalization: role of ATP-sensitive potassium channels. J. Immunol. 181(6): 4287–4298.
Dam V.P., Scott J.L., Ross A., and Kinobe R.T. 2012. Inhibition of cystathionine gamma-lyase and the biosynthesis of endogenous hydrogen sulphide ameliorates gentamicin-induced nephrotoxicity. Eur. J. Pharmacol. 685(1–3): 165–173.
Day C.P. and James O.F. 1998a. Hepatic steatosis: innocent bystander or guilty party? Hepatology, 27(6): 1463–1466.
Day C.P. and James O.F. 1998b. Steatohepatitis: a tale of two “hits”? Gastroenterology, 114(4): 842–845.
Day C.P. and Saksena S. 2002. Non-alcoholic steatohepatitis: definitions and pathogenesis. J. Gastroenterol. Hepatol. 17(Suppl. 3): S377–S384.
Della Coletta Francescato H., Cunha F.Q., Costa R.S., Barbosa Junior F., Boim M.A., Arnoni C.P., et al. 2011. Inhibition of hydrogen sulphide formation reduces cisplatin-induced renal damage. Nephrol. Dial. Transplant. 26(2): 479–488.
Dickhout J.G., Carlisle R.E., Jerome D.E., Mohammed-Ali Z., Jiang H., Yang G., et al. 2012. Integrated stress response modulates cellular redox state via induction of cystathionine gamma-lyase: cross-talk between integrated stress response and thiol metabolism. J. Biol. Chem. 287(10): 7603–7614.
Distrutti E., Mencarelli A., Santucci L., Renga B., Orlandi S., Donini A., et al. 2008. The methionine connection: homocysteine and hydrogen sulfide exert opposite effects on hepatic microcirculation in rats. Hepatology, 47(2): 659–667.
Dominy J.E. and Stipanuk M.H. 2004. New roles for cysteine and transsulfuration enzymes: production of H2S, a neuromodulator and smooth muscle relaxant. Nutr. Rev. 62(9): 348–353.
Donnelly K.L., Smith C.I., Schwarzenberg S.J., Jessurun J., Boldt M.D., and Parks E.J. 2005. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115(5): 1343–1351.
Fan H.N., Wang H.J., Ren L., Ren B., Dan C.R., Li Y.F., et al. 2013a. Decreased expression of p38 MAPK mediates protective effects of hydrogen sulfide on hepatic fibrosis. Eur. Rev. Med. Pharmacol. Sci. 17(5): 644–652.
Fan H.N., Wang H.J., Yang-Dan C.R., Ren L., Wang C., Li Y.F., et al. 2013b. Protective effects of hydrogen sulfide on oxidative stress and fibrosis in hepatic stellate cells. Mol. Med. Rep. 7(1): 247–253.
Finkelstein J.D. 1990. Methionine metabolism in mammals. J. Nutr. Biochem. 1(5): 228–237.
Finkelstein J.D. 1998. The metabolism of homocysteine: pathways and regulation. Eur. J. Pediatr. 157(Suppl. 2): S40–S44.
Finkelstein J.D. 2007. Metabolic regulatory properties of S-adenosylmethionine and S-adenosylhomocysteine. Clin. Chem. Lab. Med. 45(12): 1694–1699.
Finkelstein J.D., Kyle W.E., Martin J.L., and Pick A.M. 1975. Activation of cystathionine synthase by adenosylmethionine and adenosylethionine. Biochem. Biophys. Res. Commun. 66(1): 81–87.
Fiorucci S., Antonelli E., Mencarelli A., Orlandi S., Renga B., Rizzo G., et al. 2005. The third gas: H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. Hepatology, 42(3): 539–548.
Fiorucci S., Distrutti E., Cirino G., and Wallace J.L. 2006. The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology, 131(1): 259–271.
Fraser A., Longnecker M.P., and Lawlor D.A. 2007. Prevalence of elevated alanine aminotransferase among US adolescents and associated factors: NHANES 1999-2004. Gastroenterology, 133(6): 1814–1820.
