Skip to main content

Advertisement

Log in

Quercetin induces mitochondrial-derived apoptosis via reactive oxygen species-mediated ERK activation in HL-60 leukemia cells and xenograft

Archives of Toxicology Aims and scope Submit manuscript

Abstract

Quercetin is a plant-derived bioflavonoid that was recently shown to have multiple anticancer activities in various solid tumors. Here, novel molecular mechanisms through which quercetin exerts its anticancer effects in acute myeloid leukemia (AML) cells were investigated. Results from Western blot and flow cytometric assays revealed that quercetin significantly induced caspase-8, caspase-9, and caspase-3 activation, poly ADP-ribose polymerase (PARP) cleavage, and mitochondrial membrane depolarization in HL-60 AML cells. The induction of PARP cleavage by quercetin was also observed in other AML cell lines: THP-1, MV4-11, and U937. Moreover, treatment of HL-60 cells with quercetin induced sustained activation of extracellular signal-regulated kinase (ERK), and inhibition of ERK by an ERK inhibitor significantly abolished quercetin-induced cell apoptosis. MitoSOX red and 2′,7′-dichlorofluorescin fluorescence, respectively, showed that mitochondrial superoxide and intracellular peroxide levels were higher in quercetin-treated HL-60 cells compared with the control group. Moreover, both N-acetylcysteine and the superoxide dismutase mimetic, MnTBAP, reversed quercetin-induced intracellular reactive oxygen species production, ERK activation, and subsequent cell death. The in vivo xenograft mice experiments revealed that quercetin significantly reduced tumor growth through inducing intratumoral oxidative stress while activating the ERK pathway and subsequent cell apoptosis in mice with HL-60 tumor xenografts. In conclusions, our results indicated that quercetin induced cell death of HL-60 cells in vitro and in vivo through induction of intracellular oxidative stress following activation of an ERK-mediated apoptosis pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ashkenazi A, Dixit VM (1999) Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11:255–260

    Article  CAS  PubMed  Google Scholar 

  • Bacus SS, Gudkov AV, Lowe M, Lyass L, Yung Y, Komarov AP, Keyomarsi K, Yarden Y, Seger R (2001) Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene 20:147–155

    Article  CAS  PubMed  Google Scholar 

  • Balmanno K, Cook SJ (2009) Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ 16:368–377

    Article  CAS  PubMed  Google Scholar 

  • Bishayee K, Ghosh S, Mukherjee A, Sadhukhan R, Mondal J, Khuda-Bukhsh AR (2013) Quercetin induces cytochrome-c release and ROS accumulation to promote apoptosis and arrest the cell cycle in G2/M, in cervical carcinoma: signal cascade and drug-DNA interaction. Cell Prolif 46:153–163

    Article  CAS  PubMed  Google Scholar 

  • Cagnol S, Chambard JC (2010) ERK and cell death: mechanisms of ERK-induced cell death—apoptosis, autophagy and senescence. FEBS J 277:2–21

    Article  CAS  PubMed  Google Scholar 

  • Cagnol S, Van Obberghen-Schilling E, Chambard JC (2006) Prolonged activation of ERK1,2 induces FADD-independent caspase 8 activation and cell death. Apoptosis 11:337–346

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Lesnefsky EJ (2006) Depletion of cardiolipin and cytochrome c during ischemia increases hydrogen peroxide production from the electron transport chain. Free Radic Biol Med 40:976–982

    Article  CAS  PubMed  Google Scholar 

  • Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  CAS  PubMed  Google Scholar 

  • Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22:8590–8607

    Article  CAS  PubMed  Google Scholar 

  • De Marchi U, Biasutto L, Garbisa S, Toninello A, Zoratti M (2009) Quercetin can act either as an inhibitor or an inducer of the mitochondrial permeability transition pore: a demonstration of the ambivalent redox character of polyphenols. Biochim Biophys Acta 1787:1425–1432

    Article  PubMed  Google Scholar 

  • Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duo J, Ying GG, Wang GW, Zhang L (2012) Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation. Mol Med Rep 5:1453–1456

    CAS  PubMed  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  • Goldsworthy TL, Conolly RB, Fransson-Steen R (1996) Apoptosis and cancer risk assessment. Mutat Res 365:71–90

    Article  PubMed  Google Scholar 

  • Granado-Serrano AB, Martin MA, Bravo L, Goya L, Ramos S (2006) Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). J Nutr 136:2715–2721

    CAS  PubMed  Google Scholar 

  • Halliwell B (2008) Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys 476:107–112

    Article  CAS  PubMed  Google Scholar 

  • Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure–activity relationships. J Nutr Biochem 13:572–584

    Article  CAS  PubMed  Google Scholar 

  • Hirpara KV, Aggarwal P, Mukherjee AJ, Joshi N, Burman AC (2009) Quercetin and its derivatives: synthesis, pharmacological uses with special emphasis on anti-tumor properties and prodrug with enhanced bio-availability. Anticancer Agents Med Chem 9:138–161

    Article  CAS  PubMed  Google Scholar 

  • Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134:703–707

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Pinto JT, Deng H, Richie JP Jr (2008) Inhibition of caspase-3 activity and activation by protein glutathionylation. Biochem Pharmacol 75:2234–2244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobson MD (1996) Reactive oxygen species and programmed cell death. Trends Biochem Sci 21:83–86

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Song MC, Kwak IH, Park TJ, Lim IK (2003) Constitutive induction of p-Erk1/2 accompanied by reduced activities of protein phosphatases 1 and 2A and MKP3 due to reactive oxygen species during cellular senescence. J Biol Chem 278:37497–37510

