Skip to main content
Log in

Bioinformatic Profiling Identifies a Glucose-Related Risk Signature for the Malignancy of Glioma and the Survival of Patients

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the glucose metabolic status and its prognostic value in glioma. The Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), and GSE16011 datasets were used to develop the glucose-related signature. A cohort of 305 glioma samples with whole genome microarray expression data from the Chinese Glioma Genome Atlas database was included for discovery. TCGA and GSE16011 datasets were used for validation. Gene Set Enrichment Analysis (GSEA) and Cytoscape were used to explore the bioinformatic implication. GSEA revealed the biological process associated with the glucose-related signature. Cytoscape visualized the correlation analysis among the genes. We also collected the blood glucose information of patients with gliomas to analyze the association with tumor malignancy and patients’ survival. In this study, we identified that glucose-related gene sets could distinguish the clinical and molecular features of gliomas, involved in the malignancy of gliomas. And then, we developed a glucose-related prognostic signature for patients with glioblastoma in the CGGA dataset, validated in other additional public datasets. GSEA illustrated that tumor with higher risk score of glucose-related signature could correlate with cell cycle phase. In addition, blood glucose concentration was associated with the malignancy of glioma and the survival of patients. These results might provide new view for the research of glioma malignancy and individual treatment. Our research provided important resources for future dissection of glucose metabolic role in glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. doi:10.1007/s00401-016-1545-1

    PubMed Central  Google Scholar 

  2. Liu C-Y, Li Q-J, Cai J-Q (2016) Evolving molecular genetics of glioblastoma. Chin Med J 129(4):464. doi:10.4103/0366-6999.176065

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jiang T, Mao Y, Ma W, Mao Q, You Y, Yang X, Jiang C, Kang C et al (2016) CGCG clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett 375(2):263–273. doi:10.1016/j.canlet.2016.01.024

    Article  CAS  PubMed  Google Scholar 

  4. Seyfried TN, Flores R, Poff AM, D’Agostino DP, Mukherjee P (2015) Metabolic therapy: a new paradigm for managing malignant brain cancer. Cancer Lett 356(2 Pt A):289–300. doi:10.1016/j.canlet.2014.07.015

    Article  CAS  PubMed  Google Scholar 

  5. Derr RL, Ye X, Islas MU, Desideri S, Saudek CD, Grossman SA (2009) Association between hyperglycemia and survival in patients with newly diagnosed glioblastoma. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology 27(7):1082–1086. doi:10.1200/JCO.2008.19.1098

    Article  Google Scholar 

  6. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  7. Champ CE, Palmer JD, Volek JS, Werner-Wasik M, Andrews DW, Evans JJ, Glass J, Kim L et al (2014) Targeting metabolism with a ketogenic diet during the treatment of glioblastoma multiforme. J Neuro-Oncol 117(1):125–131. doi:10.1007/s11060-014-1362-0

    Article  CAS  Google Scholar 

  8. Cai J, Yang P, Zhang C, Zhang W, Liu Y, Bao Z, Liu X, Du W et al (2014) ATRX mRNA expression combined with IDH1/2 mutational status and Ki-67 expression refines the molecular classification of astrocytic tumors: evidence from the whole transcriptome sequencing of 169 samples samples. Oncotarget 5(9):2551–2561

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cai J, Zhang C, Zhang W, Wang G, Yao K, Wang Z, Li G, Qian Z et al (2016) ATRX, IDH1-R132H and Ki-67 immunohistochemistry as a classification scheme for astrocytic tumors. Oncoscience 3(7–8):258–265. doi:10.18632/oncoscience.317

    PubMed  PubMed Central  Google Scholar 

  10. Gravendeel LA, Kouwenhoven MC, Gevaert O, de Rooi JJ, Stubbs AP, Duijm JE, Daemen A, Bleeker FE et al (2009) Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res 69(23):9065–9072. doi:10.1158/0008-5472.CAN-09-2307

    Article  CAS  PubMed  Google Scholar 

  11. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D et al (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477. doi:10.1016/j.cell.2013.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cancer Genome Atlas Research N (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. doi:10.1056/NEJMoa1402121

    Google Scholar 

  13. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3):267–273. doi:10.1038/ng1180

    Article  CAS  PubMed  Google Scholar 

  14. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. doi:10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cai J, Zhang W, Yang P, Wang Y, Li M, Zhang C, Wang Z, Hu H et al (2015) Identification of a 6-cytokine prognostic signature in patients with primary glioblastoma harboring M2 microglia/macrophage phenotype relevance. PLoS One 10(5):e0126022. doi:10.1371/journal.pone.0126022

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nduom EK, Wei J, Yaghi NK, Huang N, Kong LY, Gabrusiewicz K, Ling X, Zhou S et al (2015) PD-L1 expression and prognostic impact in glioblastoma. Neuro-Oncology. doi:10.1093/neuonc/nov172