Furne J., Saeed A., and Levitt M.D. 2008. Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295(5): R1479–R1485.
Garcia-Tevijano E.R., Berasain C., Rodriguez J.A., Corrales F.J., Arias R., Martin-Duce A., et al. 2001. Hyperhomocysteinemia in liver cirrhosis: mechanisms and role in vascular and hepatic fibrosis. Hypertension, 38(5): 1217–1221.
Gulsen M., Yesilova Z., Bagci S., Uygun A., Ozcan A., Ercin C.N., et al. 2005. Elevated plasma homocysteine concentrations as a predictor of steatohepatitis in patients with non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 20(9): 1448–1455.
Hardwick R.N., Fisher C.D., Canet M.J., Lake A.D., and Cherrington N.J. 2010. Diversity in antioxidant response enzymes in progressive stages of human nonalcoholic fatty liver disease. Drug Metab. Dispos. 38(12): 2293–2301.
Hirsch S., Poniachick J., Avendano M., Csendes A., Burdiles P., Smok G., et al. 2005. Serum folate and homocysteine levels in obese females with non-alcoholic fatty liver. Nutrition, 21(2): 137–141.
Hourihan J.M., Kenna J.G., and Hayes J.D. 2013. The gasotransmitter hydrogen sulfide induces Nrf2-target genes by inactivating the KEAP1 ubiquitin ligase substrate adaptor through formation of a disulfide bond between cys-226 and cys-613. Antioxid. Redox Signal. 19(5): 465–481.
Hu L.F., Wong P.T., Moore P.K., and Bian J.S. 2007. Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia. J. Neurochem. 100(4): 1121–1128.
Huang T., Wahlqvist M.L., and Li D. 2012. Effect of n-3 polyunsaturated fatty acid on gene expression of the critical enzymes involved in homocysteine metabolism. Nutr. J. 11: 6.
Huang T., Hu X., Khan N., Yang J., and Li D. 2013. Effect of polyunsaturated fatty acids on homocysteine metabolism through regulating the gene expressions involved in methionine metabolism. ScientificWorldJournal, 2013: 931626.
Hui J.M., Hodge A., Farrell G.C., Kench J.G., Kriketos A., and George J. 2004. Beyond insulin resistance in NASH: TNF-alpha or adiponectin? Hepatology, 40(1): 46–54.
Hwang S.Y., Sarna L.K., Siow Y.L., and O K. 2013. High-fat diet stimulates hepatic cystathionine beta-synthase and cystathionine gamma-lyase expression. Can. J. Physiol. Pharmacol. 91(11): 913–919.
Jacobs R.L., House J.D., Brosnan M.E., and Brosnan J.T. 1998. Effects of streptozotocin-induced diabetes and of insulin treatment on homocysteine metabolism in the rat. Diabetes, 47(12): 1967–1970.
Jain S.K., Bull R., Rains J.L., Bass P.F., Levine S.N., Reddy S., et al. 2010. Low levels of hydrogen sulfide in the blood of diabetes patients and streptozotocin-treated rats causes vascular inflammation? Antioxid. Redox Signal. 12(11): 1333–1337.
Jensen K.K., Geoghagen N.S., Jin L., Holt T.G., Luo Q., Malkowitz L., et al. 2011. Pharmacological activation and genetic manipulation of cystathionine beta-synthase alter circulating levels of homocysteine and hydrogen sulfide in mice. Eur. J. Pharmacol. 650(1): 86–93.
Ju Y., Zhang W., Pei Y., and Yang G. 2013. H(2)S signaling in redox regulation of cellular functions. Can. J. Physiol. Pharmacol. 91(1): 8–14.
Kabil O. and Banerjee R. 2010. Redox biochemistry of hydrogen sulfide. J. Biol. Chem. 285(29): 21903–21907.
Kabil O., Motl N., and Banerjee R. 2014. HS and its role in redox signaling. Biochim. Biophys. Acta, 1844(8): 1355–1366.
