<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">

Abstract

Macroautophagy (herein referred to as autophagy) constitutes a phylogenetically old mechanism leading to the lysosomal degradation of cytoplasmic structures. At baseline levels, autophagy exerts homeostatic functions by ensuring the turnover of potentially harmful organelles and long-lived aggregate-prone proteins. Moreover, the autophagic flow can be dramatically upregulated in response to a plethora of stressful conditions, including glucose, amino acid, oxygen, or growth factor deprivation, accumulation of unfolded proteins in the endoplasmic reticulum, and invasion by intracellular pathogens. In some experimental settings, stress-induced autophagy has been shown to contribute to programmed cell death. Nevertheless, autophagy most often confers cytoprotection by providing cells with new metabolic substrates or by ridding them of noxious intracellular entities including protein aggregates and invading organisms. Thus, autophagy has been implicated in an ever-increasing number of human diseases including cancer. Autophagy inhibition accelerates the demise of tumor cells that are subjected to chemo- or radiotherapy, thereby constituting an interesting target for the development of anticancer strategies. However, several oncosuppressor proteins and oncoproteins have been recently shown to stimulate and inhibit the autophagic flow, respectively, suggesting that autophagy exerts bona fide tumor-suppressive functions. In this review, we will discuss the mechanisms by which autophagy may prevent oncogenesis. Antioxid. Redox Signal. 14, 2251–2269.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Abedin MJWang DMcDonnell MALehmann UKelekar A. Autophagy delays apoptotic death in breast cancer cells following DNA damageCell Death Differ14500-5102007. 1. Abedin MJ, Wang D, McDonnell MA, Lehmann U, and Kelekar A. Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ 14: 500–510, 2007.
2.
Abida WMGu W. p53-Dependent and p53-independent activation of autophagy by ARFCancer Res68352-3572008. 2. Abida WM and Gu W. p53-Dependent and p53-independent activation of autophagy by ARF. Cancer Res 68: 352–357, 2008.
3.
Ahn CHJeong EGLee JWKim MSKim SHKim SSYoo NJLee SH. Expression of beclin-1, an autophagy-related protein, in gastric and colorectal cancersAPMIS1151344-13492007. 3. Ahn CH, Jeong EG, Lee JW, Kim MS, Kim SH, Kim SS, Yoo NJ, and Lee SH. Expression of beclin-1, an autophagy-related protein, in gastric and colorectal cancers. APMIS 115: 1344–1349, 2007.
4.
Alvers ALWood MSHu DKaywell ACDunn WA Jr.Aris JP. Autophagy is required for extension of yeast chronological life span by rapamycinAutophagy5847-8492009. 4. Alvers AL, Wood MS, Hu D, Kaywell AC, Dunn WA, Jr., and Aris JP. Autophagy is required for extension of yeast chronological life span by rapamycin. Autophagy 5: 847–849, 2009.
5.
Amaravadi RK. Autophagy-induced tumor dormancy in ovarian cancerJ Clin Invest1183837-38402008. 5. Amaravadi RK. Autophagy-induced tumor dormancy in ovarian cancer. J Clin Invest 118: 3837–3840, 2008.
6.
Apel AZentgraf HBuchler MWHerr I. Autophagy-A double-edged sword in oncologyInt J Cancer125991-9952009. 6. Apel A, Zentgraf H, Buchler MW, and Herr I. Autophagy-A double-edged sword in oncology. Int J Cancer 125: 991–995, 2009.
7.
Arico SPetiot ABauvy CDubbelhuis PFMeijer AJCodogno POgier-Denis E. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathwayJ Biol Chem27635243-352462001. 7. Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, and Ogier-Denis E. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276: 35243–35246, 2001.
8.
Ashford TPPorter KR. Cytoplasmic components in hepatic cell lysosomesJ Cell Biol12198-2021962. 8. Ashford TP and Porter KR. Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 12: 198–202, 1962.
9.
Baek SHKim EKGoudreau JLLookingland KJKim SWYu SW. Insulin withdrawal-induced cell death in adult hippocampal neural stem cells as a model of autophagic cell deathAutophagy5277-2792009. 9. Baek SH, Kim EK, Goudreau JL, Lookingland KJ, Kim SW, and Yu SW. Insulin withdrawal-induced cell death in adult hippocampal neural stem cells as a model of autophagic cell death. Autophagy 5: 277–279, 2009.
10.
Bellot GGarcia-Medina RGounon PChiche JRoux DPouyssegur JMazure NM. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domainsMol Cell Biol292570-25812009. 10. Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, and Mazure NM. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29: 2570–2581, 2009.
11.
Berry DLBaehrecke EH. Autophagy functions in programmed cell deathAutophagy4359-3602008. 11. Berry DL and Baehrecke EH. Autophagy functions in programmed cell death. Autophagy 4: 359–360, 2008.
12.
Berry DLBaehrecke EH. Growth arrest and autophagy are required for salivary gland cell degradation in DrosophilaCell1311137-11482007. 12. Berry DL and Baehrecke EH. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131: 1137–1148, 2007.
13.
Beugnet ATee ARTaylor PMProud CG. Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availabilityBiochem J372555-5662003. 13. Beugnet A, Tee AR, Taylor PM, and Proud CG. Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem J 372: 555–566, 2003.
14.
Bhaskar PTHay N. The two TORCs and AktDev Cell12487-5022007. 14. Bhaskar PT and Hay N. The two TORCs and Akt. Dev Cell 12: 487–502, 2007.
15.
Bjorkoy GLamark TBrech AOutzen HPerander MOvervatn AStenmark HJohansen T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell deathJ Cell Biol171603-6142005. 15. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, and Johansen T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171: 603–614, 2005.
16.
Bjorkoy GLamark TJohansen T. p62/SQSTM1: a missing link between protein aggregates and the autophagy machineryAutophagy2138-1392006. 16. Bjorkoy G, Lamark T, and Johansen T. p62/SQSTM1: a missing link between protein aggregates and the autophagy machinery. Autophagy 2: 138–139, 2006.
17.
Borrello MGDegl'Innocenti DPierotti MA. Inflammation and cancer: the oncogene-driven connectionCancer Lett267262-2702008. 17. Borrello MG, Degl'Innocenti D, and Pierotti MA. Inflammation and cancer: the oncogene-driven connection. Cancer Lett 267: 262–270, 2008.
18.
Boya PGonzalez-Polo RACasares NPerfettini JLDessen PLarochette NMetivier DMeley DSouquere SYoshimori TPierron GCodogno PKroemer G. Inhibition of macroautophagy triggers apoptosisMol Cell Biol251025-10402005. 18. Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, and Kroemer G. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25: 1025–1040, 2005.
19.
Boya PKroemer G. Beclin 1: a BH3-only protein that fails to induce apoptosisOncogene282125-21272009. 19. Boya P and Kroemer G. Beclin 1: a BH3-only protein that fails to induce apoptosis. Oncogene 28: 2125–2127, 2009.
20.
Brech AAhlquist TLothe RAStenmark H. Autophagy in tumour suppression and promotionMol Oncol3366-3752009. 20. Brech A, Ahlquist T, Lothe RA, and Stenmark H. Autophagy in tumour suppression and promotion. Mol Oncol 3: 366–375, 2009.
21.
Brown EJAlbers MWShin TBIchikawa KKeith CTLane WSSchreiber SL. A mammalian protein targeted by G1-arresting rapamycin-receptor complexNature369756-7581994. 21. Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, and Schreiber SL. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369: 756–758, 1994.
22.
Budanov AVKarin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signalingCell134451-4602008. 22. Budanov AV and Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134: 451–460, 2008.
23.
Budanov AVSablina AAFeinstein EKoonin EVChumakov PM. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpDScience304596-6002004. 23. Budanov AV, Sablina AA, Feinstein E, Koonin EV, and Chumakov PM. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304: 596–600, 2004.
24.
Cano CEGommeaux JPietri SCulcasi MGarcia SSeux MBarelier SVasseur SSpoto RPPebusque MJDusetti NJIovanna JLCarrier A. Tumor protein 53-induced nuclear protein 1 is a major mediator of p53 antioxidant functionCancer Res69219-2262009. 24. Cano CE, Gommeaux J, Pietri S, Culcasi M, Garcia S, Seux M, Barelier S, Vasseur S, Spoto RP, Pebusque MJ, Dusetti NJ, Iovanna JL, and Carrier A. Tumor protein 53-induced nuclear protein 1 is a major mediator of p53 antioxidant function. Cancer Res 69: 219–226, 2009.
25.
Cao YKlionsky DJ. Physiological functions of Atg6/Beclin 1: a unique autophagy-related proteinCell Res17839-8492007. 25. Cao Y and Klionsky DJ. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res 17: 839–849, 2007.
26.
Castedo MFerri KFKroemer G. Mammalian target of rapamycin (mTOR): pro- and anti-apoptoticCell Death Differ999-1002002. 26. Castedo M, Ferri KF, and Kroemer G. Mammalian target of rapamycin (mTOR): pro- and anti-apoptotic. Cell Death Differ 9: 99–100, 2002.
27.
Cecconi FLevine B. The role of autophagy in mammalian development: cell makeover rather than cell deathDev Cell15344-3572008. 27. Cecconi F and Levine B. The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell 15: 344–357, 2008.
28.
Chen NKarantza-Wadsworth V. Role and regulation of autophagy in cancerBiochim Biophys Acta17931516-15232009. 28. Chen N and Karantza-Wadsworth V. Role and regulation of autophagy in cancer. Biochim Biophys Acta 1793: 1516–1523, 2009.
29.
Christoph FHinz SKempkensteffen CWeikert SKrause HSchostak MSchrader MMiller K. A gene expression profile of tumor suppressor genes commonly methylated in bladder cancerJ Cancer Res Clin Oncol133343-3492007. 29. Christoph F, Hinz S, Kempkensteffen C, Weikert S, Krause H, Schostak M, Schrader M, and Miller K. A gene expression profile of tumor suppressor genes commonly methylated in bladder cancer. J Cancer Res Clin Oncol 133: 343–349, 2007.
30.
Christoph FKempkensteffen CWeikert SKrause HSchostak MMiller KSchrader M. Frequent epigenetic inactivation of p53 target genes in seminomatous and nonseminomatous germ cell tumorsCancer Lett247137-1422007. 30. Christoph F, Kempkensteffen C, Weikert S, Krause H, Schostak M, Miller K, and Schrader M. Frequent epigenetic inactivation of p53 target genes in seminomatous and nonseminomatous germ cell tumors. Cancer Lett 247: 137–142, 2007.
31.
Christoph FWeikert SKempkensteffen CKrause HSchostak MKollermann JMiller KSchrader M. Promoter hypermethylation profile of kidney cancer with new proapoptotic p53 target genes and clinical implicationsClin Cancer Res125040-50462006. 31. Christoph F, Weikert S, Kempkensteffen C, Krause H, Schostak M, Kollermann J, Miller K, and Schrader M. Promoter hypermethylation profile of kidney cancer with new proapoptotic p53 target genes and clinical implications. Clin Cancer Res 12: 5040–5046, 2006.
32.
Christoph FWeikert SKempkensteffen CKrause HSchostak MMiller KSchrader M. Regularly methylated novel pro-apoptotic genes associated with recurrence in transitional cell carcinoma of the bladderInt J Cancer1191396-14022006. 32. Christoph F, Weikert S, Kempkensteffen C, Krause H, Schostak M, Miller K, and Schrader M. Regularly methylated novel pro-apoptotic genes associated with recurrence in transitional cell carcinoma of the bladder. Int J Cancer 119: 1396–1402, 2006.
33.
Cichowski KJacks T. NF1 tumor suppressor gene function: narrowing the GAPCell104593-6042001. 33. Cichowski K and Jacks T. NF1 tumor suppressor gene function: narrowing the GAP. Cell 104: 593–604, 2001.
34.
Cichowski KShih TSSchmitt ESantiago SReilly KMcLaughlin MEBronson RTJacks T. Mouse models of tumor development in neurofibromatosis type 1Science2862172-21761999. 34. Cichowski K, Shih TS, Schmitt E, Santiago S, Reilly K, McLaughlin ME, Bronson RT, and Jacks T. Mouse models of tumor development in neurofibromatosis type 1. Science 286: 2172–2176, 1999.
35.
Clark SL Jr. Cellular differentiation in the kidneys of newborn mice studies with the electron microscopeJ Biophys Biochem Cytol3349-3621957. 35. Clark SL, Jr. Cellular differentiation in the kidneys of newborn mice studies with the electron microscope. J Biophys Biochem Cytol 3: 349–362, 1957.
