Skip to main content

Advertisement

Log in

Caloric restriction reduces edema and prolongs survival in a mouse glioma model

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Regardless of their cell type of origin, all aggressive brain tumors, such as malignant gliomas and metastatic tumors produce brain edema, which is an important cause of patient morbidity and mortality. Caloric restriction (CR) has long been recognized as a natural therapy that improves health, promotes longevity, and significantly reduces both the incidence and growth of many tumor types. The aim of present work was to investigate the effect of CR on edema and survival in the mice implanted with U87 gliomas. We found that CR significantly inhibited the intracerebral tumor growth, attenuated brain edema, and ultimately prolonged survival of mice with U87 gliomas. Plasma corticosterone level was found higher and serum VEGF and IGF-1 levels were found lower in CR, when compared to AL group. CR upregulated tight junction proteins including claudin-1, claudin-5 and ZO-1, downregulated VEGF and VEGFR2, enhanced α-SMA expression, and reduced AQP1 expression in U87 gliomas. In addition, CR suppressed inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) formation in U87 gliomas. In conclusion, CR attenuated edema in U87 orthotopic mouse glioma model associated with elevation of corticosterone, suppression of VEGF/VEGFR2, improvement of tight junctions, and suppression of iNOS expression and NO formation. Our results suggested that CR might be an effective therapy for recurrent malignant brain cancers through alleviating associated edema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stupp R, Hegi ME, Mason WP, Van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups, National Cancer Institute of Canada Clinical Trials Group (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  PubMed  CAS  Google Scholar 

  2. Papadopoulos MC, Saadoun S, Davies DC, Bell BA (2001) Emerging molecular mechanisms of brain tumour oedema. Br J Neurosurg 15:101–108

    Article  PubMed  CAS  Google Scholar 

  3. Marshall LF, King J, Langfitt TW (1977) The complications of high-dose corticosteroid therapy in neurosurgical patients: a prospective study. Ann Neurol 1:201–203

    Article  PubMed  CAS  Google Scholar 

  4. Weissman DE, Dufer D, Vogel V, Abeloff MD (1987) Corticosteroid toxicity in neuro-oncology patients. J Neurooncol 5:125–128

    Article  PubMed  CAS  Google Scholar 

  5. Tannenbaum A (1942) The genesis and growth of tumors. II. Effects of caloric restriction per se. Cancer Res 2:460–467

    CAS  Google Scholar 

  6. Weindruch R, Walford RL, Fligiel S, Guthrie D (1986) The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr 116:641–654

    PubMed  CAS  Google Scholar 

  7. Kritchevsky D (2002) Caloric restriction and experimental carcinogenesis. Hybrid Hybridom 21:147–151

    Article  Google Scholar 

  8. Seyfried TN, Kiebish MA, Marsh J, Shelton LM, Huysentruyt LC, Mukherjee P (2011) Metabolic management of brain cancer. Biochim Biophys Acta 1807:577–594

    Article  PubMed  CAS  Google Scholar 

  9. Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P (2003) Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer 89:1375–1382

    Article  PubMed  CAS  Google Scholar 

  10. Urits I, Mukherjee P, Meidenbauer J, Seyfried TN (2012) Dietary restriction promotes vessel maturation in a mouse astrocytoma. J Oncol 2012:264039

    Article  PubMed  Google Scholar 

  11. Mukherjee P, Abate LE, Seyfried TN (2004) Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clin Cancer Res 10:5622–5629

    Article  PubMed  CAS  Google Scholar 

  12. Marsh J, Mukherjee P, Seyfried TN (2008) Akt-dependent proapoptotic effects of dietary restriction on late-stage management of a phosphatase and tensin homologue/tuberous sclerosis complex 2-deficient mouse astrocytoma. Clin Cancer Res 14:7751–7762

    Article  PubMed  CAS  Google Scholar 

  13. Shelton LM, Huysentruyt LC, Mukherjee P, Seyfried TN (2010) Calorie restriction as an anti-invasive therapy for malignant brain cancer in the VM mouse. ASN Neuro 2:e00038

    Article  PubMed  Google Scholar 

  14. Ranes MK, El-Abbadi M, Manfredi MG, Mukherjee P, Platt FM, Seyfried TN (2001) N-butyldeoxynojirimycin reduces growth and ganglioside content of experimental mouse brain tumours. Br J Cancer 84:1107–1114