Kaneko Y., Kimura T., Taniguchi S., Souma M., Kojima Y., Kimura Y., et al. 2009. Glucose-induced production of hydrogen sulfide may protect the pancreatic beta-cells from apoptotic cell death by high glucose. FEBS Lett. 583(2): 377–382.
Kang K., Zhao M., Jiang H., Tan G., Pan S., and Sun X. 2009. Role of hydrogen sulfide in hepatic ischemia–reperfusion-induced injury in rats. Liver Transpl. 15(10): 1306–1314.
Kimura Y. and Kimura H. 2004. Hydrogen sulfide protects neurons from oxidative stress. FASEB J. 18(10): 1165–1167.
Kimura Y., Goto Y., and Kimura H. 2010. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid. Redox Signal. 12(1): 1–13.
Kmiec Z. 2001. Cooperation of liver cells in health and disease. Adv. Anat. Embryol. Cell Biol. 161: III–XIII, 1-151.
Koca S.S., Bahcecioglu I.H., Poyrazoglu O.K., Ozercan I.H., Sahin K., and Ustundag B. 2008. The treatment with antibody of TNF-alpha reduces the inflammation, necrosis and fibrosis in the non-alcoholic steatohepatitis induced by methionine- and choline-deficient diet. Inflammation, 31(2): 91–98.
Larter C.Z. and Yeh M.M. 2008. Animal models of NASH: getting both pathology and metabolic context right. J. Gastroenterol. Hepatol. 23(11): 1635–1648.
Lee Z.W., Low Y.L., Huang S., Wang T., and Deng L.W. 2014. The cystathionine gamma-lyase/hydrogen sulfide system maintains cellular glutathione status. Biochem. J. 460(3): 425–435.
Li L., Bhatia M., Zhu Y.Z., Zhu Y.C., Ramnath R.D., Wang Z.J., et al. 2005. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J. 19(9): 1196–1198.
Li L., Fox B., Keeble J., Salto-Tellez M., Winyard P.G., Wood M.E., et al. 2013. The complex effects of the slow-releasing hydrogen sulfide donor GYY4137 in a model of acute joint inflammation and in human cartilage cells. J. Cell. Mol. Med. 17(3): 365–376.
Lin H.Z., Yang S.Q., Chuckaree C., Kuhajda F., Ronnet G., and Diehl A.M. 2000. Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat. Med. 6(9): 998–1003.
Loguercio C., De Simone T., D’Auria M.V., de Sio I., Federico A., Tuccillo C., et al. 2004. Non-alcoholic fatty liver disease: a multicentre clinical study by the Italian Association for the Study of the Liver. Dig. Liver Dis. 36(6): 398–405.
Lonn E., Yusuf S., Arnold M.J., Sheridan P., Pogue J., Micks M., et al. 2006. Homocysteine lowering with folic acid and B vitamins in vascular disease. N. Engl. J. Med. 354(15): 1567–1577.
Loomba R. and Sanyal A.J. 2013. The global NAFLD epidemic. Nat. Rev. Gastroenterol. Hepatol. 10(11): 686–690.
Loscalzo J. 2006. Homocysteine trials: clear outcomes for complex reasons. N. Engl. J. Med. 354(15): 1629–1632.
Lu S.C. 2009. Regulation of glutathione synthesis. Mol. Aspects Med. 30(1–2): 42–59.
Luo Z.L., Tang L.J., Wang T., Dai R.W., Ren J.D., Cheng L., et al. 2014. Effects of treatment with hydrogen sulfide on methionine-choline deficient diet-induced non-alcoholic steatohepatitis in rats. J. Gastroenterol. Hepatol. 29(1): 215–222.
Ma K.L., Ruan X.Z., Powis S.H., Chen Y., Moorhead J.F., and Varghese Z. 2008. Inflammatory stress exacerbates lipid accumulation in hepatic cells and fatty livers of apolipoprotein E knockout mice. Hepatology, 48(3): 770–781.