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Lee DH, Jeong JH, Guo ZS, Lee YJ (2008) Quercetin augments TRAIL-induced apoptotic death: involvement of the ERK signal transduction pathway. Biochem Pharmacol 75:1946–1958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kong EH, Kim YJ, Cho HJ, Yu SN, Kim KY, Chang JH, Ahn SC (2008) Piplartine induces caspase-mediated apoptosis in PC-3 human prostate cancer cells. Oncol Rep 20:785–792

    CAS  PubMed  Google Scholar 

  • Lapidot T, Walker MD, Kanner J (2002) Antioxidant and prooxidant effects of phenolics on pancreatic beta-cells in vitro. J Agric Food Chem 50:7220–7225

    Article  CAS  PubMed  Google Scholar 

  • Le Gall M, Chambard JC, Breittmayer JP, Grall D, Pouyssegur J, Van Obberghen-Schilling E (2000) The p42/p44 MAP kinase pathway prevents apoptosis induced by anchorage and serum removal. Mol Biol Cell 11:1103–1112

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee WJ, Chen YR, Tseng TH (2011) Quercetin induces FasL-related apoptosis, in part, through promotion of histone H3 acetylation in human leukemia HL-60 cells. Oncol Rep 25:583–591

    CAS  PubMed  Google Scholar 

  • Levinthal DJ, Defranco DB (2005) Reversible oxidation of ERK-directed protein phosphatases drives oxidative toxicity in neurons. J Biol Chem 280:5875–5883

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Xu S (2006) ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life 58:621–631

    Article  CAS  PubMed  Google Scholar 

  • Luchetti F, Betti M, Canonico B, Arcangeletti M, Ferri P, Galli F, Papa S (2009) ERK MAPK activation mediates the antiapoptotic signaling of melatonin in UVB-stressed U937 cells. Free Radic Biol Med 46:339–351

    Article  CAS  PubMed  Google Scholar 

  • Madesh M, Zong WX, Hawkins BJ, Ramasamy S, Venkatachalam T, Mukhopadhyay P, Doonan PJ, Irrinki KM, Rajesh M, Pacher P, Thompson CB (2009) Execution of superoxide-induced cell death by the proapoptotic Bcl-2-related proteins Bid and Bak. Mol Cell Biol 29:3099–3112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15

    Article  CAS  PubMed  Google Scholar 

  • Miura YH, Tomita I, Watanabe T, Hirayama T, Fukui S (1998) Active oxygens generation by flavonoids. Biol Pharm Bull 21:93–96

    Article  CAS  PubMed  Google Scholar 

  • Moos PJ, Fitzpatrick FA (1998) Taxanes propagate apoptosis via two cell populations with distinctive cytological and molecular traits. Cell Growth Differ 9:687–697

    CAS  PubMed  Google Scholar 

  • Nguyen TT, Tran E, Nguyen TH, Do PT, Huynh TH, Huynh H (2004) The role of activated MEK-ERK pathway in quercetin-induced growth inhibition and apoptosis in A549 lung cancer cells. Carcinogenesis 25:647–659

    Article  CAS  PubMed  Google Scholar 

  • Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7:97–110

    Article  CAS  PubMed  Google Scholar 

  • Ramos AM, Aller P (2008) Quercetin decreases intracellular GSH content and potentiates the apoptotic action of the antileukemic drug arsenic trioxide in human leukemia cell lines. Biochem Pharmacol 75:1912–1923

    Article  CAS  PubMed  Google Scholar 

  • Rates SM (2001) Plants as source of drugs. Toxicon 39:603–613

    Article  CAS  PubMed  Google Scholar 

  • Ricci JE, Gottlieb RA, Green DR (2003) Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Biol 160:65–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robaszkiewicz A, Balcerczyk A, Bartosz G (2007) Antioxidative and prooxidative effects of quercetin on A549 cells. Cell Biol Int 31:1245–1250

    Article  CAS  PubMed  Google Scholar 

  • Sastre J, Pallardo FV, Vina J (2000) Mitochondrial oxidative stress plays a key role in aging and apoptosis. IUBMB Life 49:427–435

    Article  CAS  PubMed  Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  CAS  PubMed  Google Scholar 

  • Schonfeld P, Wojtczak L (2007) Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport. Biochim Biophys Acta 1767:1032–1040

    Article  PubMed  Google Scholar 

  • Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J, Huang P (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10:241–252

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Tu YC, Lian TW, Hung JT, Yen JH, Wu MJ (2006) Distinctive antioxidant and antiinflammatory effects of flavonols. J Agric Food Chem 54:9798–9804

    Article  CAS  PubMed  Google Scholar 

  • Weinberg F, Chandel NS (2009) Mitochondrial metabolism and cancer. Ann NY Acad Sci 1177:66–73

    Article  CAS  PubMed  Google Scholar 

  • Wilson DJ, Alessandrini A, Budd RC (1999) MEK1 activation rescues Jurkat T cells from Fas-induced apoptosis. Cell Immunol 194:67–77

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Hileman EO, Plunkett W, Keating MJ, Huang P (2003) Free radical stress in chronic lymphocytic leukemia cells and its role in cellular sensitivity to ROS-generating anticancer agents. Blood 101:4098–4104

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant (No. 101-wf-eva-18) from Wan Fang Hospital, Taipei Medical University.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang-Ming Lee or Ming-Hsien Chien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, WJ., Hsiao, M., Chang, JL. et al. Quercetin induces mitochondrial-derived apoptosis via reactive oxygen species-mediated ERK activation in HL-60 leukemia cells and xenograft. Arch Toxicol 89, 1103–1117 (2015). https://doi.org/10.1007/s00204-014-1300-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1300-0

Keywords

Navigation