36.
Codogno PMeijer AJ. Autophagy and signaling: their role in cell survival and cell deathCell Death Differ12 Suppl21509-15182005. 36. Codogno P and Meijer AJ. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12 Suppl 2: 1509–1518, 2005.
37.
Coppola DKhalil FEschrich SABoulware DYeatman TWang HG. Down-regulation of Bax-interacting factor-1 in colorectal adenocarcinomaCancer1132665-26702008. 37. Coppola D, Khalil F, Eschrich SA, Boulware D, Yeatman T, and Wang HG. Down-regulation of Bax-interacting factor-1 in colorectal adenocarcinoma. Cancer 113: 2665–2670, 2008.
38.
Corradetti MNInoki KBardeesy NDePinho RAGuan KL. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndromeGenes Dev181533-15382004. 38. Corradetti MN, Inoki K, Bardeesy N, DePinho RA, and Guan KL. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev 18: 1533–1538, 2004.
39.
Crighton DWilkinson SO'Prey JSyed NSmith PHarrison PRGasco MGarrone OCrook TRyan KM. DRAM, a p53-induced modulator of autophagy, is critical for apoptosisCell126121-1342006. 39. Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, and Ryan KM. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126: 121–134, 2006.
40.
Criollo ADessen PKroemer G. DRAM: a phylogenetically ancient regulator of autophagyCell Cycle82319-23202009. 40. Criollo A, Dessen P, and Kroemer G. DRAM: a phylogenetically ancient regulator of autophagy. Cell Cycle 8: 2319–2320, 2009.
41.
Criollo AMaiuri MCTasdemir EVitale IFiebig AAAndrews DMolgo JDiaz JLavandero SHarper FPierron Gdi Stefano DRizzuto RSzabadkai GKroemer G. Regulation of autophagy by the inositol trisphosphate receptorCell Death Differ141029-10392007. 41. Criollo A, Maiuri MC, Tasdemir E, Vitale I, Fiebig AA, Andrews D, Molgo J, Diaz J, Lavandero S, Harper F, Pierron G, di Stefano D, Rizzuto R, Szabadkai G, and Kroemer G. Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Differ 14: 1029–1039, 2007.
42.
Criollo ASenovilla LAuthier HMaiuri MCMorselli EVitale IKepp OTasdemir EGalluzzi LShen STailler MDelahaye NTesniere ADe Stefano DBen Younes AHarper FPierron GLavandero SZitvogel LIsrael ABaud VKroemer G. IKK connects autophagy to major stress pathwaysAutophagy6189-1912010. 42. Criollo A, Senovilla L, Authier H, Maiuri MC, Morselli E, Vitale I, Kepp O, Tasdemir E, Galluzzi L, Shen S, Tailler M, Delahaye N, Tesniere A, De Stefano D, Ben Younes A, Harper F, Pierron G, Lavandero S, Zitvogel L, Israel A, Baud V, and Kroemer G. IKK connects autophagy to major stress pathways. Autophagy 6: 189–191, 2010.
43.
Criollo ASenovilla LAuthier HMaiuri MCMorselli EVitale IKepp OTasdemir EGalluzzi LShen STailler MDelahaye NTesniere ADe Stefano DYounes ABHarper FPierron GLavandero SZitvogel LIsrael ABaud VKroemer G. The IKK complex contributes to the induction of autophagyEMBO J29619-6312010. 43. Criollo A, Senovilla L, Authier H, Maiuri MC, Morselli E, Vitale I, Kepp O, Tasdemir E, Galluzzi L, Shen S, Tailler M, Delahaye N, Tesniere A, De Stefano D, Younes AB, Harper F, Pierron G, Lavandero S, Zitvogel L, Israel A, Baud V, and Kroemer G. The IKK complex contributes to the induction of autophagy. EMBO J 29: 619–631, 2010.
44.
Criollo AVicencio JMTasdemir EMaiuri MCLavandero SKroemer G. The inositol trisphosphate receptor in the control of autophagyAutophagy3350-3532007. 44. Criollo A, Vicencio JM, Tasdemir E, Maiuri MC, Lavandero S, and Kroemer G. The inositol trisphosphate receptor in the control of autophagy. Autophagy 3: 350–353, 2007.
45.
Cully MYou HLevine AJMak TW. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesisNat Rev Cancer6184-1922006. 45. Cully M, You H, Levine AJ, and Mak TW. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6: 184–192, 2006.
46.
De Duve CPressman BCGianetto RWattiaux RAppelmans F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissueBiochem J60604-6171955. 46. De Duve C, Pressman BC, Gianetto R, Wattiaux R, and Appelmans F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J 60: 604–617, 1955.
47.
De Duve CWattiaux R. Functions of lysosomesAnnu Rev Physiol28435-4921966. 47. De Duve C and Wattiaux R. Functions of lysosomes. Annu Rev Physiol 28: 435–492, 1966.
48.
Degenhardt KMathew RBeaudoin BBray KAnderson DChen GMukherjee CShi YGelinas CFan YNelson DAJin SWhite E. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesisCancer Cell1051-642006. 48. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gelinas C, Fan Y, Nelson DA, Jin S, and White E. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10: 51–64, 2006.
49.
Denton DShravage BSimin RMills KBerry DLBaehrecke EHKumar S. Autophagy, not apoptosis, is essential for midgut cell death in DrosophilaCurr Biol191741-17462009. 49. Denton D, Shravage B, Simin R, Mills K, Berry DL, Baehrecke EH, and Kumar S. Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Curr Biol 19: 1741–1746, 2009.
50.
Dice JF. Chaperone-mediated autophagyAutophagy3295-2992007. 50. Dice JF. Chaperone-mediated autophagy. Autophagy 3: 295–299, 2007.
51.
Edinger ALCinalli RMThompson CB. Rab7 prevents growth factor-independent survival by inhibiting cell-autonomous nutrient transporter expressionDev Cell5571-5822003. 51. Edinger AL, Cinalli RM, and Thompson CB. Rab7 prevents growth factor-independent survival by inhibiting cell-autonomous nutrient transporter expression. Dev Cell 5: 571–582, 2003.
52.
Eisenberg TKnauer HSchauer AButtner SRuckenstuhl CCarmona-Gutierrez DRing JSchroeder SMagnes CAntonacci LFussi HDeszcz LHartl RSchraml ECriollo AMegalou EWeiskopf DLaun PHeeren GBreitenbach MGrubeck-Loebenstein BHerker EFahrenkrog BFrohlich KUSinner FTavernarakis NMinois NKroemer GMadeo F. Induction of autophagy by spermidine promotes longevityNat Cell Biol111305-13142009. 52. Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Frohlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, and Madeo F. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11: 1305–1314, 2009.
53.
Erlich SMizrachy LSegev OLindenboim LZmira OAdi-Harel SHirsch JAStein RPinkas-Kramarski R. Differential interactions between Beclin 1 and Bcl-2 family membersAutophagy3561-5682007. 53. Erlich S, Mizrachy L, Segev O, Lindenboim L, Zmira O, Adi-Harel S, Hirsch JA, Stein R, and Pinkas-Kramarski R. Differential interactions between Beclin 1 and Bcl-2 family members. Autophagy 3: 561–568, 2007.
54.
Eskelinen EL. Maturation of autophagic vacuoles in Mammalian cellsAutophagy11-102005. 54. Eskelinen EL. Maturation of autophagic vacuoles in Mammalian cells. Autophagy 1: 1–10, 2005.
55.
Faderl SKantarjian HMManshouri TChan CYPierce SHays KJCortes JThomas DEstrov ZAlbitar M. The prognostic significance of p16INK4a/p14ARF and p15INK4b deletions in adult acute lymphoblastic leukemiaClin Cancer Res51855-18611999. 55. Faderl S, Kantarjian HM, Manshouri T, Chan CY, Pierce S, Hays KJ, Cortes J, Thomas D, Estrov Z, and Albitar M. The prognostic significance of p16INK4a/p14ARF and p15INK4b deletions in adult acute lymphoblastic leukemia. Clin Cancer Res 5: 1855–1861, 1999.
56.
Feng WMarquez RTLu ZLiu JLu KHIssa JPFishman DMYu YBast RC Jr. Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down-regulated in human ovarian cancers by loss of heterozygosity and promoter methylationCancer1121489-15022008. 56. Feng W, Marquez RT, Lu Z, Liu J, Lu KH, Issa JP, Fishman DM, Yu Y, and Bast RC, Jr. Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down-regulated in human ovarian cancers by loss of heterozygosity and promoter methylation. Cancer 112: 1489–1502, 2008.
57.
Feng ZHu Wde Stanchina ETeresky AKJin SLowe SLevine AJ. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathwaysCancer Res673043-30532007. 57. Feng Z, Hu W, de Stanchina E, Teresky AK, Jin S, Lowe S, and Levine AJ. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 67: 3043–3053, 2007.
58.
Feng ZZhang HLevine AJJin S. The coordinate regulation of the p53 and mTOR pathways in cellsProc Natl Acad Sci USA1028204-82092005. 58. Feng Z, Zhang H, Levine AJ, and Jin S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA 102: 8204–8209, 2005.
59.
Fimia GMStoykova ARomagnoli AGiunta LDi Bartolomeo SNardacci RCorazzari MFuoco CUcar ASchwartz PGruss PPiacentini MChowdhury KCecconi F. AMBRA1 regulates autophagy and development of the nervous systemNature4471121-11252007. 59. Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P, Piacentini M, Chowdhury K, and Cecconi F. AMBRA1 regulates autophagy and development of the nervous system. Nature 447: 1121–1125, 2007.
60.
Fingar DCBlenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progressionOncogene233151-31712004. 60. Fingar DC and Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23: 3151–3171, 2004.
61.
Fujita NHayashi-Nishino MFukumoto HOmori HYamamoto ANoda TYoshimori T. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closureMol Biol Cell194651-46592008. 61. Fujita N, Hayashi-Nishino M, Fukumoto H, Omori H, Yamamoto A, Noda T, and Yoshimori T. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol Biol Cell 19: 4651–4659, 2008.
62.
Fujita NItoh TOmori HFukuda MNoda TYoshimori T. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagyMol Biol Cell192092-21002008. 62. Fujita N, Itoh T, Omori H, Fukuda M, Noda T, and Yoshimori T. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 19: 2092–2100, 2008.
63.
Funakoshi TMatsuura ANoda TOhsumi Y. Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiaeGene192207-2131997. 63. Funakoshi T, Matsuura A, Noda T, and Ohsumi Y. Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae. Gene 192: 207–213, 1997.
64.
Furuta SHidaka EOgata AYokota SKamata T. Ras is involved in the negative control of autophagy through the class I PI3-kinaseOncogene233898-39042004. 64. Furuta S, Hidaka E, Ogata A, Yokota S, and Kamata T. Ras is involved in the negative control of autophagy through the class I PI3-kinase. Oncogene 23: 3898–3904, 2004.
65.
Galluzzi LBlomgren KKroemer G. Mitochondrial membrane permeabilization in neuronal injuryNat Rev Neurosci10481-4942009. 65. Galluzzi L, Blomgren K, and Kroemer G. Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci 10: 481–494, 2009.
66.
Galluzzi LMaiuri MCVitale IZischka HCastedo MZitvogel LKroemer G. Cell death modalities: classification and pathophysiological implicationsCell Death Differ141237-12432007. 66. Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, and Kroemer G. Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14: 1237–1243, 2007.
67.
Galluzzi LMorselli EKepp OMaiuri MCKroemer G. Defective autophagy control by the p53 rheostat in cancerCell Cycle9250-2552010. 67. Galluzzi L, Morselli E, Kepp O, Maiuri MC, and Kroemer G. Defective autophagy control by the p53 rheostat in cancer. Cell Cycle 9: 250–255, 2010.
68.
Galluzzi LMorselli EKepp OVitale IPinti MKroemer G. Mitochondrial liasons of p53Antioxid Redox Signal2011[Epub ahead of print]. 68. Galluzzi L, Morselli E, Kepp O, Vitale I, Pinti M, and Kroemer G. Mitochondrial liasons of p53. Antioxid Redox Signal 2011 [Epub ahead of print] DOI: 10.1089/ars.2010.3504.
69.
