Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Contribution of sialidase NEU1 to suppression of metastasis of human colon cancer cells through desialylation of integrin β4

Abstract

We previously found an inverse relationship between sialidase Neu1 expression and metastatic potential of murine cancer cells. To elucidate the mechanism underlying the cellular events, the human sialidase gene NEU1 was overexpressed or silenced in colon cancer HT-29 cells. When NEU1-overexpressing cells were injected transsplenically into mice, in vivo liver metastasis was significantly reduced. NEU1 suppressed cell migration, invasion and adhesion in vitro, whereas the silencing resulted in the opposite. One of the major molecular changes by NEU1 was decreased sialylation of integrin β4, assessed by PNA- and MAL-II-lectin blotting of immunoprecipitates with anti-integrin β4 antibody. The desialylation was accompanied by decreased phosphorylation of the integrin followed by attenuation of focal adhesion kinase and Erk1/2 pathway. Moreover, NEU1 caused downregulation of matrix metalloproteinase-7, overexpression of which is associated with cancer metastasis. Treatment of the cells with GalNAc-α-O-benzyl, an inhibitor of O-glycosylation, showed increased PNA-positive integrin β4 with its decreased phosphorylation, indicating that sialic acid removal from the integrin O-glycans results in the decreased phosphorylation. Biotinylation and immunofluorescence staining exhibited some NEU1 molecules to be at the cell surface accessible to the integrin. These results suggest that NEU1 is important in regulation of integrin β4-mediated signaling, leading to suppression of metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Dennis JW, Granovsky M, Warren CE . (1999). Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta 1473: 21–34.

    Article  CAS  Google Scholar 

  • Duca L, Blanchevoye C, Cantarelli B, Ghoneim C, Dedieu S, Delacoux F et al. (2007). The elastin receptor complex transduces signals through the catalytic activity of its Neu-1 subunit. J Biol Chem 282: 12484–12491.

    Article  CAS  Google Scholar 

  • Fukushima Y, Ohnishi T, Arita N, Hayakawa T, Sekiguchi K . (1998). Integrin α3β1-mediated interaction with laminin-5 stimulates adhesion, migration and invasion of malignant glioma cells. Int J Cancer 76: 63–72.

    Article  CAS  Google Scholar 

  • Galjart NJ, Gillemans N, Harris A, van der Horst GT, Verheijen FW, Galjaard H et al. (1988). Expression of cDNA encoding the human ‘protective protein’ associated with lysosomal beta-galactosidase and neuraminidase: homology to yeast proteases. Cell 54: 755–764.

    Article  CAS  Google Scholar 

  • Giancotti FG, Ruoslahti E . (1999). Integrin signaling. Science 285: 1028–1032.

    Article  CAS  Google Scholar 

  • Giannelli G, Astigiano S, Antonaci S, Morini M, Barbieri O, Nooman DM et al. (2002). Role of the α3β1 and α6β4 integrins in tumor invasion. Clin Exp Metastasis 19: 217–223.

    Article  CAS  Google Scholar 

  • Hakomori S . (2002). New wine in an old bottle. Proc Natl Acad Sci USA 99: 10231–10233.

    Article  CAS  Google Scholar 

  • Hinek A, Pshezhetsky AV, von Itzstein M, Starcher B . (2006). Lysosomal sialidase (Neuraminidase-1) is targeted to the cell surface in a multiprotein complex that facilitates elastic fiber assembly. J Biol Chem 281: 3698–3710.

    Article  CAS  Google Scholar 

  • Huet G, Hennebicq-Reig S, de Bolos C, Ulloa F, Lesuffleur T, Barbat A et al. (1998). GalNAc-α-O-benzyl inhibits NeuAc α2-3 glycosylation and blocks the intracellular transport of apical glycoproteins and mucus differentiated HT-29 cells. J Cell Biol 141: 1311–1322.

    Article  CAS  Google Scholar 

  • Julenius K, Mølgaard A, Gupta R, Brunak S . (2004). Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15: 153–164.

    Article  Google Scholar 

  • Kakugawa Y, Wada T, Yamaguchi K, Yamanami H, Ouchi K, Sato I et al. (2002). Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression. Proc Natl Acad Sci USA 99: 10718–10723.

    Article  CAS  Google Scholar 

  • Kato K, Shiga K, Yamaguchi K, Hata K, Kobayashi T, Miyazaki K et al. (2006). Plasma-membrane-associated sialidase (NEU3) differentially regulates integrin-mediated cell proliferation through laminin- and fibronectin-derived signaling. Biochem J 394: 647–656.

    Article  CAS  Google Scholar 

  • Kato T, Wang Y, Yamaguchi K, Milner CM, Shineha R, Satomi S et al. (2001). Overexpressing of lysosomal-type sialidase leads to suppression of metastasis associated with reversion of malignant phenotype in murine B16 melanoma cells. Int J Cancer 92: 797–804.

    Article  CAS  Google Scholar 

  • Koshikawa N, Minegishi T, Sharabi A, Quaranta V, Seiki M . (2005). Membrane-type matrix metalloproteinase-1(MT1-MMP) is a processing enzyme for human laminin γ2 chain. J Biol Chem 280: 88–93.

    Article  CAS  Google Scholar 

  • Li K . (1992). Determination of sialic acids in human serum by reversed-phase liquid chromatography with fluorimetric detection. J Chromatogr 579: 209–213.

    Article  CAS  Google Scholar 

  • Liang F, Seyrantepe V, Landry K, Ahmad R, Ahmad A, Stamatos NM et al. (2006). Monocyte differentiation upregulates the expression of the lysosomal sialidase, Neu1 and triggers its targeting to the plasma membrane via Major histocompatibility complex classII compartments. J Biol Chem 281: 27526–27538.

