Residual Stress Analysis in Quenched Aluminum Alloy Plate Using the Contour Method

Article Preview

Abstract:

A plate (30mm thick) of aluminum alloy 7085-T76 was quenched into water at room temperature after solution treated at 470°C. The quenching residual stresses distributions were studied by both experimental measurement and FEM (Finite Element Method) simulation. The experimental measurement was accomplished by using the contour method, and the FEM simulation was carried out to verify the experimental results. The experimental quenching residual stress distributions showed the tensile stresses of 74.8MPa ~109MPa in the center part, and compressive stresses of 29MPa-63.6MPa on the surface. The prediction distributions showed the maximum tensile stress of 98.2MPa in the center and the maximum compressive stress of 50.5MPa on the surface. The experimental quenching residual stresses distributions agree favorably with the prediction results. The deviations of the maximum tensile stress were less than 25MPa in the center. The deviations may be attributed to the accuracy of the contour method and the idealization of the prediction model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-174

Citation:

Online since:

March 2016

Export:

Price:

[1] J. S. Robinson, R. L. Cudd, D. A. Tanner, et al, Quench sensitivity and tensile property inhomogeneity in 7010 forgings, Journal of Materials Processing Technology. 119 (2001) 261-267.

DOI: 10.1016/s0924-0136(01)00927-x

Google Scholar

[2] W. Xu, J. Liu, H. Zhu, et al, Analysis of residual stresses in thick aluminum friction stir welded butt joints, Materials and Design. 32(4) (2011) 2000-(2005).

DOI: 10.1016/j.matdes.2010.11.062

Google Scholar

[3] A. H. Mahmoudi, S. Hossain, C. E. Truman, et al, A new procedure to measure near yield residual stresses using the deep hole drilling technique, Experimental mechanics. 49(4) (2009) 595-604.

DOI: 10.1007/s11340-008-9164-y

Google Scholar

[4] M. Khan, M. Fitzpatrick, Application of synchrotron X-ray diffraction and nanoindentation for the determination of residual stress fields around scratches, Acta materialia. 59(20) (2011) 7508-7520.

DOI: 10.1016/j.actamat.2011.08.034

Google Scholar

[5] A. V. Virkar, Determination of residual stress profile using a strain gage technique, Journal of the American Ceramic Society. 73(7) (1990) 2100−2102.

DOI: 10.1111/j.1151-2916.1990.tb05276.x

Google Scholar

[6] M. B. Prime, M. R. Hill, Residual stress, stress relief, and inhomogeneity in aluminum plate, Scripta Materialia. 46(1) (2000) 77−82.

DOI: 10.1016/s1359-6462(01)01201-5

Google Scholar

[7] M. B. Prime, Residual stress measurement by successive extension of a slot: The crack compliance method, Applied Mechanics Reviews. 52(2) (1999) 75−96.

DOI: 10.1115/1.3098926

Google Scholar

[8] M. B. Prime, M. R. Hill, Uncertainty analysis, model error and order selection for series-expanded, residual-stress inverse solutions, Journal of Engineering Materials and Technology. 128(2) (2006) 175−185.

DOI: 10.1115/1.2172278

Google Scholar

[9] J. S. Robinson, S. Hossain, C.E. Truman, et al, Residual stress in 7449 aluminum alloy forgings, Materials Science and Engineering A. 527 (2010) 2603-2612.

DOI: 10.1016/j.msea.2009.12.022

Google Scholar

[10] V. M. Linton, M. Ripley, Influence of time on residual stresses in friction stir welds in agehardenable 7xxx aluminium alloys, Acta materialia. 56(16) (2008) 4319-4327.

DOI: 10.1016/j.actamat.2008.04.059

Google Scholar

[11] M. B. Prime, A. R. Gonzales, In: Proceedings of the sixth international conference on residual stresses, Oxford, UK: IOM Communications Ltd. 2000, p: 617-24.

Google Scholar

[12] C. Liu, X. Yi, Residual stress measurement on AA6061-T6 aluminum alloy friction stir butt welds using contour method, Materials and Design. 46 (2013) 366-371.

DOI: 10.1016/j.matdes.2012.10.030

Google Scholar

[13] M. B. Prime, T. Gnäupel-Herold, J. A. Baumann, et al, Residual stress measurements in a thick, dissimilar aluminum alloy friction stir weld, Acta materialia. 54(15) (2006) 4013-4021.

DOI: 10.1016/j.actamat.2006.04.034

Google Scholar

[14] M. B. Prime, M. A. Newborn, J. A. Balog, Quenching and cold-work residual stresses in aluminum hand forgings: contour method measurement and FEM prediction, Materials science forum. 426-432 (2003) 435-440.

DOI: 10.4028/www.scientific.net/msf.426-432.435

Google Scholar

[15] N. Murugan, R. Narayanan, Finite element simulation of residual stresses and their measurement by contour method, Materials and Design. 30 (2009) 2067-(2071).

DOI: 10.1016/j.matdes.2008.08.041

Google Scholar

[16] Y. Zhang, S. Ganguly, L. Edwards, et al, Cross-sectional mapping of residual stresses in a VPPA weld using the contour method, Acta Materialia. 52(17) (2004) 5225-5232.

DOI: 10.1016/j.actamat.2004.07.045

Google Scholar

[17] D. W. Brown, T. M. Holden, B. Clausen, et al, Critical comparison of two independent measurements of residual stress in an electron-beam welded uranium cylinder: Neutron diffraction and the contour method, Acta Materialia. 59(3) (2011) 864-873.

DOI: 10.1016/j.actamat.2010.09.022

Google Scholar

[18] W. Woo, H. Choo, M. B. Prime, et al, Microstructure, texture and residual stress in a friction-stir-processed AZ31B magnesium alloy, Acta Materialia. 56(8) (2008) 1701-1711.

DOI: 10.1016/j.actamat.2007.12.020

Google Scholar

[19] M. B. Prime, A. L. Kastengren, The contour method cutting assumption: error minimization and correction, Experimental and Applied Mechanics. 6(2011) 233-250.

DOI: 10.1007/978-1-4419-9792-0_40

Google Scholar

[20] M. Koc, J. Culp, T. Altan, Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes, Journal of Materials Processing Technology. 174(1) (2006): 342.

DOI: 10.1016/j.jmatprotec.2006.02.007

Google Scholar