Galluzzi LMorselli EKepp OVitale IRigoni AVacchelli EMichaud MZischka HCastedo MKroemer G. Mitochondrial gateways to cancerMol Aspects Med311-202010. 69. Galluzzi L, Morselli E, Kepp O, Vitale I, Rigoni A, Vacchelli E, Michaud M, Zischka H, Castedo M, and Kroemer G. Mitochondrial gateways to cancer. Mol Aspects Med 31: 1–20, 2010.
70.
Galluzzi LVicencio JMKepp OTasdemir EMaiuri MCKroemer G. To die or not to die: that is the autophagic questionCurr Mol Med878-912008. 70. Galluzzi L, Vicencio JM, Kepp O, Tasdemir E, Maiuri MC, and Kroemer G. To die or not to die: that is the autophagic question. Curr Mol Med 8: 78–91, 2008.
71.
Ganley IGLam du HWang JDing XChen SJiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagyJ Biol Chem28412297-123052009. 71. Ganley IG, Lam du H, Wang J, Ding X, Chen S, and Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284: 12297–12305, 2009.
72.
Gao WDing WXStolz DBYin XM. Induction of macroautophagy by exogenously introduced calciumAutophagy4754-7612008. 72. Gao W, Ding WX, Stolz DB, and Yin XM. Induction of macroautophagy by exogenously introduced calcium. Autophagy 4: 754–761, 2008.
73.
Garami AZwartkruis FJNobukuni TJoaquin MRoccio MStocker HKozma SCHafen EBos JLThomas G. Insulin activation of RHEB, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2Mol Cell111457-14662003. 73. Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H, Kozma SC, Hafen E, Bos JL, and Thomas G. Insulin activation of RHEB, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 11: 1457–1466, 2003.
74.
Gazzeri SDella Valle VChaussade LBrambilla CLarsen CJBrambilla E. The human p19ARF protein encoded by the beta transcript of the p16INK4a gene is frequently lost in small cell lung cancerCancer Res583926-39311998. 74. Gazzeri S, Della Valle V, Chaussade L, Brambilla C, Larsen CJ, and Brambilla E. The human p19ARF protein encoded by the beta transcript of the p16INK4a gene is frequently lost in small cell lung cancer. Cancer Res 58: 3926–3931, 1998.
75.
Gelain DPDalmolin RJBelau VLMoreira JCKlamt FCastro MA. A systematic review of human antioxidant genesFront Biosci144457-44632009. 75. Gelain DP, Dalmolin RJ, Belau VL, Moreira JC, Klamt F, and Castro MA. A systematic review of human antioxidant genes. Front Biosci 14: 4457–4463, 2009.
76.
Geng JKlionsky DJ. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. “Protein modifications: beyond the usual suspects” review seriesEMBO Rep9859-8642008. 76. Geng J and Klionsky DJ. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. “Protein modifications: beyond the usual suspects” review series. EMBO Rep 9: 859–864, 2008.
77.
Gillings ASBalmanno KWiggins CMJohnson MCook SJ. Apoptosis and autophagy: BIM as a mediator of tumour cell death in response to oncogene-targeted therapeuticsFEBS J2766050-60622009. 77. Gillings AS, Balmanno K, Wiggins CM, Johnson M, and Cook SJ. Apoptosis and autophagy: BIM as a mediator of tumour cell death in response to oncogene-targeted therapeutics. FEBS J 276: 6050–6062, 2009.
78.
Glaumann HBallard FJLysosomes: Their Role in Protein BreakdownOrlando, LondonAcademic Press1987369-414. 78. Glaumann H and Ballard FJ. Lysosomes: Their Role in Protein Breakdown. Orlando, London: Academic Press, 1987, pp. 369–414.
79.
Gonzalez-Polo RABoya PPauleau ALJalil ALarochette NSouquere SEskelinen ELPierron GSaftig PKroemer G. The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic deathJ Cell Sci1183091-31022005. 79. Gonzalez-Polo RA, Boya P, Pauleau AL, Jalil A, Larochette N, Souquere S, Eskelinen EL, Pierron G, Saftig P, and Kroemer G. The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J Cell Sci 118: 3091–3102, 2005.
80.
Gordon PBSeglen PO. Prelysosomal convergence of autophagic and endocytic pathwaysBiochem Biophys Res Commun15140-471988. 80. Gordon PB and Seglen PO. Prelysosomal convergence of autophagic and endocytic pathways. Biochem Biophys Res Commun 151: 40–47, 1988.
81.
Grivennikov SIKarin M. Inflammation and oncogenesis: a vicious connectionCurr Opin Genet Dev2065-712010. 81. Grivennikov SI and Karin M. Inflammation and oncogenesis: a vicious connection. Curr Opin Genet Dev 20: 65–71, 2010.
82.
Guo KSearfoss GKrolikowski DPagnoni MFranks CClark KYu KTJaye MIvashchenko Y. Hypoxia induces the expression of the pro-apoptotic gene BNIP3Cell Death Differ8367-3762001. 82. Guo K, Searfoss G, Krolikowski D, Pagnoni M, Franks C, Clark K, Yu KT, Jaye M, and Ivashchenko Y. Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ 8: 367–376, 2001.
83.
Gwinn DMShackelford DBEgan DFMihaylova MMMery AVasquez DSTurk BEShaw RJ. AMPK phosphorylation of RAPTOR mediates a metabolic checkpointMol Cell30214-2262008. 83. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, and Shaw RJ. AMPK phosphorylation of RAPTOR mediates a metabolic checkpoint. Mol Cell 30: 214–226, 2008.
84.
Hanada TNoda NNSatomi YIchimura YFujioka YTakao TInagaki FOhsumi Y. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagyJ Biol Chem28237298-373022007. 84. Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, and Ohsumi Y. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282: 37298–37302, 2007.
85.
Hanada TOhsumi Y. Structure-function relationship of Atg12, a ubiquitin-like modifier essential for autophagyAutophagy1110-1182005. 85. Hanada T and Ohsumi Y. Structure-function relationship of Atg12, a ubiquitin-like modifier essential for autophagy. Autophagy 1: 110–118, 2005.
86.
Hara KMaruki YLong XYoshino KOshiro NHidayat STokunaga CAvruch JYonezawa K. RAPTOR, a binding partner of target of rapamycin (TOR), mediates TOR actionCell110177-1892002. 86. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, and Yonezawa K. RAPTOR, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110: 177–189, 2002.
87.
Harrison BKraus MBurch LStevens CCraig AGordon-Weeks PHupp TR. DAPK-1 binding to a linear peptide motif in MAP1B stimulates autophagy and membrane blebbingJ Biol Chem2839999-100142008. 87. Harrison B, Kraus M, Burch L, Stevens C, Craig A, Gordon-Weeks P, and Hupp TR. DAPK-1 binding to a linear peptide motif in MAP1B stimulates autophagy and membrane blebbing. J Biol Chem 283: 9999–10014, 2008.
88.
Hemminki AMarkie DTomlinson IAvizienyte ERoth SLoukola ABignell GWarren WAminoff MHoglund PJarvinen HKristo PPelin KRidanpaa MSalovaara RToro TBodmer WOlschwang SOlsen ASStratton MRde la Chapelle AAaltonen LA. A serine/threonine kinase gene defective in Peutz-Jeghers syndromeNature391184-1871998. 88. Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, Bignell G, Warren W, Aminoff M, Hoglund P, Jarvinen H, Kristo P, Pelin K, Ridanpaa M, Salovaara R, Toro T, Bodmer W, Olschwang S, Olsen AS, Stratton MR, de la Chapelle A, and Aaltonen LA. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391: 184–187, 1998.
89.
Herrero-Martin GHoyer-Hansen MGarcia-Garcia CFumarola CFarkas TLopez-Rivas AJaattela M. TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cellsEMBO J28677-6852009. 89. Herrero-Martin G, Hoyer-Hansen M, Garcia-Garcia C, Fumarola C, Farkas T, Lopez-Rivas A, and Jaattela M. TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28: 677–685, 2009.
90.
Hosokawa NSasaki TIemura SNatsume THara TMizushima N. Atg101, a novel mammalian autophagy protein interacting with Atg13Autophagy5973-9792009. 90. Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, and Mizushima N. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5: 973–979, 2009.
91.
Hoyer-Hansen MBastholm LSzyniarowski PCampanella MSzabadkai GFarkas TBianchi KFehrenbacher NElling FRizzuto RMathiasen ISJaattela M. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2Mol Cell25193-2052007. 91. Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, Mathiasen IS, and Jaattela M. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25: 193–205, 2007.
92.
Hoyer-Hansen MJaattela M. AMP-activated protein kinase: a universal regulator of autophagy?Autophagy3381-3832007. 92. Hoyer-Hansen M and Jaattela M. AMP-activated protein kinase: a universal regulator of autophagy? Autophagy 3: 381–383, 2007.
93.
Hoyer-Hansen MJaattela M. Autophagy: an emerging target for cancer therapyAutophagy4574-5802008. 93. Hoyer-Hansen M and Jaattela M. Autophagy: an emerging target for cancer therapy. Autophagy 4: 574–580, 2008.
94.
Huang SBjornsti MAHoughton PJ. Rapamycins: mechanism of action and cellular resistanceCancer Biol Ther2222-2322003. 94. Huang S, Bjornsti MA, and Houghton PJ. Rapamycins: mechanism of action and cellular resistance. Cancer Biol Ther 2: 222–232, 2003.
95.
Huang WPKlionsky DJ. Autophagy in yeast: a review of the molecular machineryCell Struct Funct27409-4202002. 95. Huang WP and Klionsky DJ. Autophagy in yeast: a review of the molecular machinery. Cell Struct Funct 27: 409–420, 2002.
96.
Inoki KLi YXu TGuan KL. RHEB GTPase is a direct target of TSC2 GAP activity and regulates mTOR signalingGenes Dev171829-18342003. 96. Inoki K, Li Y, Xu T, and Guan KL. RHEB GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17: 1829–1834, 2003.
97.
Inoki KLi YZhu TWu JGuan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signallingNat Cell Biol4648-6572002. 97. Inoki K, Li Y, Zhu T, Wu J, and Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4: 648–657, 2002.
98.
Ishihara NHamasaki MYokota SSuzuki KKamada YKihara AYoshimori TNoda TOhsumi Y. Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusionMol Biol Cell123690-37022001. 98. Ishihara N, Hamasaki M, Yokota S, Suzuki K, Kamada Y, Kihara A, Yoshimori T, Noda T, and Ohsumi Y. Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol Biol Cell 12: 3690–3702, 2001.
99.
Jager SBucci CTanida IUeno TKominami ESaftig PEskelinen EL. Role for Rab7 in maturation of late autophagic vacuolesJ Cell Sci1174837-48482004. 99. Jager S, Bucci C, Tanida I, Ueno T, Kominami E, Saftig P, and Eskelinen EL. Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 117: 4837–4848, 2004.
100.
Ji HRamsey MRHayes DNFan CMcNamara KKozlowski PTorrice CWu MCShimamura TPerera SALiang MCCai DNaumov GNBao LContreras CMLi DChen LKrishnamurthy JKoivunen JChirieac LRPadera RFBronson RTLindeman NIChristiani DCLin XShapiro GIJanne PAJohnson BEMeyerson MKwiatkowski DJCastrillon DHBardeesy NSharpless NEWong KK. LKB1 modulates lung cancer differentiation and metastasisNature448807-8102007. 100. Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P, Torrice C, Wu MC, Shimamura T, Perera SA, Liang MC, Cai D, Naumov GN, Bao L, Contreras CM, Li D, Chen L, Krishnamurthy J, Koivunen J, Chirieac LR, Padera RF, Bronson RT, Lindeman NI, Christiani DC, Lin X, Shapiro GI, Janne PA, Johnson BE, Meyerson M, Kwiatkowski DJ, Castrillon DH, Bardeesy N, Sharpless NE, and Wong KK. LKB1 modulates lung cancer differentiation and metastasis. Nature 448: 807–810, 2007.
101.
Jiang PDu WHeese KWu M. The Bad guy cooperates with good cop p53: Bad is transcriptionally up-regulated by p53 and forms a Bad/p53 complex at the mitochondria to induce apoptosisMol Cell Biol269071-90822006. 101. Jiang P, Du W, Heese K, Wu M. The Bad guy cooperates with good cop p53: Bad is transcriptionally up-regulated by p53 and forms a Bad/p53 complex at the mitochondria to induce apoptosis. Mol Cell Biol 26: 9071–9082, 2006.
102.
Jin S. Autophagy, mitochondrial quality control, and oncogenesisAutophagy280-842006. 102. Jin S. Autophagy, mitochondrial quality control, and oncogenesis. Autophagy 2: 80–84, 2006.