    Article  PubMed  CAS  Google Scholar 

  15. Groothuis DR, Fischer JM, Pasternak JF, Blasberg RG, Vick NA, Bigner DD (1983) Regional measurements of blood-to-tissue transport in experimental RG-2 rat gliomas. Cancer Res 43:3368–3373

    PubMed  CAS  Google Scholar 

  16. Nomura T, Inamura T, Black KL (1994) Intracarotid infusion of bradykinin selectively increases blood-tumor permeability in 9L and C6 brain tumors. Brain Res 659:62–66

    Article  PubMed  CAS  Google Scholar 

  17. Zhou W, Mukherjee P, Kiebish MA, Markis WT, Mantis JG, Seyfried TN (2007) The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutr Metab 4:5

    Article  Google Scholar 

  18. Nebeling LC, Miraldi F, Shurin SB, Lerner E (1995) Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr 14:202–208

    PubMed  CAS  Google Scholar 

  19. Ruggeri BA, Klurfeld DM, Kritchevsky D (1987) Biochemical alterations in 7,12-dimethylbenz[a]anthraceneinduced mammary tumors from rats subjected to caloric restriction. Biochim Biophys Acta 929:239–246

    Article  PubMed  CAS  Google Scholar 

  20. Roslin M, Henriksson R, Bergstrom P, Ungerstedt U, Bergenheim AT (2003) Baseline levels of glucose metabolites, glutamate and glycerol in malignant glioma assessed by stereotactic microdialysis. J Neuro-oncol 61:151–160

    Article  Google Scholar 

  21. Oudard S, Boitier E, Miccoli L, Rousset S, Dutrillaux B, Poupon MF (1997) Gliomas are driven by glycolysis: putative roles of hexokinase, oxidative phosphorylation and mitochondrial ultrastructure. Anticancer Res 17:1903–1911

    PubMed  CAS  Google Scholar 

  22. Galicich JH, French LA, Melby JC (1961) Use of dexamethasone in treatment of cerebral edema associated with brain tumors. J Lancet 81:46–53

    PubMed  CAS  Google Scholar 

  23. Pashko LL, Schwartz AG (1992) Reversal of food restriction-induced inhibition of mouse skin tumor promotion by adrenalectomy. Carcinogenesis 13:1925–1928

    Article  PubMed  CAS  Google Scholar 

  24. Groothuis DR, Lapin GD, Vriesendorp FJ, Mikhael MA, Patlak CS (1991) A method to quantitatively measure transcapillary transport of iodinated compounds in canine brain tumors with computed tomography. J Cereb Blood Flow Metab 11:939–948

    Article  PubMed  CAS  Google Scholar 

  25. Seitz RJ, Wechsler W (1987) Immunohistochemical demonstration of serum proteins in human cerebral gliomas. Acta Neuropathol (Berl) 73:145–152

    Article  CAS  Google Scholar 

  26. Gerstner ER, Duda DG, di Tomaso E, Ryg PA, Loeffler JS, Sorensen AG, Ivy P, Jain RK, Batchelor TT (2009) VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer. Nat Rev Clin Oncol 6:229–236

    Article  PubMed  CAS  Google Scholar 

  27. Kamoun WS, Ley CD, Farrar CT, Duyverman AM, Lahdenranta J, Lacorre DA, Batchelor TT, di Tomaso E, Duda DG, Munn LL, Fukumura D, Sorensen AG, Jain RK (2009) Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J Clin Oncol 27:2542–2552

    Article  PubMed  CAS  Google Scholar 

  28. Lee J, Baird A, Eliceiri BP (2011) In vivo measurement of glioma-induced vascular permeability. Methods Mol Biol 763:417–422

    Article  PubMed  CAS  Google Scholar 

  29. Rascher G, Fischmann A, Kroger S, Duffner F, Grote EH, Wolburg H (2002) Extracellular matrix and the blood-brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin. Acta Neuropathol (Berl) 104:85–91

    Article  CAS  Google Scholar 

  30. Ramalingam A, Wang X, Gabello M, Valenzano MC, Soler AP, Ko A, Morin PJ, Mullin JM (2010) Dietary methionine restriction improves colon tight junction barrier function and alters claudin expression pattern. Am J Physiol Cell Physiol 299:C1028–C1035