Maclean K.N., Greiner L.S., Evans J.R., Sood S.K., Lhotak S., Markham N.E., et al. 2012. Cystathionine protects against endoplasmic reticulum stress-induced lipid accumulation, tissue injury, and apoptotic cell death. J. Biol. Chem. 287(38): 31994–32005.
Mallat A. and Lotersztajn S. 2013. Cellular mechanisms of tissue fibrosis. 5. Novel insights into liver fibrosis. Am. J. Physiol. Cell Physiol. 305(8): C789–C799.
Manco M., Bottazzo G., DeVito R., Marcellini M., Mingrone G., and Nobili V. 2008. Nonalcoholic fatty liver disease in children. J. Am. Coll. Nutr. 27(6): 667–676.
Mani S., Yang G., and Wang R. 2011. A critical life-supporting role for cystathionine gamma-lyase in the absence of dietary cysteine supply. Free Radic. Biol. Med. 50(10): 1280–1287.
Mani S., Li H., Untereiner A., Wu L., Yang G., Austin R.C., et al. 2013. Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation, 127(25): 2523–2534.
Marra F., Gastaldelli A., Svegliati Baroni G., Tell G., and Tiribelli C. 2008. Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol. Med. 14(2): 72–81.
Mas E., Danjoux M., Garcia V., Carpentier S., Segui B., and Levade T. 2009. IL-6 deficiency attenuates murine diet-induced non-alcoholic steatohepatitis. PLoS One, 4(11): e7929.
Matherly S.C. and Puri P. 2012. Mechanisms of simple hepatic steatosis: not so simple after all. Clin. Liver Dis. 16(3): 505–524.
Meier M., Janosik M., Kery V., Kraus J.P., and Burkhard P. 2001. Structure of human cystathionine beta-synthase: a unique pyridoxal 5′-phosphate-dependent heme protein. EMBO J. 20(15): 3910–3916.
Modis K., Wolanska K., and Vozdek R. 2013. Hydrogen sulfide in cell signaling, signal transduction, cellular bioenergetics and physiology in C. elegans. Gen. Physiol. Biophys. 32(1): 1–22.
Mok Y.Y. and Moore P.K. 2008. Hydrogen sulphide is pro-inflammatory in haemorrhagic shock. Inflamm. Res. 57(11): 512–518.
Mosharov E., Cranford M.R., and Banerjee R. 2000. The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry, 39(42): 13005–13011.
Mudd S.H., Finkelstein J.D., Irreverre F., and Laster L. 1965. Transsulfuration in mammals. Microassays and tissue distributions of three enzymes of the pathway. J. Biol. Chem. 240(11): 4382–4392.
Muellner M.K., Schreier S.M., Laggner H., Hermann M., Esterbauer H., Exner M., et al. 2009. Hydrogen sulfide destroys lipid hydroperoxides in oxidized LDL. Biochem. J. 420(2): 277–281.
Mustafa A.K., Gadalla M.M., Sen N., Kim S., Mu W., Gazi S.K., et al. 2009. H2S signals through protein S-sulfhydration. Sci. Signal. 2(96): ra72.
Muzaffar S., Shukla N., Bond M., Newby A.C., Angelini G.D., Sparatore A., et al. 2008. Exogenous hydrogen sulfide inhibits superoxide formation, NOX-1 expression and Rac1 activity in human vascular smooth muscle cells. J. Vasc. Res. 45(6): 521–528.
Nakamura A. and Terauchi Y. 2013. Lessons from mouse models of high-fat diet-induced NAFLD. Int. J. Mol. Sci. 14(11): 21240–21257.
Nishida M., Sawa T., Kitajima N., Ono K., Inoue H., Ihara H., et al. 2012. Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. Nat. Chem. Biol. 8(8): 714–724.
Noll C., Lacraz G., Ehses J., Coulaud J., Bailbe D., Paul J.L., et al. 2011. Early reduction of circulating homocysteine levels in Goto–Kakizaki rat, a spontaneous nonobese model of type 2 diabetes. Biochim. Biophys. Acta, 1812(6): 699–702.
Norris E.J., Culberson C.R., Narasimhan S., and Clemens M.G. 2011. The liver as a central regulator of hydrogen sulfide. Shock, 36(3): 242–250.