103.
Johannessen CMReczek EEJames MFBrems HLegius ECichowski K. The NF1 tumor suppressor critically regulates TSC2 and mTORProc Natl Acad Sci USA1028573-85782005. 103. Johannessen CM, Reczek EE, James MF, Brems H, Legius E, and Cichowski K. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci USA 102: 8573–8578, 2005.
104.
Jung CHJun CBRo SHKim YMOtto NMCao JKundu MKim DH. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machineryMol Biol Cell201992-20032009. 104. Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, and Kim DH. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20: 1992–2003, 2009.
105.
Kadowaki MKarim MRCarpi AMiotto G. Nutrient control of macroautophagy in mammalian cellsMol Aspects Med27426-4432006. 105. Kadowaki M, Karim MR, Carpi A, and Miotto G. Nutrient control of macroautophagy in mammalian cells. Mol Aspects Med 27: 426–443, 2006.
106.
Kamada YFunakoshi TShintani TNagano KOhsumi MOhsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complexJ Cell Biol1501507-15132000. 106. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, and Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150: 1507–1513, 2000.
107.
Kang MHReynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapyClin Cancer Res151126-11322009. 107. Kang MH and Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15: 1126–1132, 2009.
108.
Karantza-Wadsworth VPatel SKravchuk OChen GMathew RJin SWhite E. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesisGenes Dev211621-16352007. 108. Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S, and White E. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 21: 1621–1635, 2007.
109.
Kashuba VIGizatullin RZProtopopov AIAllikmets RKorolev SLi JBoldog FTory KZabarovska VMarcsek ZSumegi JKlein GZabarovsky ERKisselev L. NotI linking/jumping clones of human chromosome 3: mapping of the TFRC, RAB7 and HAUSP genes to regions rearranged in leukemia and deleted in solid tumorsFEBS Lett419181-1851997. 109. Kashuba VI, Gizatullin RZ, Protopopov AI, Allikmets R, Korolev S, Li J, Boldog F, Tory K, Zabarovska V, Marcsek Z, Sumegi J, Klein G, Zabarovsky ER, and Kisselev L. NotI linking/jumping clones of human chromosome 3: mapping of the TFRC, RAB7 and HAUSP genes to regions rearranged in leukemia and deleted in solid tumors. FEBS Lett 419: 181–185, 1997.
110.
Kawai AUchiyama HTakano SNakamura NOhkuma S. Autophagosome-lysosome fusion depends on the pH in acidic compartments in CHO cellsAutophagy3154-1572007. 110. Kawai A, Uchiyama H, Takano S, Nakamura N, and Ohkuma S. Autophagosome-lysosome fusion depends on the pH in acidic compartments in CHO cells. Autophagy 3: 154–157, 2007.
111.
Kepp OTesniere AZitvogel LKroemer G. The immunogenicity of tumor cell deathCurr Opin Oncol2171-762009. 111. Kepp O, Tesniere A, Zitvogel L, and Kroemer G. The immunogenicity of tumor cell death. Curr Opin Oncol 21: 71–76, 2009.
112.
Kim DHSarbassov DDAli SMKing JELatek RRErdjument-Bromage HTempst PSabatini DM. mTOR interacts with RAPTOR to form a nutrient-sensitive complex that signals to the cell growth machineryCell110163-1752002. 112. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, and Sabatini DM. mTOR interacts with RAPTOR to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110: 163–175, 2002.
113.
Kim MSJeong EGAhn CHKim SSLee SHYoo NJ. Frameshift mutation of UVRAG, an autophagy-related gene, in gastric carcinomas with microsatellite instabilityHum Pathol391059-10632008. 113. Kim MS, Jeong EG, Ahn CH, Kim SS, Lee SH, and Yoo NJ. Frameshift mutation of UVRAG, an autophagy-related gene, in gastric carcinomas with microsatellite instability. Hum Pathol 39: 1059–1063, 2008.
114.
Kirisako TIchimura YOkada HKabeya YMizushima NYoshimori TOhsumi MTakao TNoda TOhsumi Y. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathwayJ Cell Biol151263-2762000. 114. Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, and Ohsumi Y. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151: 263–276, 2000.
115.
Kirkin VLamark TSou YSBjorkoy GNunn JLBruun JAShvets EMcEwan DGClausen THWild PBilusic ITheurillat JPOvervatn AIshii TElazar ZKomatsu MDikic IJohansen T. A role for NBR1 in autophagosomal degradation of ubiquitinated substratesMol Cell33505-5162009. 115. Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA, Shvets E, McEwan DG, Clausen TH, Wild P, Bilusic I, Theurillat JP, Overvatn A, Ishii T, Elazar Z, Komatsu M, Dikic I, and Johansen T. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33: 505–516, 2009.
116.
Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decadeNat Rev Mol Cell Biol8931-9372007. 116. Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8: 931–937, 2007.
117.
Klionsky DJ. Neurodegeneration: good riddance to bad rubbishNature441819-8202006. 117. Klionsky DJ. Neurodegeneration: good riddance to bad rubbish. Nature 441: 819–820, 2006.
118.
Klionsky DJAbeliovich HAgostinis PAgrawal DKAliev GAskew DSBaba MBaehrecke EHBahr BABallabio ABamber BABassham DCBergamini EBi XBiard-Piechaczyk MBlum JSBredesen DEBrodsky JLBrumell JHBrunk UTBursch WCamougrand NCebollero ECecconi FChen YChin LSChoi AChu CTChung JClarke PGClark RSClarke SGClave CCleveland JLCodogno PColombo MICoto-Montes ACregg JMCuervo AMDebnath JDemarchi FDennis PBDennis PADeretic VDevenish RJDi Sano FDice JFDifiglia MDinesh-Kumar SDistelhorst CWDjavaheri-Mergny MDorsey FCDroge WDron MDunn WA Jr.Duszenko MEissa NTElazar ZEsclatine AEskelinen ELFesus LFinley KDFuentes JMFueyo JFujisaki KGalliot BGao FBGewirtz DAGibson SBGohla AGoldberg ALGonzalez RGonzalez-Estevez CGorski SGottlieb RAHaussinger DHe YWHeidenreich KHill JAHoyer-Hansen MHu XHuang WPIwasaki AJaattela MJackson WTJiang XJin SJohansen TJung JUKadowaki MKang CKelekar AKessel DHKiel JAKim HPKimchi AKinsella TJKiselyov KKitamoto KKnecht EKomatsu MKominami EKondo SKovacs ALKroemer GKuan CYKumar RKundu MLandry JLaporte MLe WLei HYLenardo MJLevine BLieberman ALim KLLin FCLiou WLiu LFLopez-Berestein GLopez-Otin CLu BMacleod KFMalorni WMartinet WMatsuoka KMautner JMeijer AJMelendez AMichels PMiotto GMistiaen WPMizushima NMograbi BMonastyrska IMoore MNMoreira PIMoriyasu YMotyl TMunz CMurphy LONaqvi NINeufeld TPNishino INixon RANoda TNurnberg BOgawa MOleinick NLOlsen LJOzpolat BPaglin SPalmer GEPapassideri IParkes MPerlmutter DHPerry GPiacentini MPinkas-Kramarski RPrescott MProikas-Cezanne TRaben NRami AReggiori FRohrer BRubinsztein DCRyan KMSadoshima JSakagami HSakai YSandri MSasakawa CSass MSchneider CSeglen POSeleverstov OSettleman JShacka JJShapiro IMSibirny ASilva-Zacarin ECSimon HUSimone CSimonsen ASmith MASpanel-Borowski KSrinivas VSteeves MStenmark HStromhaug PESubauste CSSugimoto SSulzer DSuzuki TSwanson MSTabas ITakeshita FTalbot NJTalloczy ZTanaka KTanida ITaylor GSTaylor JPTerman ATettamanti GThompson CBThumm MTolkovsky AMTooze SATruant RTumanovska LVUchiyama YUeno TUzcategui NLvan der Klei IVaquero ECVellai TVogel MWWang HGWebster PWiley JWXi ZXiao GYahalom JYang JMYap GYin XMYoshimori TYu LYue ZYuzaki MZabirnyk OZheng XZhu XDeter RL. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotesAutophagy4151-1752008. 118. Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, Bamber BA, Bassham DC, Bergamini E, Bi X, Biard-Piechaczyk M, Blum JS, Bredesen DE, Brodsky JL, Brumell JH, Brunk UT, Bursch W, Camougrand N, Cebollero E, Cecconi F, Chen Y, Chin LS, Choi A, Chu CT, Chung J, Clarke PG, Clark RS, Clarke SG, Clave C, Cleveland JL, Codogno P, Colombo MI, Coto-Montes A, Cregg JM, Cuervo AM, Debnath J, Demarchi F, Dennis PB, Dennis PA, Deretic V, Devenish RJ, Di Sano F, Dice JF, Difiglia M, Dinesh-Kumar S, Distelhorst CW, Djavaheri-Mergny M, Dorsey FC, Droge W, Dron M, Dunn WA, Jr., Duszenko M, Eissa NT, Elazar Z, Esclatine A, Eskelinen EL, Fesus L, Finley KD, Fuentes JM, Fueyo J, Fujisaki K, Galliot B, Gao FB, Gewirtz DA, Gibson SB, Gohla A, Goldberg AL, Gonzalez R, Gonzalez-Estevez C, Gorski S, Gottlieb RA, Haussinger D, He YW, Heidenreich K, Hill JA, Hoyer-Hansen M, Hu X, Huang WP, Iwasaki A, Jaattela M, Jackson WT, Jiang X, Jin S, Johansen T, Jung JU, Kadowaki M, Kang C, Kelekar A, Kessel DH, Kiel JA, Kim HP, Kimchi A, Kinsella TJ, Kiselyov K, Kitamoto K, Knecht E, Komatsu M, Kominami E, Kondo S, Kovacs AL, Kroemer G, Kuan CY, Kumar R, Kundu M, Landry J, Laporte M, Le W, Lei HY, Lenardo MJ, Levine B, Lieberman A, Lim KL, Lin FC, Liou W, Liu LF, Lopez-Berestein G, Lopez-Otin C, Lu B, Macleod KF, Malorni W, Martinet W, Matsuoka K, Mautner J, Meijer AJ, Melendez A, Michels P, Miotto G, Mistiaen WP, Mizushima N, Mograbi B, Monastyrska I, Moore MN, Moreira PI, Moriyasu Y, Motyl T, Munz C, Murphy LO, Naqvi NI, Neufeld TP, Nishino I, Nixon RA, Noda T, Nurnberg B, Ogawa M, Oleinick NL, Olsen LJ, Ozpolat B, Paglin S, Palmer GE, Papassideri I, Parkes M, Perlmutter DH, Perry G, Piacentini M, Pinkas-Kramarski R, Prescott M, Proikas-Cezanne T, Raben N, Rami A, Reggiori F, Rohrer B, Rubinsztein DC, Ryan KM, Sadoshima J, Sakagami H, Sakai Y, Sandri M, Sasakawa C, Sass M, Schneider C, Seglen PO, Seleverstov O, Settleman J, Shacka JJ, Shapiro IM, Sibirny A, Silva-Zacarin EC, Simon HU, Simone C, Simonsen A, Smith MA, Spanel-Borowski K, Srinivas V, Steeves M, Stenmark H, Stromhaug PE, Subauste CS, Sugimoto S, Sulzer D, Suzuki T, Swanson MS, Tabas I, Takeshita F, Talbot NJ, Talloczy Z, Tanaka K, Tanida I, Taylor GS, Taylor JP, Terman A, Tettamanti G, Thompson CB, Thumm M, Tolkovsky AM, Tooze SA, Truant R, Tumanovska LV, Uchiyama Y, Ueno T, Uzcategui NL, van der Klei I, Vaquero EC, Vellai T, Vogel MW, Wang HG, Webster P, Wiley JW, Xi Z, Xiao G, Yahalom J, Yang JM, Yap G, Yin XM, Yoshimori T, Yu L, Yue Z, Yuzaki M, Zabirnyk O, Zheng X, Zhu X, and Deter RL. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4: 151–175, 2008.
119.
Klionsky DJCregg JMDunn WA Jr.Emr SDSakai YSandoval IVSibirny ASubramani SThumm MVeenhuis MOhsumi Y. A unified nomenclature for yeast autophagy-related genesDev Cell5539-5452003. 119. Klionsky DJ, Cregg JM, Dunn WA, Jr., Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, and Ohsumi Y. A unified nomenclature for yeast autophagy-related genes. Dev Cell 5: 539–545, 2003.