    Article  PubMed  CAS  Google Scholar 

  31. Mullin JM, Skrovanek SM, Valenzano MC (2009) Modification of tight junction structure and permeability by nutritional means. Ann N Y Acad Sci 1165:99–112

    Article  PubMed  CAS  Google Scholar 

  32. Verbeek MM, Otte-Höller I, Wesseling P, Ruiter DJ, de Waal RM (1994) Induction of alpha-smooth muscle actin expression in cultured human brain pericytes by transforming growth factor-beta 1. Am J Pathol 144:372–382

    PubMed  CAS  Google Scholar 

  33. De Bock K, Cauwenberghs S, Carmeliet P (2011) Vessel abnormalization: another hallmark of cancer? Molecular mechanisms and therapeutic implications. Curr Opin Genet Dev 21:73–79

    Article  PubMed  Google Scholar 

  34. Yin D, Wang X, Konda BM, Ong JM, Hu J, Sacapano MR, Ko MK, Espinoza AJ, Irvin DK, Shu Y, Black KL (2008) Increase in brain tumor permeability in glioma-bearing rats with nitric oxide donors. Clin Cancer Res 14:4002–4009

    Article  PubMed  CAS  Google Scholar 

  35. Kostourou V, Cartwright JE, Johnstone AP, Boult JK, Cullis ER, Whitley G, Robinson SP (2011) The role of tumour-derived iNOS in tumour progression and angiogenesis. Br J Cancer 104:83–90

    Article  PubMed  CAS  Google Scholar 

  36. Yamaguchi S, Bell HS, Shinoda J, Holmes MC, Wharton SB, Whittle IR (2002) Glioma tumourgenicity is decreased by iNOS knockout: experimental studies using the C6 striatal implantation glioma model. Br J Neurosurg 16:567–572

    PubMed  CAS  Google Scholar 

  37. Zanetti M, Gortan Cappellari G, Burekovic I, Barazzoni R, Stebel M, Guarnieri G (2010) Caloric restriction improves endothelial dysfunction during vascular aging: effects on nitric oxide synthase isoforms and oxidative stress in rat aorta. Exp Gerontol 45:848–855

    Article  PubMed  CAS  Google Scholar 

  38. Venero JL, Vizuete ML, Machado A, Cano J (2001) Aquaporins in the central nervous system. Prog Neurobiol 63:321–336

    Article  PubMed  CAS  Google Scholar 

  39. Agre P, Kozono D (2003) Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett 555:72–78

    Article  PubMed  CAS  Google Scholar 

  40. Papadopoulos MC, Krishna S, Verkman AS (2002) Aquaporin water channels and brain edema. Mt Sinai J Med 69:242–248

    PubMed  Google Scholar 

  41. Saadoun S, Papadopoulos MC, Davies DC, Bell BA, Krishna S (2002) Increased aquaporin 1 water channel expression in human brain tumours. Br J Cancer 87:621–623

    Article  PubMed  CAS  Google Scholar 

  42. Saadoun S, Papadopoulos MC, Davies DC, Krishna S, Bell BA (2002) Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry 72:262–265

    Article  PubMed  CAS  Google Scholar 

  43. Hayashi Y, Edwards NA, Proescholdt MA, Oldfield EH, Merrill MJ (2007) Regulation and function of aquaporin-1 in glioma cells. Neoplasia 9:777–787

    Article  PubMed  CAS  Google Scholar 

  44. Kalaany NY, Sabatini DM (2009) Tumours with PI3K activation are resistant to dietary restriction. Nature 458:725–731

    Article  PubMed  CAS  Google Scholar 

  45. Chaparro RJ, Konigshofer Y, Beilhack GF, Shizuru JA, McDevitt HO, Chien YH (2006) Nonobese diabetic mice express aspects of both type 1 and type 2 diabetes. Proc Natl Acad Sci USA 103:12475–12480

    Article  PubMed  CAS  Google Scholar 

Download references

Ethical standards

The experiments comply with the current laws of China.

Conflict of interest

The authors declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Rong Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 144 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, YS., Wang, FR. Caloric restriction reduces edema and prolongs survival in a mouse glioma model. J Neurooncol 114, 25–32 (2013). https://doi.org/10.1007/s11060-013-1154-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-013-1154-y

Keywords

Navigation