Norris E.J., Feilen N., Nguyen N.H., Culberson C.R., Shin M.C., Fish M., et al. 2013a. Hydrogen sulfide modulates sinusoidal constriction and contributes to hepatic microcirculatory dysfunction during endotoxemia. Am. J. Physiol. Gastrointest. Liver Physiol. 304(12): G1070–G1078.
Norris E.J., Larion S., Culberson C.R., and Clemens M.G. 2013b. Hydrogen sulfide differentially affects the hepatic vasculature in response to phenylephrine and endothelin 1 during endotoxemia. Shock, 39(2): 168–175.
Okamoto M., Yamaoka M., Takei M., Ando T., Taniguchi S., Ishii I., et al. 2013. Endogenous hydrogen sulfide protects pancreatic beta-cells from a high-fat diet-induced glucotoxicity and prevents the development of type 2 diabetes. Biochem. Biophys. Res. Commun. 442(3–4): 227–233.
Pais R., Charlotte F., Fedchuk L., Bedossa P., Lebray P., Poynard T., et al. 2013. A systematic review of follow-up biopsies reveals disease progression in patients with non-alcoholic fatty liver. J. Hepatol. 59(3): 550–556.
Peh M.T., Anwar A.B., Ng D.S., Atan M.S., Kumar S.D., and Moore P.K. 2014. Effect of feeding a high fat diet on hydrogen sulfide (HS) metabolism in the mouse. Nitric Oxide, 41: 138–146.
Polyzos S.A., Kountouras J., Patsiaoura K., Katsiki E., Zafeiriadou E., Deretzi G., et al. 2012a. Serum homocysteine levels in patients with nonalcoholic fatty liver disease. Ann. Hepatol. 11(1): 68–76.
Polyzos S.A., Kountouras J., Zavos C., and Deretzi G. 2012b. Nonalcoholic fatty liver disease: multimodal treatment options for a pathogenetically multiple-hit disease. J. Clin. Gastroenterol. 46(4): 272–284.
Ratnam S., Maclean K.N., Jacobs R.L., Brosnan M.E., Kraus J.P., and Brosnan J.T. 2002. Hormonal regulation of cystathionine beta-synthase expression in liver. J. Biol. Chem. 277(45): 42912–42918.
Robert K., Nehme J., Bourdon E., Pivert G., Friguet B., Delcayre C., et al. 2005. Cystathionine beta synthase deficiency promotes oxidative stress, fibrosis, and steatosis in mice liver. Gastroenterology, 128(5): 1405–1415.
Rolo A.P., Teodoro J.S., and Palmeira C.M. 2012. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic. Biol. Med. 52(1): 59–69.
Ruiz A.G., Casafont F., Crespo J., Cayon A., Mayorga M., Estebanez A., et al. 2007. Lipopolysaccharide-binding protein plasma levels and liver TNF-alpha gene expression in obese patients: evidence for the potential role of endotoxin in the pathogenesis of non-alcoholic steatohepatitis. Obes. Surg. 17(10): 1374–1380.
Seki S., Kitada T., Yamada T., Sakaguchi H., Nakatani K., and Wakasa K. 2002. In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases. J. Hepatol. 37(1): 56–62.
Sen N., Paul B.D., Gadalla M.M., Mustafa A.K., Sen T., Xu R., et al. 2012. Hydrogen sulfide-linked sulfhydration of NF-kappaB mediates its antiapoptotic actions. Mol. Cell, 45(1): 13–24.
Sen U., Givvimani S., Abe O.A., Lederer E.D., and Tyagi S.C. 2011. Cystathionine beta-synthase and cystathionine gamma-lyase double gene transfer ameliorate homocysteine-mediated mesangial inflammation through hydrogen sulfide generation. Am. J. Physiol. Cell Physiol. 300(1): C155–C163.