120.
Kochl RHu XWChan EYTooze SA. Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomesTraffic7129-1452006. 120. Kochl R, Hu XW, Chan EY, and Tooze SA. Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic 7: 129–145, 2006.
121.
Komatsu MWaguri SUeno TIwata JMurata STanida IEzaki JMizushima NOhsumi YUchiyama YKominami ETanaka KChiba T. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient miceJ Cell Biol169425-4342005. 121. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, and Chiba T. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169: 425–434, 2005.
122.
Kroemer GEl-Deiry WSGolstein PPeter MEVaux DVandenabeele PZhivotovsky BBlagosklonny MVMalorni WKnight RAPiacentini MNagata SMelino G. Classification of cell death: recommendations of the Nomenclature Committee on Cell DeathCell Death Differ12 Suppl21463-14672005. 122. Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, Zhivotovsky B, Blagosklonny MV, Malorni W, Knight RA, Piacentini M, Nagata S, and Melino G. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 12 Suppl 2: 1463–1467, 2005.
123.
Kroemer GGalluzzi LBrenner C. Mitochondrial membrane permeabilization in cell deathPhysiol Rev8799-1632007. 123. Kroemer G, Galluzzi L, and Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 87: 99–163, 2007.
124.
Kroemer GGalluzzi LVandenabeele PAbrams JAlnemri ESBaehrecke EHBlagosklonny MVEl-Deiry WSGolstein PGreen DRHengartner MKnight RAKumar SLipton SAMalorni WNunez GPeter METschopp JYuan JPiacentini MZhivotovsky BMelino G. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009Cell Death Differ163-112009. 124. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, and Melino G. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16: 3–11, 2009.
125.
Kroemer GLevine B. Autophagic cell death: the story of a misnomerNat Rev Mol Cell Biol91004-10102008. 125. Kroemer G and Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9: 1004–1010, 2008.
126.
Kroemer GPouyssegur J. Tumor cell metabolism: cancer's Achilles' heelCancer Cell13472-4822008. 126. Kroemer G and Pouyssegur J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13: 472–482, 2008.
127.
Kruse KBBrodsky JLMcCracken AA. Autophagy: an ER protein quality control processAutophagy2135-1372006. 127. Kruse KB, Brodsky JL, and McCracken AA. Autophagy: an ER protein quality control process. Autophagy 2: 135–137, 2006.
128.
Kuma AHatano MMatsui MYamamoto ANakaya HYoshimori TOhsumi YTokuhisa TMizushima N. The role of autophagy during the early neonatal starvation periodNature4321032-10362004. 128. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, and Mizushima N. The role of autophagy during the early neonatal starvation period. Nature 432: 1032–1036, 2004.
129.
Kumar RSauroja IPunnonen KJansen CHemminki K. Selective deletion of exon 1 beta of the p19ARF gene in metastatic melanoma cell linesGenes Chromosomes Cancer23273-2771998. 129. Kumar R, Sauroja I, Punnonen K, Jansen C, and Hemminki K. Selective deletion of exon 1 beta of the p19ARF gene in metastatic melanoma cell lines. Genes Chromosomes Cancer 23: 273–277, 1998.
130.
Kundu JKSurh YJ. Inflammation: gearing the journey to cancerMutat Res65915-302008. 130. Kundu JK and Surh YJ. Inflammation: gearing the journey to cancer. Mutat Res 659: 15–30, 2008.
131.
Labi VErlacher MKiessling SVillunger A. BH3-only proteins in cell death initiation, malignant disease and anticancer therapyCell Death Differ131325-13382006. 131. Labi V, Erlacher M, Kiessling S, and Villunger A. BH3-only proteins in cell death initiation, malignant disease and anticancer therapy. Cell Death Differ 13: 1325–1338, 2006.
132.
Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and agingRejuvenation Res83-52005. 132. Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8: 3–5, 2005.
133.
Levine B. Cell biology: autophagy and cancerNature446745-7472007. 133. Levine B. Cell biology: autophagy and cancer. Nature 446: 745–747, 2007.
134.
Levine B. Eating oneself and uninvited guests: autophagy-related pathways in cellular defenseCell120159-1622005. 134. Levine B. Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120: 159–162, 2005.
135.
Levine BKlionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagyDev Cell6463-4772004. 135. Levine B and Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6: 463–477, 2004.
136.
Levine BKroemer G. Autophagy in the pathogenesis of diseaseCell13227-422008. 136. Levine B and Kroemer G. Autophagy in the pathogenesis of disease. Cell 132: 27–42, 2008.
137.
Liang CFeng PKu BDotan ICanaani DOh BHJung JU. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAGNat Cell Biol8688-6992006. 137. Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, and Jung JU. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8: 688–699, 2006.
138.
Liang CLee JSInn KSGack MULi QRoberts EAVergne IDeretic VFeng PAkazawa CJung JU. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic traffickingNat Cell Biol10776-7872008. 138. Liang C, Lee JS, Inn KS, Gack MU, Li Q, Roberts EA, Vergne I, Deretic V, Feng P, Akazawa C, and Jung JU. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol 10: 776–787, 2008.
139.
Liang JShao SHXu ZXHennessy BDing ZLarrea MKondo SDumont DJGutterman JUWalker CLSlingerland JMMills GB. The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosisNat Cell Biol9218-2242007. 139. Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M, Kondo S, Dumont DJ, Gutterman JU, Walker CL, Slingerland JM, and Mills GB. The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9: 218–224, 2007.
140.
Liang XHJackson SSeaman MBrown KKempkes BHibshoosh HLevine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1Nature402672-6761999. 140. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, and Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402: 672–676, 1999.
141.
Lizcano JMGoransson OToth RDeak MMorrice NABoudeau JHawley SAUdd LMakela TPHardie DGAlessi DR. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1EMBO J23833-8432004. 141. Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Makela TP, Hardie DG, and Alessi DR. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23: 833–843, 2004.
142.
Locke M. The ultrastructure of the oenocytes in the molt/intermolt cycle of an insectTissue Cell1103-1541969. 142. Locke M. The ultrastructure of the oenocytes in the molt/intermolt cycle of an insect. Tissue Cell 1: 103–154, 1969.
143.
Locke MSykes AK. The role of the Golgi complex in the isolation and digestion of organellesTissue Cell7143-1581975. 143. Locke M and Sykes AK. The role of the Golgi complex in the isolation and digestion of organelles. Tissue Cell 7: 143–158, 1975.
144.
Loewith RJacinto EWullschleger SLorberg ACrespo JLBonenfant DOppliger WJenoe PHall MN. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth controlMol Cell10457-4682002. 144. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, and Hall MN. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10: 457–468, 2002.
145.
Lomonaco SLFinniss SXiang CDecarvalho AUmansky FKalkanis SNMikkelsen TBrodie C. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cellsInt J Cancer125717-7222009. 145. Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F, Kalkanis SN, Mikkelsen T, and Brodie C. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer 125: 717–722, 2009.
146.
Lomonosova EChinnadurai G. BH3-only proteins in apoptosis and beyond: an overviewOncogene27 Suppl1S2-S192008. 146. Lomonosova E and Chinnadurai G. BH3-only proteins in apoptosis and beyond: an overview. Oncogene 27 Suppl 1: S2–S19, 2008.
147.
Lu ZLuo RZLu YZhang XYu QKhare SKondo SKondo YYu YMills GBLiao WSBast RC Jr. The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cellsJ Clin Invest1183917-39292008. 147. Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare S, Kondo S, Kondo Y, Yu Y, Mills GB, Liao WS, Bast RC, Jr. The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest 118: 3917–3929, 2008.
148.
Lum JJBauer DEKong MHarris MHLi CLindsten TThompson CB. Growth factor regulation of autophagy and cell survival in the absence of apoptosisCell120237-2482005. 148. Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, and Thompson CB. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120: 237–248, 2005.
149.
Luo SChen QCebollero EXing D. Mitochondria: one of the origins for autophagosomal membranes?Mitochondrion9227-2312009. 149. Luo S, Chen Q, Cebollero E, and Xing D. Mitochondria: one of the origins for autophagosomal membranes? Mitochondrion 9: 227–231, 2009.
150.
Luzio JPPryor PRBright NA. Lysosomes: fusion and functionNat Rev Mol Cell Biol8622-6322007. 150. Luzio JP, Pryor PR, and Bright NA. Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8: 622–632, 2007.
151.
Ma LChen ZErdjument-Bromage HTempst PPandolfi PP. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesisCell121179-1932005. 151. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, and Pandolfi PP. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121: 179–193, 2005.
152.
Madeo FEisenberg TKroemer G. Autophagy for the avoidance of neurodegenerationGenes Dev232253-22592009. 152. Madeo F, Eisenberg T, and Kroemer G. Autophagy for the avoidance of neurodegeneration. Genes Dev 23: 2253–2259, 2009.
153.
Maiuri MCCriollo ATasdemir EVicencio JMTajeddine NHickman JAGeneste OKroemer G. BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L)Autophagy3374-3762007. 153. Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N, Hickman JA, Geneste O, and Kroemer G. BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy 3: 374–376, 2007.
154.
Maiuri MCGalluzzi LMorselli EKepp OMalik SAKroemer G. Autophagy regulation by p53Curr Opin Cell Biol22181-1852010. 154. Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, and Kroemer G. Autophagy regulation by p53. Curr Opin Cell Biol 22: 181–185, 2010.
155.
Maiuri MCLe Toumelin GCriollo ARain JCGautier FJuin PTasdemir EPierron GTroulinaki KTavernarakis NHickman JAGeneste OKroemer G. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1EMBO J262527-25392007. 155. Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, Hickman JA, Geneste O, and Kroemer G. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 26: 2527–2539, 2007.
156.
Maiuri MCMalik SAMorselli EKepp OCriollo AMouchel PLCarnuccio RKroemer G. Stimulation of autophagy by the p53 target gene Sestrin2Cell Cycle81571-15762009. 156. Maiuri MC, Malik SA, Morselli E, Kepp O, Criollo A, Mouchel PL, Carnuccio R, and Kroemer G. Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle 8: 1571–1576, 2009.
157.
Maiuri MCZalckvar EKimchi AKroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosisNat Rev Mol Cell Biol8741-7522007. 157. Maiuri MC, Zalckvar E, Kimchi A, and Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8: 741–752, 2007.
158.
Manning BDCantley LC. AKT/PKB signaling: navigating downstreamCell1291261-12742007. 158. Manning BD and Cantley LC. AKT/PKB signaling: navigating downstream. Cell 129: 1261–1274, 2007.
159.
Mari MMorales AColell AGarcia-Ruiz CFernandez-Checa JC. Mitochondrial glutathione, a key survival antioxidantAntioxid Redox Signal112685-27002009. 159. Mari M, Morales A, Colell A, Garcia-Ruiz C, and Fernandez-Checa JC. Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11: 2685–2700, 2009.
160.
Marino GSalvador-Montoliu NFueyo AKnecht EMizushima NLopez-Otin C. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3J Biol Chem28218573-185832007. 160. Marino G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N, and Lopez-Otin C. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem 282: 18573–18583, 2007.
161.
Marnett LJ. Oxyradicals and DNA damageCarcinogenesis21361-3702000. 161. Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis 21: 361–370, 2000.
162.
Martoriati ADoumont GAlcalay MBellefroid EPelicci PGMarine JC. dapk1, encoding an activator of a p19ARF-p53-mediated apoptotic checkpoint, is a transcription target of p53Oncogene241461-14662005. 162. Martoriati A, Doumont G, Alcalay M, Bellefroid E, Pelicci PG, and Marine JC. dapk1, encoding an activator of a p19ARF-p53-mediated apoptotic checkpoint, is a transcription target of p53. Oncogene 24: 1461–1466, 2005.
163.
Mathew RKarp CMBeaudoin BVuong NChen GChen HYBray KReddy ABhanot GGelinas CDipaola RSKarantza-Wadsworth VWhite E. Autophagy suppresses tumorigenesis through elimination of p62Cell1371062-10752009. 163. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, Dipaola RS, Karantza-Wadsworth V, and White E. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137: 1062–1075, 2009.
164.
Mathew RKongara SBeaudoin BKarp CMBray KDegenhardt KChen GJin SWhite E. Autophagy suppresses tumor progression by limiting chromosomal instabilityGenes Dev211367-13812007. 164. Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K, Chen G, Jin S, and White E. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 21: 1367–1381, 2007.
165.