    Article  CAS  Google Scholar 

  • Lohi J . (2001). Laminin-5 in the progression of carcinomas. Int J Cancer 94: 763–767.

    Article  CAS  Google Scholar 

  • Mimori K, Yamashita K, Ohta M, Yoshinaga K, Ishikawa K, Ishii H et al. (2004). Coexpression of matrix metalloproteinase-7 (MMP-7) and epidermal growth factor (EGF) receptor in colorectal cancer: an EGF receptor tyrosine kinase inhibitor is effective against MMP-7-expressing cancer cells. Clin Cancer Res 10: 8243–8249.

    Article  CAS  Google Scholar 

  • Miyagi T, Sato K, Hata K, Taniguchi S . (1994). Metastatic potential of transformed rat 3Y1 cell lines is inversely correlated with lysosomal-type sialidase activity. FEBS Lett 349: 255–259.

    Article  CAS  Google Scholar 

  • Miyagi T, Tsuiki S . (1984). Rat-liver lysosomal sialidase. Solubilization, substrate specificity and comparison with the cytosolic sialidase. Eur J Biochem 141: 75–81.

    Article  CAS  Google Scholar 

  • Miyagi T, Wada T, Yamaguchi K, Hata K . (2004). Sialidase and malignancy: a minireview. Glycoconj J 20: 189–198.

    Article  CAS  Google Scholar 

  • Miyagi T, Wada T, Yamaguchi K . (2008). Roles of plasma membrane-associated sialidase NEU3 in human cancers. Biochim Biophys Acta 1780: 532–537.

    Article  CAS  Google Scholar 

  • Miyagi T, Yamaguchi K . (2007). Biochemistry of glycoconjugate glycans: sialic acids.In: Kamerling JP, Boons G, Lee YC, Suzuki A, Taniguchi N, Voragen AGJ (eds). Comprehensive Glycoscience. vol. 3. Elsevier BV: Amsterdam, The Netherlands, pp 297–322.

    Chapter  Google Scholar 

  • Monti E, Preti A, Venerando B, Borsani G . (2002). Recent development in mammalian sialidase molecular biology. Neurochem Res 27: 649–663.

    Article  CAS  Google Scholar 

  • Remacle AG, Chekanov AV, Golubkov VS, Savinov AY, Rozanov DV, Strongin AY . (2006). O-Glycosylation regulates autolysis of cellular membrane type-1 matrix metalloproteinase (MT1-MMP). J Biol Chem 281: 16897–16905.

    Article  CAS  Google Scholar 

  • Remy L, Trespeuch C, Bachy S, Scoazec J-V, Rousselle P . (2006). Matrilysin 1 influences colon carcinoma cell migration by cleavage of the laminin-5 β3 chain. Cancer Res 66: 11228–11237.

    Article  CAS  Google Scholar 

  • Sawada M, Moriya S, Saito S, Shineha R, Satomi S, Yamori T et al. (2002). Reduced sialidase expression in highly metastatic variants of mouse colon adenocarcinoma 26 and retardation of their metastatic ability by sialidase overexpression. Int J Cancer 97: 180–185.

    Article  CAS  Google Scholar 

  • Seales EC, Jurado GA, Brunson BA, Wakefield JK, Frost AR, Bellis SL . (2005). Hypersialylation of β1 integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility. Cancer Res 65: 4645–4652.

    Article  CAS  Google Scholar 

  • Shiomi T, Okada Y . (2003). MT1-MMP and MMP-7 in invasion and metastasis of human cancers. Cancer Metastasis Rev 22: 145–152.

    Article  CAS  Google Scholar 

  • Trainer DL, Kline T, McCabe FL, Faucette LF, Field J, Chaikin M et al. (1998). Biological characterization and oncogene expression in human colorectal carcinoma cell lines. Int J Cancer 41: 287–296.

    Article  Google Scholar 

  • Ueno S, Saito S, Wada T, Yamaguchi K, Satoh M, Arai Y et al. (2006). Plasma membrane-associated sialidase is up-regulated in renal cell carcinoma and promotes the interleukin-6-induced apoptosis suppression and cell motility. J Biol Chem 281: 7756–7764.

    Article  CAS  Google Scholar 

  • Wu YI, Munshi HG, Sen R, Snipas SJ, Salvesen GS, Fridman R et al. (2004). Glycosylation broadens the substrate profile of membrane type 1 matrix metalloproteinase. J Biol Chem 279: 8278–8289.

    Article  CAS  Google Scholar 

  • Xia Y, Gil SG, Carter WG . (1996). Anchorage mediated by integrin α6β4 to laminin-5 (Epiligrin) regulates tyrosine phosphorylation of a membrane-associated 80-kD protein. J Cell Biol 132: 727–740.

    Article  CAS  Google Scholar 

  • Yamaguchi K, Hata K, Koseki K, Shiozaki K, Akita H, Wada T et al. (2005). Evidence for mitochondrial localization of a novel human sialidase (NEU4). Biochem J 390: 85–93.

    Article  CAS  Google Scholar 

  • Zeng ZS, Shu WP, Cohen AM, Guillem JG . (2002). Matrix metalloproteinase-7 expression in colorectal cancer liver metastases: evidence for involvement of MMP-7 activation in human cancer metastases. Clin Cancer Res 8: 144–148.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the expert technical assistance of Ms Setsuko Moriya. This study was supported in part by Grants-in-Aid for Scientific Research on Priority Areas Cancer from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Miyagi.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uemura, T., Shiozaki, K., Yamaguchi, K. et al. Contribution of sialidase NEU1 to suppression of metastasis of human colon cancer cells through desialylation of integrin β4. Oncogene 28, 1218–1229 (2009). https://doi.org/10.1038/onc.2008.471

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.471

Keywords

This article is cited by

Search

Quick links