Siebert N., Cantre D., Eipel C., and Vollmar B. 2008. H2S contributes to the hepatic arterial buffer response and mediates vasorelaxation of the hepatic artery via activation of K(ATP) channels. Am. J. Physiol. Gastrointest. Liver Physiol. 295(6): G1266–G1273.
Singh S. and Banerjee R. 2011. PLP-dependent H(2)S biogenesis. Biochim. Biophys. Acta, 1814(11): 1518–1527.
Sivarajah A., Collino M., Yasin M., Benetti E., Gallicchio M., Mazzon E., et al. 2009. Anti-apoptotic and anti-inflammatory effects of hydrogen sulfide in a rat model of regional myocardial I/R. Shock, 31(3): 267–274.
Stead L.M., Brosnan M.E., and Brosnan J.T. 2000. Characterization of homocysteine metabolism in the rat liver. Biochem J. 350(3): 685–692.
Stipanuk M.H. and King K.M. 1982. Characteristics of the enzymatic capacity for cysteine desulfhydration in cat tissues. Comp. Biochem. Physiol. B, 73(3): 595–601.
Stuhlmeier K.M., Broll J., and Iliev B. 2009. NF-kappaB independent activation of a series of proinflammatory genes by hydrogen sulfide. Exp. Biol. Med. (Maywood), 234(11): 1327–1338.
Sturman J.A., Gaull G., and Raiha N.C. 1970. Absence of cystathionase in human fetal liver: is cystine essential? Science, 169(3940): 74–76.
Takahashi Y., Soejima Y., and Fukusato T. 2012. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol. 18(19): 2300–2308.
Tamizhselvi R., Koh Y.H., Sun J., Zhang H., and Bhatia M. 2010. Hydrogen sulfide induces ICAM-1 expression and neutrophil adhesion to caerulein-treated pancreatic acinar cells through NF-kappaB and Src-family kinases pathway. Exp. Cell Res. 316(9): 1625–1636.
Tan G., Pan S., Li J., Dong X., Kang K., Zhao M., et al. 2011. Hydrogen sulfide attenuates carbon tetrachloride-induced hepatotoxicity, liver cirrhosis and portal hypertension in rats. PLoS One, 6(10): e25943.
Taniguchi S., Kang L., Kimura T., and Niki I. 2011. Hydrogen sulphide protects mouse pancreatic beta-cells from cell death induced by oxidative stress, but not by endoplasmic reticulum stress. Br. J. Pharmacol. 162(5): 1171–1178.
Targher G. 2007. Non-alcoholic fatty liver disease as a determinant of cardiovascular disease. Atherosclerosis, 190(1): 18–19; author reply 20-11.
Targher G. and Arcaro G. 2007. Non-alcoholic fatty liver disease and increased risk of cardiovascular disease. Atherosclerosis, 191(2): 235–240.
Targher G., Day C.P., and Bonora E. 2010. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N. Engl. J. Med. 363(14): 1341–1350.
Thimgan M.S. and Yee H.F. Jr 1999. Quantitation of rat hepatic stellate cell contraction: stellate cells’ contribution to sinusoidal resistance. Am. J. Physiol. 277(1): G137–G143.
Tilg H. and Moschen A.R. 2010. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology, 52(5): 1836–1846.
Tyagi N., Moshal K.S., Sen U., Vacek T.P., Kumar M., Hughes W.M. Jr., et al. 2009. H2S protects against methionine-induced oxidative stress in brain endothelial cells. Antioxid. Redox Signal. 11(1): 25–33.
Vacek T.P., Gillespie W., Tyagi N., Vacek J.C., and Tyagi S.C. 2010. Hydrogen sulfide protects against vascular remodeling from endothelial damage. Amino Acids, 39(5): 1161–1169.
Vitvitsky V., Mosharov E., Tritt M., Ataullakhanov F., and Banerjee R. 2003. Redox regulation of homocysteine-dependent glutathione synthesis. Redox Rep. 8(1): 57–63.
Wang R. 2012. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol. Rev. 92(2): 791–896.