Matsunaga KSaitoh TTabata KOmori HSatoh TKurotori NMaejima IShirahama-Noda KIchimura TIsobe TAkira SNoda TYoshimori T. Two Beclin 1-binding proteins, Atg14L and RUBICON, reciprocally regulate autophagy at different stagesNat Cell Biol11385-3962009. 165. Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, and Yoshimori T. Two Beclin 1-binding proteins, Atg14L and RUBICON, reciprocally regulate autophagy at different stages. Nat Cell Biol 11: 385–396, 2009.
166.
Matsushita MSuzuki NNObara KFujioka YOhsumi YInagaki F. Structure of Atg5.Atg16, a complex essential for autophagyJ Biol Chem2826763-67722007. 166. Matsushita M, Suzuki NN, Obara K, Fujioka Y, Ohsumi Y, and Inagaki F. Structure of Atg5.Atg16, a complex essential for autophagy. J Biol Chem 282: 6763–6772, 2007.
167.
Mazure NMPouyssegur J. Hypoxia-induced autophagy: cell death or cell survival?Curr Opin Cell Biol22177-1802010. 167. Mazure NM and Pouyssegur J. Hypoxia-induced autophagy: cell death or cell survival? Curr Opin Cell Biol 22: 177–180, 2010.
168.
Mellert HSykes SMMurphy MEMcMahon SB. The ARF/oncogene pathway activates p53 acetylation within the DNA binding domainCell Cycle61304-13062007. 168. Mellert H, Sykes SM, Murphy ME, and McMahon SB. The ARF/oncogene pathway activates p53 acetylation within the DNA binding domain. Cell Cycle 6: 1304–1306, 2007.
169.
Mercer CAKaliappan ADennis PB. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagyAutophagy5649-6622009. 169. Mercer CA, Kaliappan A, and Dennis PB. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 5: 649–662, 2009.
170.
Meshinchi SStirewalt DLAlonzo TAZhang QSweetser DAWoods WGBernstein IDArceci RJRadich JP. Activating mutations of RTK/ras signal transduction pathway in pediatric acute myeloid leukemiaBlood1021474-14792003. 170. Meshinchi S, Stirewalt DL, Alonzo TA, Zhang Q, Sweetser DA, Woods WG, Bernstein ID, Arceci RJ, and Radich JP. Activating mutations of RTK/ras signal transduction pathway in pediatric acute myeloid leukemia. Blood 102: 1474–1479, 2003.
171.
Miracco CCosci EOliveri GLuzi PPacenti LMonciatti IMannucci SDe Nisi MCToscano MMalagnino VFalzarano SMPirtoli LTosi P. Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumoursInt J Oncol30429-4362007. 171. Miracco C, Cosci E, Oliveri G, Luzi P, Pacenti L, Monciatti I, Mannucci S, De Nisi MC, Toscano M, Malagnino V, Falzarano SM, Pirtoli L, and Tosi P. Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours. Int J Oncol 30: 429–436, 2007.
172.
Miyashita TKrajewski SKrajewska MWang HGLin HKLiebermann DAHoffman BReed JC. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivoOncogene91799-18051994. 172. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, and Reed JC. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9: 1799–1805, 1994.
173.
Mizushima NNoda TYoshimori TTanaka YIshii TGeorge MDKlionsky DJOhsumi MOhsumi Y. A protein conjugation system essential for autophagyNature395395-3981998. 173. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, and Ohsumi Y. A protein conjugation system essential for autophagy. Nature 395: 395–398, 1998.
174.
Mizushima NSugita HYoshimori TOhsumi Y. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagyJ Biol Chem27333889-338921998. 174. Mizushima N, Sugita H, Yoshimori T, and Ohsumi Y. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J Biol Chem 273: 33889–33892, 1998.
175.
Moreau KLuo SRubinsztein DC. Cytoprotective roles for autophagyCurr Opin Cell Biol22206-2112010. 175. Moreau K, Luo S, and Rubinsztein DC. Cytoprotective roles for autophagy. Curr Opin Cell Biol 22: 206–211, 2010.
176.
Morselli EGalluzzi LKepp OCriollo AMaiuri MCTavernarakis NMadeo FKroemer G. Autophagy mediates pharmacological lifespan extension by spermidine and resveratrolAging1961-9702009. 176. Morselli E, Galluzzi L, Kepp O, Criollo A, Maiuri MC, Tavernarakis N, Madeo F, and Kroemer G. Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol. Aging 1: 961–970, 2009.
177.
Morselli EGalluzzi LKepp OVicencio JMCriollo AMaiuri MCKroemer G. Anti- and pro-tumor functions of autophagyBiochim Biophys Acta17931524-15322009. 177. Morselli E, Galluzzi L, Kepp O, Vicencio JM, Criollo A, Maiuri MC, and Kroemer G. Anti- and pro-tumor functions of autophagy. Biochim Biophys Acta 1793: 1524–1532, 2009.
178.
Morselli EGalluzzi LKroemer G. Mechanisms of p53-mediated mitochondrial membrane permeabilizationCell Res18708-7102008. 178. Morselli E, Galluzzi L, and Kroemer G. Mechanisms of p53-mediated mitochondrial membrane permeabilization. Cell Res 18: 708–710, 2008.
179.
Morselli EMaiuri MCMarkaki MMegalou EPasparaki APalikaras KCriollo AGalluzzi LMalik SAVitale IMichaud MMadeo FTavernarakis NKroemer G. Caloric restriction and resveratrol prolong longevity via the Sirtuin-1-dependent induction of autophagyCell Death Dis1e102010. 179. Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi L, Malik SA, Vitale I, Michaud M, Madeo F, Tavernarakis N, and Kroemer G. Caloric restriction and resveratrol prolong longevity via the Sirtuin-1-dependent induction of autophagy. Cell Death Dis 1: e10, 2010.
180.
Morselli EMaiuri MCMarkaki MMegalou EPasparaki APalikaras KCriollo AGalluzzi LMalik SAVitale IMichaud MMadeo FTavernarakis NKroemer G. The life span-prolonging effect of Sirtuin-1 is mediated by autophagyAutophagy6186-1882010. 180. Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi L, Malik SA, Vitale I, Michaud M, Madeo F, Tavernarakis N, and Kroemer G. The life span-prolonging effect of Sirtuin-1 is mediated by autophagy. Autophagy 6: 186–188, 2010.
181.
Morselli ETasdemir EMaiuri MCGalluzzi LKepp OCriollo AVicencio JMSoussi TKroemer G. Mutant p53 protein localized in the cytoplasm inhibits autophagyCell Cycle73056-30612008. 181. Morselli E, Tasdemir E, Maiuri MC, Galluzzi L, Kepp O, Criollo A, Vicencio JM, Soussi T, and Kroemer G. Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle 7: 3056–3061, 2008.
182.
Nakano KVousden KH. PUMA, a novel proapoptotic gene, is induced by p53Mol Cell7683-6942001. 182. Nakano K and Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7: 683–694, 2001.
183.
Nakatogawa HIchimura YOhsumi Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusionCell130165-1782007. 183. Nakatogawa H, Ichimura Y, and Ohsumi Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130: 165–178, 2007.
184.
Nara AMizushima NYamamoto AKabeya YOhsumi YYoshimori T. SKD1 AAA ATPase-dependent endosomal transport is involved in autolysosome formationCell Struct Funct2729-372002. 184. Nara A, Mizushima N, Yamamoto A, Kabeya Y, Ohsumi Y, and Yoshimori T. SKD1 AAA ATPase-dependent endosomal transport is involved in autolysosome formation. Cell Struct Funct 27: 29–37, 2002.
185.
Nobukuni TKozma SCThomas G. hvps34, an ancient player, enters a growing game: mTOR Complex1/S6K1 signalingCurr Opin Cell Biol19135-1412007. 185. Nobukuni T, Kozma SC, and Thomas G. hvps34, an ancient player, enters a growing game: mTOR Complex1/S6K1 signaling. Curr Opin Cell Biol 19: 135–141, 2007.
186.
Novikoff AB. The proximal tubule cell in experimental hydronephrosisJ Biophys Biochem Cytol6136-1381959. 186. Novikoff AB. The proximal tubule cell in experimental hydronephrosis. J Biophys Biochem Cytol 6: 136–138, 1959.
187.
Nowak JArchange CTardivel-Lacombe JPontarotti PPebusque MJVaccaro MIVelasco GDagorn JCIovanna JL. The TP53INP2 protein is required for autophagy in mammalian cellsMol Biol Cell20870-8812009. 187. Nowak J, Archange C, Tardivel-Lacombe J, Pontarotti P, Pebusque MJ, Vaccaro MI, Velasco G, Dagorn JC, and Iovanna JL. The TP53INP2 protein is required for autophagy in mammalian cells. Mol Biol Cell 20: 870–881, 2009.
188.
Obeid MTesniere AGhiringhelli FFimia GMApetoh LPerfettini JLCastedo MMignot GPanaretakis TCasares NMetivier DLarochette Nvan Endert PCiccosanti FPiacentini MZitvogel LKroemer G. Calreticulin exposure dictates the immunogenicity of cancer cell deathNat Med1354-612007. 188. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N, Metivier D, Larochette N, van Endert P, Ciccosanti F, Piacentini M, Zitvogel L, and Kroemer G. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13: 54–61, 2007.
189.
Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systemsNat Rev Mol Cell Biol2211-2162001. 189. Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2: 211–216, 2001.
190.
Orsi APolson HETooze SA. Membrane trafficking events that partake in autophagyCurr Opin Cell Biol22150-1562010. 190. Orsi A, Polson HE, and Tooze SA. Membrane trafficking events that partake in autophagy. Curr Opin Cell Biol 22: 150–156, 2010.
191.
Papandreou ILim ALLaderoute KDenko NC. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3LCell Death Differ151572-15812008. 191. Papandreou I, Lim AL, Laderoute K, and Denko NC. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ 15: 1572–1581, 2008.
192.
Parsons DWWang TLSamuels YBardelli ACummins JMDeLong LSilliman NPtak JSzabo SWillson JKMarkowitz SKinzler KWVogelstein BLengauer CVelculescu VE. Colorectal cancer: mutations in a signalling pathwayNature4367922005. 192. Parsons DW, Wang TL, Samuels Y, Bardelli A, Cummins JM, DeLong L, Silliman N, Ptak J, Szabo S, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Lengauer C, and Velculescu VE. Colorectal cancer: mutations in a signalling pathway. Nature 436: 792, 2005.
193.
Pattingre SBauvy CCodogno P. Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cellsJ Biol Chem27816667-166742003. 193. Pattingre S, Bauvy C, and Codogno P. Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J Biol Chem 278: 16667–16674, 2003.
194.
Pattingre SEspert LBiard-Piechaczyk MCodogno P. Regulation of macroautophagy by mTOR and Beclin 1 complexesBiochimie90313-3232008. 194. Pattingre S, Espert L, Biard-Piechaczyk M, and Codogno P. Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 90: 313–323, 2008.
195.
Pattingre STassa AQu XGaruti RLiang XHMizushima NPacker MSchneider MDLevine B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagyCell122927-9392005. 195. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, and Levine B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122: 927–939, 2005.
196.
Pedersen PL. The cancer cell's “power plants” as promising therapeutic targets: an overviewJ Bioenerg Biomembr391-122007. 196. Pedersen PL. The cancer cell's “power plants” as promising therapeutic targets: an overview. J Bioenerg Biomembr 39: 1–12, 2007.
197.
Peifer CAlessi DR. Small-molecule inhibitors of PDK1Chem Med Chem31810-18382008. 197. Peifer C and Alessi DR. Small-molecule inhibitors of PDK1. Chem Med Chem 3: 1810–1838, 2008.
198.
Petiot AOgier-Denis EBlommaart EFMeijer AJCodogno P. Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cellsJ Biol Chem275992-9982000. 198. Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, and Codogno P. Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275: 992–998, 2000.
199.
Pietrzak MPuzianowska-Kuznicka M. p53-dependent repression of the human MCL-1 gene encoding an anti-apoptotic member of the BCL-2 family: the role of Sp1 and of basic transcription factor binding sites in the MCL-1 promoterBiol Chem389383-3932008. 199. Pietrzak M and Puzianowska-Kuznicka M. p53-dependent repression of the human MCL-1 gene encoding an anti-apoptotic member of the BCL-2 family: the role of Sp1 and of basic transcription factor binding sites in the MCL-1 promoter. Biol Chem 389: 383–393, 2008.
200.