    Google Scholar 

  17. Karpel-Massler G, Ramani D, Shu C, Halatsch ME, Westhoff MA, Bruce JN, Canoll P, Siegelin MD (2016) Metabolic reprogramming of glioblastoma cells by L-asparaginase sensitizes for apoptosis in vitro and in vivo. Oncotarget. doi:10.18632/oncotarget.9257

    Google Scholar 

  18. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R et al (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457(7231):910–914. doi:10.1038/nature07762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Denkert C, Budczies J, Kind T, Weichert W, Tablack P, Sehouli J, Niesporek S, Konsgen D et al (2006) Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res 66(22):10795–10804. doi:10.1158/0008-5472.CAN-06-0755

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Wang M, Wei W, Han D, Chen X, Hu Q, Yu T, Liu N et al (2016) Disruption of the EZH2/miRNA/beta-catenin signaling suppresses aerobic glycolysis in glioma. Oncotarget. doi:10.18632/oncotarget.10370

    Google Scholar 

  21. Han D, Wei W, Chen X, Zhang Y, Wang Y, Zhang J, Wang X, Yu T et al (2015) NF-kappaB/RelA-PKM2 mediates inhibition of glycolysis by fenofibrate in glioblastoma cells. Oncotarget 6(28):26119–26128. doi:10.18632/oncotarget.4444

    Article  PubMed  PubMed Central  Google Scholar 

  22. Luan W, Wang Y, Chen X, Shi Y, Wang J, Zhang J, Qian J, Li R et al (2015) PKM2 promotes glucose metabolism and cell growth in gliomas through a mechanism involving a let-7a/c-Myc/hnRNPA1 feedback loop. Oncotarget 6(15):13006–13018. doi:10.18632/oncotarget.3514

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shibuya K, Okada M, Suzuki S, Seino M, Seino S, Takeda H, Kitanaka C (2015) Targeting the facilitative glucose transporter GLUT1 inhibits the self-renewal and tumor-initiating capacity of cancer stem cells. Oncotarget 6(2):651–661. doi:10.18632/oncotarget.2892

    Article  PubMed  Google Scholar 

  24. Liu Y, Li YM, Tian RF, Liu WP, Fei Z, Long QF, Wang XA, Zhang X (2009) The expression and significance of HIF-1alpha and GLUT-3 in glioma. Brain Res 1304:149–154. doi:10.1016/j.brainres.2009.09.083

    Article  CAS  PubMed  Google Scholar 

  25. Xu CF, Liu Y, Shen S, Zhu YH, Wang J (2015) Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy. Biomaterials 51:1–11. doi:10.1016/j.biomaterials.2015.01.068

    Article  PubMed  Google Scholar 

  26. Zhang B, Dong LW, Tan YX, Zhang J, Pan YF, Yang C, Li MH, Ding ZW et al (2013) Asparagine synthetase is an independent predictor of surgical survival and a potential therapeutic target in hepatocellular carcinoma. Br J Cancer 109(1):14–23. doi:10.1038/bjc.2013.293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Panosyan EH, Wang Y, Xia P, Lee WN, Pak Y, Laks DR, Lin HJ, Moore TB et al (2014) Asparagine depletion potentiates the cytotoxic effect of chemotherapy against brain tumors. Molecular Cancer Research : MCR 12(5):694–702. doi:10.1158/1541-7786.mcr-13-0576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu W, Wu Q, Hong X, Zhou L, Zhang J, You L, Wang W, Wu H et al (2015) Catechol-O-methyltransferase, a new target for pancreatic cancer therapy. Cancer Sci 106(5):576–583. doi:10.1111/y12648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors conducting this work represent the Chinese Glioma Cooperative Group (CGCG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanlu Jiang or Lihua Fan.

Ethics declarations

The study protocol was approved by the ethics committees of participating hospitals, and all patients provided written informed consent.

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

Supported by grants from (1) The Research Special Fund For Public Welfare Industry of Heath (No. 201402008); (2) The National Key Research and Development Plan (No. 2016YFC0902500); (3) National Natural Science Foundation of China (No. 81572701, No. 81372700); (4) Special Fund Project of Translational Medicine in the Chinese-Russian Medical Research Center (No. CR201417); and (5) Research Project of Chinese Society of Neuro-oncology, CACA (CSNO-2014-MSD08).

Additional information

Shihong Zhao and Jinquan Cai contributed equally to this work.

Electronic supplementary material

Supplementary Figure S1

The consensus clustering for the gene expression profiling of 305 samples from the CGGA datasets based on the top 50 variable expression genes (MAD >1.0) when k was equal to 6 to 10. (TIFF 1610 kb)

High resolution image (GIF 393 kb)

Table S1

(DOCX 15 kb)

Table S2

(DOCX 13 kb)

Table S3

(DOCX 15 kb)

Table S4

(DOCX 13 kb)

Table S5

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Cai, J., Li, J. et al. Bioinformatic Profiling Identifies a Glucose-Related Risk Signature for the Malignancy of Glioma and the Survival of Patients. Mol Neurobiol 54, 8203–8210 (2017). https://doi.org/10.1007/s12035-016-0314-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0314-4

Keywords

Navigation