Watanabe M., Osada J., Aratani Y., Kluckman K., Reddick R., Malinow M.R., et al. 1995. Mice deficient in cystathionine beta-synthase: animal models for mild and severe homocyst(e)inemia. Proc. Natl. Acad. Sci. U.S.A. 92(5): 1585–1589.
Whiteman M., Cheung N.S., Zhu Y.Z., Chu S.H., Siau J.L., Wong B.S., et al. 2005. Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem. Biophys. Res. Commun. 326(4): 794–798.
Whiteman M., Li L., Kostetski I., Chu S.H., Siau J.L., Bhatia M., et al. 2006. Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem. Biophys. Res. Commun. 343(1): 303–310.
Whiteman M., Gooding K.M., Whatmore J.L., Ball C.I., Mawson D., Skinner K., et al. 2010. Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulphide. Diabetologia, 53(8): 1722–1726.
Wieckowska A., Papouchado B.G., Li Z., Lopez R., Zein N.N., and Feldstein A.E. 2008. Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis. Am. J. Gastroenterol. 103(6): 1372–1379.
Wiest R. and Groszmann R.J. 2002. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology, 35(2): 478–491.
Wijekoon E.P., Hall B., Ratnam S., Brosnan M.E., Zeisel S.H., and Brosnan J.T. 2005. Homocysteine metabolism in ZDF (type 2) diabetic rats. Diabetes, 54(11): 3245–3251.
Wilinski B., Wilinski J., Somogyi E., Piotrowska J., and Opoka W. 2013. Metformin raises hydrogen sulfide tissue concentrations in various mouse organs. Pharmacol. Rep. 65(3): 737–742.
Wojcicka G., Jamroz-Wisniewska A., Atanasova P., Chaldakov G.N., Chylinska-Kula B., and Beltowski J. 2011. Differential effects of statins on endogenous H2S formation in perivascular adipose tissue. Pharmacol. Res. 63(1): 68–76.
Woo C.W., Siow Y.L., Pierce G.N., Choy P.C., Minuk G.Y., Mymin D., et al. 2005. Hyperhomocysteinemia induces hepatic cholesterol biosynthesis and lipid accumulation via activation of transcription factors. Am. J. Physiol. Endocrinol. Metab. 288(5): E1002–E1010.
Woo C.W., Prathapasinghe G.A., Siow Y.L., and O K. 2006. Hyperhomocysteinemia induces liver injury in rat: Protective effect of folic acid supplementation. Biochim. Biophys. Acta, 1762(7): 656–665.
Wu N., Sarna L.K., Siow Y.L., and O K. 2011. Regulation of hepatic cholesterol biosynthesis by berberine during hyperhomocysteinemia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300(3): R635–R643.
Yang G., Wu L., Jiang B., Yang W., Qi J., Cao K., et al. 2008. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science, 322(5901): 587–590.
Yang G., Zhao K., Ju Y., Mani S., Cao Q., Puukila S., et al. 2013. Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid. Redox Signal. 18(15): 1906–1919.
Yki-Jarvinen H. 2005. Fat in the liver and insulin resistance. Ann. Med. 37(5): 347–356.
Yusuf M., Kwong Huat B.T., Hsu A., Whiteman M., Bhatia M., and Moore P.K. 2005. Streptozotocin-induced diabetes in the rat is associated with enhanced tissue hydrogen sulfide biosynthesis. Biochem. Biophys. Res. Commun. 333(4): 1146–1152.
Zhang H., Zhi L., Moore P.K., and Bhatia M. 2006. Role of hydrogen sulfide in cecal ligation and puncture-induced sepsis in the mouse. Am. J. Physiol. Lung Cell Mol. Physiol. 290(6): L1193–L1201.
Zhang L., Yang G., Untereiner A., Ju Y., Wu L., and Wang R. 2013. Hydrogen sulfide impairs glucose utilization and increases gluconeogenesis in hepatocytes. Endocrinology, 154(1): 114–126.