Pimkina JHumbey OZilfou JTJarnik MMurphy ME. ARF induces autophagy by virtue of interaction with Bcl-xlJ Biol Chem2842803-28102009. 200. Pimkina J, Humbey O, Zilfou JT, Jarnik M, and Murphy ME. ARF induces autophagy by virtue of interaction with Bcl-xl. J Biol Chem 284: 2803–2810, 2009.
201.
Pimkina JMurphy ME. ARF, autophagy and tumor suppressionAutophagy5397-3992009. 201. Pimkina J and Murphy ME. ARF, autophagy and tumor suppression. Autophagy 5: 397–399, 2009.
202.
Qu XYu JBhagat GFuruya NHibshoosh HTroxel ARosen JEskelinen ELMizushima NOhsumi YCattoretti GLevine B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy geneJ Clin Invest1121809-18202003. 202. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, and Levine B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112: 1809–1820, 2003.
203.
Qu XZou ZSun QLuby-Phelps KCheng PHogan RNGilpin CLevine B. Autophagy gene-dependent clearance of apoptotic cells during embryonic developmentCell128931-9462007. 203. Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, Gilpin C, and Levine B. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128: 931–946, 2007.
204.
Rashmi RPillai SGVijayalingam SRyerse JChinnadurai G. BH3-only protein BIK induces caspase-independent cell death with autophagic features in Bcl-2 null cellsOncogene271366-13752008. 204. Rashmi R, Pillai SG, Vijayalingam S, Ryerse J, and Chinnadurai G. BH3-only protein BIK induces caspase-independent cell death with autophagic features in Bcl-2 null cells. Oncogene 27: 1366–1375, 2008.
205.
Raveh TDroguett GHorwitz MSDePinho RAKimchi A. DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformationNat Cell Biol31-72001. 205. Raveh T, Droguett G, Horwitz MS, DePinho RA, and Kimchi A. DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nat Cell Biol 3: 1–7, 2001.
206.
Ravikumar BVacher CBerger ZDavies JELuo SOroz LGScaravilli FEaston DFDuden RO'Kane CJRubinsztein DC. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington diseaseNat Genet36585-5952004. 206. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O'Kane CJ, and Rubinsztein DC. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36: 585–595, 2004.
207.
Reef SZalckvar EShifman OBialik SSabanay HOren MKimchi A. A short mitochondrial form of p19ARF induces autophagy and caspase-independent cell deathMol Cell22463-4752006. 207. Reef S, Zalckvar E, Shifman O, Bialik S, Sabanay H, Oren M, and Kimchi A. A short mitochondrial form of p19ARF induces autophagy and caspase-independent cell death. Mol Cell 22: 463–475, 2006.
208.
Rouschop KMvan den Beucken TDubois LNiessen HBussink JSavelkouls KKeulers TMujcic HLanduyt WVoncken JWLambin Pvan der Kogel AJKoritzinsky MWouters BG. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5J Clin Invest120127-1412010. 208. Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, Keulers T, Mujcic H, Landuyt W, Voncken JW, Lambin P, van der Kogel AJ, Koritzinsky M, and Wouters BG. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest 120: 127–141, 2010.
209.
Rubinsztein DCGestwicki JEMurphy LOKlionsky DJ. Potential therapeutic applications of autophagyNat Rev Drug Discov6304-3122007. 209. Rubinsztein DC, Gestwicki JE, Murphy LO, and Klionsky DJ. Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6: 304–312, 2007.
210.
Saftig PBeertsen WEskelinen EL. LAMP-2: a control step for phagosome and autophagosome maturationAutophagy4510-5122008. 210. Saftig P, Beertsen W, and Eskelinen EL. LAMP-2: a control step for phagosome and autophagosome maturation. Autophagy 4: 510–512, 2008.
211.
Samuels YEricson K. Oncogenic PI3K and its role in cancerCurr Opin Oncol1877-822006. 211. Samuels Y and Ericson K. Oncogenic PI3K and its role in cancer. Curr Opin Oncol 18: 77–82, 2006.
212.
Sarbassov DDAli SMSengupta SSheen JHHsu PPBagley AFMarkhard ALSabatini DM. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKBMol Cell22159-1682006. 212. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, and Sabatini DM. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22: 159–168, 2006.
213.
Sarbassov DDGuertin DAAli SMSabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complexScience3071098-11012005. 213. Sarbassov DD, Guertin DA, Ali SM, and Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307: 1098–1101, 2005.
214.
Schneider AYounis RHGutkind JS. Hypoxia-induced energy stress inhibits the mTOR pathway by activating an AMPK/REDD1 signaling axis in head and neck squamous cell carcinomaNeoplasia101295-13022008. 214. Schneider A, Younis RH, and Gutkind JS. Hypoxia-induced energy stress inhibits the mTOR pathway by activating an AMPK/REDD1 signaling axis in head and neck squamous cell carcinoma. Neoplasia 10: 1295–1302, 2008.
215.
Seizinger BR. NF1: a prevalent cause of tumorigenesis in human cancers?Nat Genet397-991993. 215. Seizinger BR. NF1: a prevalent cause of tumorigenesis in human cancers? Nat Genet 3: 97–99, 1993.
216.
Shaw RJBardeesy NManning BDLopez LKosmatka MDePinho RACantley LC. The LKB1 tumor suppressor negatively regulates mTOR signalingCancer Cell691-992004. 216. Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, and Cantley LC. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6: 91–99, 2004.
217.
Shen YLi DDWang LLDeng RZhu XF. Decreased expression of autophagy-related proteins in malignant epithelial ovarian cancerAutophagy41067-10682008. 217. Shen Y, Li DD, Wang LL, Deng R, and Zhu XF. Decreased expression of autophagy-related proteins in malignant epithelial ovarian cancer. Autophagy 4: 1067–1068, 2008.
218.
Shintani TKlionsky DJ. Autophagy in health and disease: a double-edged swordScience306990-9952004. 218. Shintani T and Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science 306: 990–995, 2004.
219.
Shintani TMizushima NOgawa YMatsuura ANoda TOhsumi Y. Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeastEmbo J185234-52411999. 219. Shintani T, Mizushima N, Ogawa Y, Matsuura A, Noda T, and Ohsumi Y. Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. Embo J 18: 5234–5241, 1999.
220.
Sou YSWaguri SIwata JUeno TFujimura THara TSawada NYamada AMizushima NUchiyama YKominami ETanaka KKomatsu M. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in miceMol Biol Cell194762-47752008. 220. Sou YS, Waguri S, Iwata J, Ueno T, Fujimura T, Hara T, Sawada N, Yamada A, Mizushima N, Uchiyama Y, Kominami E, Tanaka K, and Komatsu M. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 19: 4762–4775, 2008.
221.
Soussi T. p53 alterations in human cancer: more questions than answersOncogene262145-21562007. 221. Soussi T. p53 alterations in human cancer: more questions than answers. Oncogene 26: 2145–2156, 2007.
222.
Stanczyk MGromadzinska JWasowicz W. Roles of reactive oxygen species and selected antioxidants in regulation of cellular metabolismInt J Occup Med Environ Health1815-262005. 222. Stanczyk M, Gromadzinska J, and Wasowicz W. Roles of reactive oxygen species and selected antioxidants in regulation of cellular metabolism. Int J Occup Med Environ Health 18: 15–26, 2005.
223.
Sugars KLBudhram-Mahadeo VPackham GLatchman DS. A minimal Bcl-x promoter is activated by Brn-3a and repressed by p53Nucleic Acids Res294530-45402001. 223. Sugars KL, Budhram-Mahadeo V, Packham G, and Latchman DS. A minimal Bcl-x promoter is activated by Brn-3a and repressed by p53. Nucleic Acids Res 29: 4530–4540, 2001.
224.
Takahashi YCoppola DMatsushita NCualing HDSun MSato YLiang CJung JUCheng JQMule JJPledger WJWang HG. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesisNat Cell Biol91142-11512007. 224. Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mule JJ, Pledger WJ, and Wang HG. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9: 1142–1151, 2007.
225.
Takahashi YMeyerkord CLWang HG. BARgaining membranes for autophagosome formation: regulation of autophagy and tumorigenesis by Bif-1/Endophilin B1Autophagy4121-1242008. 225. Takahashi Y, Meyerkord CL, and Wang HG. BARgaining membranes for autophagosome formation: regulation of autophagy and tumorigenesis by Bif-1/Endophilin B1. Autophagy 4: 121–124, 2008.
226.
Takeshige KBaba MTsuboi SNoda TOhsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its inductionJ Cell Biol119301-3111992. 226. Takeshige K, Baba M, Tsuboi S, Noda T, and Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol 119: 301–311, 1992.
227.
Tanida ITanida-Miyake EKomatsu MUeno TKominami E. Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5pJ Biol Chem27713739-137442002. 227. Tanida I, Tanida-Miyake E, Komatsu M, Ueno T, and Kominami E. Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p. J Biol Chem 277: 13739–13744, 2002.
228.
Tanida IUeno TKominami E. LC3 conjugation system in mammalian autophagyInt J Biochem Cell Biol362503-25182004. 228. Tanida I, Ueno T, and Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 36: 2503–2518, 2004.
229.
Tasdemir EGalluzzi LMaiuri MCCriollo AVitale IHangen EModjtahedi NKroemer G. Methods for assessing autophagy and autophagic cell deathMethods Mol Biol44529-762008. 229. Tasdemir E, Galluzzi L, Maiuri MC, Criollo A, Vitale I, Hangen E, Modjtahedi N, and Kroemer G. Methods for assessing autophagy and autophagic cell death. Methods Mol Biol 445: 29–76, 2008.
230.
Tasdemir EMaiuri MCGalluzzi LVitale IDjavaheri-Mergny MD'Amelio MCriollo AMorselli EZhu CHarper FNannmark USamara CPinton PVicencio JMCarnuccio RMoll UMMadeo FPaterlini-Brechot PRizzuto RSzabadkai GPierron GBlomgren KTavernarakis NCodogno PCecconi FKroemer G. Regulation of autophagy by cytoplasmic p53Nat Cell Biol10676-6872008. 230. Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, Criollo A, Morselli E, Zhu C, Harper F, Nannmark U, Samara C, Pinton P, Vicencio JM, Carnuccio R, Moll UM, Madeo F, Paterlini-Brechot P, Rizzuto R, Szabadkai G, Pierron G, Blomgren K, Tavernarakis N, Codogno P, Cecconi F, and Kroemer G. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 10: 676–687, 2008.
231.
Tasdemir EMaiuri MCOrhon IKepp OMorselli ECriollo AKroemer G. p53 represses autophagy in a cell cycle-dependent fashionCell Cycle73006-30112008. 231. Tasdemir E, Maiuri MC, Orhon I, Kepp O, Morselli E, Criollo A, and Kroemer G. p53 represses autophagy in a cell cycle-dependent fashion. Cell Cycle 7: 3006–3011, 2008.
232.
Tasdemir EMaiuri MCTajeddine NVitale ICriollo AVicencio JMHickman JAGeneste OKroemer G. Cell cycle-dependent induction of autophagy, mitophagy and reticulophagyCell Cycle62263-22672007. 232. Tasdemir E, Maiuri MC, Tajeddine N, Vitale I, Criollo A, Vicencio JM, Hickman JA, Geneste O, and Kroemer G. Cell cycle-dependent induction of autophagy, mitophagy and reticulophagy. Cell Cycle 6: 2263–2267, 2007.
233.
Thoreen CCKang SAChang JWLiu QZhang JGao YReichling LJSim TSabatini DMGray NS. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1J Biol Chem2848023-80322009. 233. Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, and Gray NS. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284: 8023–8032, 2009.
234.
Thumm MEgner RKoch BSchlumpberger MStraub MVeenhuis MWolf DH. Isolation of autophagocytosis mutants of Saccharomyces cerevisiaeFEBS Lett349275-2801994. 234. Thumm M, Egner R, Koch B, Schlumpberger M, Straub M, Veenhuis M, and Wolf DH. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett 349: 275–280, 1994.
235.
Tsukada MOhsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiaeFEBS Lett333169-1741993. 235. Tsukada M and Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333: 169–174, 1993.
236.
van Slegtenhorst Mde Hoogt RHermans CNellist MJanssen BVerhoef SLindhout Dvan den Ouweland AHalley DYoung JBurley MJeremiah SWoodward KNahmias JFox MEkong ROsborne JWolfe JPovey SSnell RGCheadle JPJones ACTachataki MRavine DSampson JRReeve MPRichardson PWilmer FMunro CHawkins TLSepp TAli JBWard SGreen AJYates JRKwiatkowska JHenske EPShort MPHaines JHJozwiak SKwiatkowski DJ. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34Science277805-8081997. 236. van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S, Lindhout D, van den Ouweland A, Halley D, Young J, Burley M, Jeremiah S, Woodward K, Nahmias J, Fox M, Ekong R, Osborne J, Wolfe J, Povey S, Snell RG, Cheadle JP, Jones AC, Tachataki M, Ravine D, Sampson JR, Reeve MP, Richardson P, Wilmer F, Munro C, Hawkins TL, Sepp T, Ali JB, Ward S, Green AJ, Yates JR, Kwiatkowska J, Henske EP, Short MP, Haines JH, Jozwiak S, and Kwiatkowski DJ. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277: 805–808, 1997.
237.
Vicencio JMOrtiz CCriollo AJones AWKepp OGalluzzi LJoza NVitale IMorselli ETailler MCastedo MMaiuri MCMolgo JSzabadkai GLavandero SKroemer G. The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1Cell Death Differ161006-10172009. 237. Vicencio JM, Ortiz C, Criollo A, Jones AW, Kepp O, Galluzzi L, Joza N, Vitale I, Morselli E, Tailler M, Castedo M, Maiuri MC, Molgo J, Szabadkai G, Lavandero S, and Kroemer G. The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ 16: 1006–1017, 2009.
238.
Virgin HWLevine B. Autophagy genes in immunityNat Immunol10461-4702009. 238. Virgin HW and Levine B. Autophagy genes in immunity. Nat Immunol 10: 461–470, 2009.
239.
Vousden KHRyan KM. p53 and metabolismNat Rev Cancer9691-7002009. 239. Vousden KH and Ryan KM. p53 and metabolism. Nat Rev Cancer 9: 691–700, 2009.
240.
Wang CWStromhaug PEShima JKlionsky DJ. The Ccz1-Mon1 protein complex is required for the late step of multiple vacuole delivery pathwaysJ Biol Chem27747917-479272002. 240. Wang CW, Stromhaug PE, Shima J, and Klionsky DJ. The Ccz1-Mon1 protein complex is required for the late step of multiple vacuole delivery pathways. J Biol Chem 277: 47917–47927, 2002.
241.
Wang JWhiteman MWLian HWang GSingh AHuang DDenmark T. A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1J Biol Chem28421412-214242009. 241. Wang J, Whiteman MW, Lian H, Wang G, Singh A, Huang D, and Denmark T. A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1. J Biol Chem 284: 21412–21424, 2009.
242.
Warburg O. On the origin of cancer cellsScience123309-3141956. 242. Warburg O. On the origin of cancer cells. Science 123: 309–314, 1956.
243.
Warburg OHDickens F. Kaiser Wilhelm-Institut für Biologie (Berlin Germany)The Metabolism of Tumours; Investigations from the Kaiser Wilhelm Institute for Biology, Berlin-DahlemLondonConstable & Co. Ltd.1930327. 243. Warburg OH and Dickens F; Kaiser Wilhelm-Institut für Biologie (Berlin Germany). The Metabolism of Tumours; Investigations from the Kaiser Wilhelm Institute for Biology, Berlin-Dahlem. London: Constable & Co. Ltd., 1930, p. 327.
244.
Wei YPattingre SSinha SBassik MLevine B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagyMol Cell30678-6882008. 244. Wei Y, Pattingre S, Sinha S, Bassik M, and Levine B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30: 678–688, 2008.
245.
White EDiPaola RS. The double-edged sword of autophagy modulation in cancerClin Cancer Res155308-53162009. 245. White E and DiPaola RS. The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 15: 5308–5316, 2009.
246.
Willis SNAdams JM. Life in the balance: how BH3-only proteins induce apoptosisCurr Opin Cell Biol17617-6252005. 246. Willis SN and Adams JM. Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17: 617–625, 2005.
247.
Wilting SMde Wilde JMeijer CJBerkhof JYi Yvan Wieringen WNBraakhuis BJMeijer GAYlstra BSnijders PJSteenbergen RD. Integrated genomic and transcriptional profiling identifies chromosomal loci with altered gene expression in cervical cancerGenes Chromosomes Cancer47890-9052008. 247. Wilting SM, de Wilde J, Meijer CJ, Berkhof J, Yi Y, van Wieringen WN, Braakhuis BJ, Meijer GA, Ylstra B, Snijders PJ, and Steenbergen RD. Integrated genomic and transcriptional profiling identifies chromosomal loci with altered gene expression in cervical cancer. Genes Chromosomes Cancer 47: 890–905, 2008.
248.
Woods AJohnstone SRDickerson KLeiper FCFryer LGNeumann DSchlattner UWallimann TCarlson MCarling D. LKB1 is the upstream kinase in the AMP-activated protein kinase cascadeCurr Biol132004-20082003. 248. Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallimann T, Carlson M, and Carling D. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13: 2004–2008, 2003.
249.
Xie ZKlionsky DJ. Autophagosome formation: core machinery and adaptationsNat Cell Biol91102-11092007. 249. Xie Z and Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9: 1102–1109, 2007.
250.
Xie ZNair UKlionsky DJ. Dissecting autophagosome formation: the missing piecesAutophagy4920-9222008. 250. Xie Z, Nair U, and Klionsky DJ. Dissecting autophagosome formation: the missing pieces. Autophagy 4: 920–922, 2008.
251.
Yamamoto AMasaki RTashiro Y. Characterization of the isolation membranes and the limiting membranes of autophagosomes in rat hepatocytes by lectin cytochemistryJ Histochem Cytochem38573-5801990. 251. Yamamoto A, Masaki R, and Tashiro Y. Characterization of the isolation membranes and the limiting membranes of autophagosomes in rat hepatocytes by lectin cytochemistry. J Histochem Cytochem 38: 573–580, 1990.
252.
Yan YBacker JM. Regulation of class III (Vps34) PI3KsBiochem Soc Trans35239-2412007. 252. Yan Y and Backer JM. Regulation of class III (Vps34) PI3Ks. Biochem Soc Trans 35: 239–241, 2007.
253.
Yang ZKlionsky DJ. An overview of the molecular mechanism of autophagyCurr Top Microbiol Immunol3351-322009. 253. Yang Z and Klionsky DJ. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335: 1–32, 2009.
254.
Yang ZKlionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulationCurr Opin Cell Biol22124-1312010. 254. Yang Z and Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22: 124–131, 2010.
255.
Yee KSWilkinson SJames JRyan KMVousden KH. PUMA- and Bax-induced autophagy contributes to apoptosisCell Death Differ161135-11452009. 255. Yee KS, Wilkinson S, James J, Ryan KM, and Vousden KH. PUMA- and Bax-induced autophagy contributes to apoptosis. Cell Death Differ 16: 1135–1145, 2009.
256.
Yla-Anttila PVihinen HJokitalo EEskelinen EL. 3D tomography reveals connections between the phagophore and endoplasmic reticulumAutophagy51180-11852009. 256. Yla-Anttila P, Vihinen H, Jokitalo E, and Eskelinen EL. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5: 1180–1185, 2009.
257.
Yorimitsu TKlionsky DJ. Autophagy: molecular machinery for self-eatingCell Death Differ12 Suppl21542-15522005. 257. Yorimitsu T and Klionsky DJ. Autophagy: molecular machinery for self-eating. Cell Death Differ 12 Suppl 2: 1542–1552, 2005.
258.
Yue ZJin SYang CLevine AJHeintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressorProc Natl Acad Sci USA10015077-150822003. 258. Yue Z, Jin S, Yang C, Levine AJ, and Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100: 15077–15082, 2003.
259.
Zalckvar EBerissi HEisenstein MKimchi A. Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XLAutophagy5720-7222009. 259. Zalckvar E, Berissi H, Eisenstein M, and Kimchi A. Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy 5: 720–722, 2009.
260.
Zalckvar EBerissi HMizrachy LIdelchuk YKoren IEisenstein MSabanay HPinkas-Kramarski RKimchi A. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagyEMBO Rep10285-2922009. 260. Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M, Sabanay H, Pinkas-Kramarski R, and Kimchi A. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 10: 285–292, 2009.
261.
Zeng XKinsella TJ. Mammalian target of rapamycin and S6 kinase 1 positively regulate 6-thioguanine-induced autophagyCancer Res682384-23902008. 261. Zeng X and Kinsella TJ. Mammalian target of rapamycin and S6 kinase 1 positively regulate 6-thioguanine-induced autophagy. Cancer Res 68: 2384–2390, 2008.
262.
Zhang JNey PA. Role of BNIP3 and NIX in cell death, autophagy, and mitophagyCell Death Differ16939-9462009. 262. Zhang J and Ney PA. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 16: 939–946, 2009.
263.
Zhang YGao XSaucedo LJRu BEdgar BAPan D. RHEB is a direct target of the tuberous sclerosis tumour suppressor proteinsNat Cell Biol5578-5812003. 263. Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, and Pan D. RHEB is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5: 578–581, 2003.
264.
Zhong YWang QJLi XYan YBacker JMChait BTHeintz NYue Z. Distinct regulation of autophagic activity by Atg14L and RUBICON associated with Beclin 1-phosphatidylinositol-3-kinase complexNat Cell Biol11468-4762009. 264. Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, and Yue Z. Distinct regulation of autophagic activity by Atg14L and RUBICON associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11: 468–476, 2009.
265.
Zhou SKachhap SSun WWu GChuang APoeta LGrumbine LMithani SKChatterjee AKoch WWestra WHMaitra AGlazer CCarducci MSidransky DMcFate TVerma ACalifano JA. Frequency and phenotypic implications of mitochondrial DNA mutations in human squamous cell cancers of the head and neckProc Natl Acad Sci USA1047540-75452007. 265. Zhou S, Kachhap S, Sun W, Wu G, Chuang A, Poeta L, Grumbine L, Mithani SK, Chatterjee A, Koch W, Westra WH, Maitra A, Glazer C, Carducci M, Sidransky D, McFate T, Verma A, and Califano JA. Frequency and phenotypic implications of mitochondrial DNA mutations in human squamous cell cancers of the head and neck. Proc Natl Acad Sci USA 104: 7540–7545, 2007.
266.
Zitvogel LTesniere AKroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversionNat Rev Immunol6715-7272006. 266. Zitvogel L, Tesniere A, and Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6: 715–727, 2006.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 14Issue Number 11June 2011
Pages: 2251 - 2269
PubMed: 20712403

History

Published in print: June 2011
Published online: 12 May 2011
Published ahead of print: 4 December 2010
Published ahead of production: 16 August 2010
Accepted: 13 August 2010
Received: 19 July 2010

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Eugenia Morselli
*
INSERM, U848, Villejuif, France.
Institut Gustave Roussy, Villejuif, France.
Université Paris Sud-XI, Villejuif, France.
Lorenzo Galluzzi*
INSERM, U848, Villejuif, France.
Institut Gustave Roussy, Villejuif, France.
Université Paris Sud-XI, Villejuif, France.
Oliver Kepp
INSERM, U848, Villejuif, France.
Institut Gustave Roussy, Villejuif, France.
Université Paris Sud-XI, Villejuif, France.
Guillermo Mariño
INSERM, U848, Villejuif, France.
Institut Gustave Roussy, Villejuif, France.
Université Paris Sud-XI, Villejuif, France.
Mickael Michaud
INSERM, U848, Villejuif, France.
Institut Gustave Roussy, Villejuif, France.
Université Paris Sud-XI, Villejuif, France.
Ilio Vitale
INSERM, U848, Villejuif, France.
Institut Gustave Roussy, Villejuif, France.
Université Paris Sud-XI, Villejuif, France.
Maria Chiara Maiuri
INSERM, U848, Villejuif, France.
Institut Gustave Roussy, Villejuif, France.
Université Paris Sud-XI, Villejuif, France.
Dipartimento di Farmacologia Sperimentale, Università Degli Studi di Napoli Federico II, Napoli, Italy.
Guido Kroemer
INSERM, U848, Villejuif, France.
Institut Gustave Roussy, Villejuif, France.
Metabolomics Platform, Institut Gustave Roussy, Villejuif, France.
Centre de Recherche des Cordeliers, Paris, France.
Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France.
Université Paris Descartes, Paris, France.

Notes

Address correspondence to:Prof. Guido KroemerINSERM, U848Institut Gustave RoussyPavillon de Recherche 1, 39, rue C. DesmoulinsF-94805 VillejuifFrance
E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Topics

Back to Top