Information & Authors

Information

Published In

cover image Canadian Journal of Physiology and Pharmacology
Canadian Journal of Physiology and Pharmacology
Volume 93Number 1January 2015
Pages: 1 - 11

History

Received: 9 October 2014
Accepted: 7 November 2014
Accepted manuscript online: 17 November 2014
Version of record online: 17 November 2014

Permissions

Request permissions for this article.

Key Words

  1. non-alcoholic fatty liver disease
  2. cystathionine-β-synthase
  3. cystathionine-γ-lyase
  4. hydrogen sulfide
  5. homocysteine

Mots-clés

  1. stéatose hépatique non alcoolique
  2. cystathionine-β-synthase
  3. cystathionine-γ-lyase
  4. sulfure d’hydrogène
  5. homocystéine

Authors

Affiliations

Lindsei K. Sarna
Laboratory of Integrative Biology, St. Boniface Hospital Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada.
Department of Animal Science, University of Manitoba, 201-12 Dafoe Road, Winnipeg, MB R3T 2N2, Canada.
Yaw L. Siow
Department of Physiology, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, R3E 0J9, Canada.
Agriculture and Agri-Food Canada, 269 Main Street, Winnipeg, MB R3C 1B2, Canada.
Innovative Therapy Research Laboratory, St. Boniface Hospital Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada.
Karmin O
Laboratory of Integrative Biology, St. Boniface Hospital Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada.
Department of Animal Science, University of Manitoba, 201-12 Dafoe Road, Winnipeg, MB R3T 2N2, Canada.
Department of Physiology, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, R3E 0J9, Canada.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Gasotransmitters in non-alcoholic fatty liver disease: just the tip of the iceberg
2. A controllable self-localized imaging strategy capable of synchronous in situ tracking of local changes in intracellular bioactive small-molecules
3. Reply to: “Hyperhomocysteinemia predicts liver-related clinical outcomes in the general population”
4. Effects of homocysteine on nonalcoholic fatty liver related disease: A mendelian randomization study
5. Hepatocellular cystathionine γ lyase/hydrogen sulfide attenuates nonalcoholic fatty liver disease by activating farnesoid X receptor
6. Homocysteine Metabolism Pathway Is Involved in the Control of Glucose Homeostasis: A Cystathionine Beta Synthase Deficiency Study in Mouse
7. Methionine cycle in nonalcoholic fatty liver disease and its potential applications
8. Highly Selective Fluorescent Probe Design for Visualizing Hepatic Hydrogen Sulfide in the Pathological Progression of Nonalcoholic Fatty Liver
9. Expanding the Reactive Sulfur Metabolome: Intracellular and Efflux Measurements of Small Oxoacids of Sulfur (SOS) and H2S in Human Primary Vascular Cell Culture
10. Hydrogen sulfide reduces pyroptosis and alleviates ischemia-reperfusion-induced acute kidney injury by inhibiting NLRP3 inflammasome
11. Combined Metabolic Activators Decrease Liver Steatosis by Activating Mitochondrial Metabolism in Hamsters Fed with a High-Fat Diet
12. SREBP-1c impairs ULK1 sulfhydration-mediated autophagic flux to promote hepatic steatosis in high-fat-diet-fed mice
13. The Role of the Transsulfuration Pathway in Non-Alcoholic Fatty Liver Disease
14. Implications of hydrogen sulfide in liver pathophysiology: Mechanistic insights and therapeutic potential
15. Metabolomic-proteomic combination analysis reveals the targets and molecular pathways associated with hydrogen sulfide alleviating NAFLD
16. Combined Metabolic Activators Decrease Liver Steatosis by Activating Mitochondrial Metabolism in a Golden Syrian Hamster Study
17. Engineering a highly selective probe for ratiometric imaging of H 2 S n and revealing its signaling pathway in fatty liver disease
18. Cystathionine-β-synthase: Molecular Regulation and Pharmacological Inhibition
19. Obesity-Induced Non-alcoholic Fatty Liver Disease (NAFLD): Role of Hyperhomocysteinemia
20. Nonalcoholic fatty liver disease and use of folate
21. Biochemical mechanism and biological effects of the inhibition of silent information regulator 1 (SIRT1) by EX-527 (SEN0014196 or selisistat)
22. Fatty acids promote fatty liver disease via the dysregulation of 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway
23. Subchronic methionine load induces oxidative stress and provokes biochemical and histological changes in the rat liver tissue
24. A pharmacological probe identifies cystathionine β-synthase as a new negative regulator for ferroptosis
25. Cystathionine β -Synthase in Physiology and Cancer
26. Cystathionine gamma-lyase/hydrogen sulfide system is essential for adipogenesis and fat mass accumulation in mice
27. High Dose Parenteral Ascorbate Inhibited Pancreatic Cancer Growth and Metastasis: Mechanisms and a Phase I/IIa study
28. Quercetin and derivatives: useful tools in inflammation and pain management
29. Screening of a composite library of clinically used drugs and well-characterized pharmacological compounds for cystathionine β-synthase inhibition identifies benserazide as a drug potentially suitable for repurposing for the experimental therapy of colon cancer
30. Tyrosol Attenuates High Fat Diet‐Induced Hepatic Oxidative Stress: Potential Involvement of Cystathionine β‐Synthase and Cystathionine γ‐Lyase
31. Circulating homocysteine in nonalcoholic fatty liver disease

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Physiology and Pharmacology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media