Skip to main content
Log in

Comparative In Vivo Evaluations of Curcumin and Its Analog Difluorinated Curcumin Against Cisplatin-Induced Nephrotoxicity

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

An Erratum to this article was published on 10 December 2014

Abstract

Curcumin, a polyphenol, has pharmacological effects including antioxidant, anti-inflammatory and anti-cancer features. In this study, we have performed comparative in vivo evaluations of CDF (curcumin difluorinated) and curcumin in cisplatin-induced nephrotoxicity in rats. Male Wistar rats were divided into four groups: (1) Control; (2) Cisplatin (7 mg/kg body wt, intraperitoneal as a single dose); (3) Cisplatin and CDF (50 mg/rat/day; for 12 days); (4) Cisplatin and curcumin (50 mg/rat/day), for 12 days). Cisplatin treated rats exhibited kidney injury manifested by increased serum N-urea and creatinine (P < 0.001). Kidney from cisplatin treated rats also exhibited significant increase in malondialdehyde (MDA) and 8-isoprostane levels (P < 0.001). Treatment with CDF and curcumin prevented the rise in serum N-urea, creatinine, MDA and 8-isoprostane as compared to experimental control group in kidney (P < 0.05). Compared to curcumin, CDF had greater potential in suppressing cisplatin-induced pro-inflammatory factors NF-κB and COX-2 as well as downstream markers Nrf2 and HO-1 (P < 0.05) in kidney. The analysis on anion transport markers (OAT1 and OAT3) showed a similar trend (CDF > curcumin). CDF could reduce the expression of multi-drug resistance markers OCT1, OCT2, MRP2 and MRP4 to a much greater extent than curcumin (P < 0.05). We also demonstrate that CDF influenced the expression of p-mTOR, p-p70S6K1, p-4E-BP1 and p-Akt. These data suggest that CDF can potentially be used to reduce the chemotherapy induced nephrotoxicity thereby enhancing the therapeutic window of cisplatin. The results also proved that compared to curcumin, CDF has superior protective effect in nephrotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rosenberg B, VanCamp L, Trosko JE et al (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222:385–386

    Article  CAS  PubMed  Google Scholar 

  2. Loehrer PJ, Einhorn LH (1984) Drugs five years later. Cisplatin. Ann Intern Med 100:704–713

    Article  CAS  PubMed  Google Scholar 

  3. Ali BH, Al Moundhri MS (2006) Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food Chem Toxicol 44:1173–1183

    Article  CAS  PubMed  Google Scholar 

  4. Saha S, Adhikary A, Bhattacharyya P et al (2012) Death by design: where curcumin sensitizes drug-resistant tumours. Anticancer Res 32:2567–2584

    CAS  PubMed  Google Scholar 

  5. Mendonça LM, da Silva Machado C, Teixeira CC et al (2013) Curcumin reduces cisplatin-induced neurotoxicity in NGF-differentiated PC12 cells. Neurotoxicology 34:205–211

    Article  PubMed  Google Scholar 

  6. Goel A, Aggarwal BB (2010) Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr Cancer 62:919–930

    Article  CAS  PubMed  Google Scholar 

  7. Dhillon N, Aggarwal BB, Newman RA et al (2008) Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 14:4491–4499

    Article  CAS  PubMed  Google Scholar 

  8. Kanai M, Yoshimura K, Asada M et al (2010) A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother Pharmacol 68:157–1649

    Article  PubMed  Google Scholar 

  9. Bar-Sela G, Epelbaum R, Schaffer M (2010) Curcumin as an anti-cancer agent: review of the gap between basic and clinical applications. Curr Med Chem 17:190–197

    Article  CAS  PubMed  Google Scholar 

  10. Cen L, Hutzen B, Ball S et al (2009) New structural analogues of curcumin exhibit potent growth suppressive activity in human colorectal carcinoma cells. BMC Cancer 9:99

    Article  PubMed Central  PubMed  Google Scholar 

  11. Padhye S, Banerjee S, Chavan D et al (2009) Fluorocurcumins as cyclooxygenase-2 inhibitor: molecular docking, pharmacokinetics and tissue distribution in mice. Pharm Res 26:2438–2445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ali S, Ahmad A, Banerjee S et al (2010) Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res 70:3606–3617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Dandawate PR, Vyas A, Ahmad A et al (2012) Inclusion complex of novel curcumin analogue CDF and β-cyclodextrin (1:2) and its enhanced in vivo anticancer activity against pancreatic cancer. Pharm Res 29:1775–1786

    Article  CAS  PubMed  Google Scholar 

  14. Azmi AS, Ali S, Banerjee S et al (2011) Network modeling of CDF treated pancreatic cancer cells reveals a novel c-myc-p73 dependent apoptotic mechanism. Am J Transl Res 3:374–382

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Bao B, Ali S, Kong D et al (2011) Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. Plos One 6, E17850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kanwar SS, Yu Y, Nautiyal J et al (2011) Difluorinated-curcumin (CDF): a novel curcumin analog is a potent inhibitor of colon cancer stem-like cells. Pharm Res 28:827–838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Dandawate P, Khan E, Padhye S et al (2012) Synthesis, characterization, molecular docking and cytotoxic activity of novel plumbagin hydrazones against breast cancer cells. Bioorg Med Chem Lett 22:3104–3108

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Kong D, Wang Z et al (2011) Inactivation of AR/TMPRSS2-ERG/Wnt signaling networks attenuates the aggressive behavior of prostate cancer cells. Cancer Prev Res (Phila) 4:1495–1506

    Article  CAS  Google Scholar 

  19. Bao B, Ali S, Banerjee S et al (2012) Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res 72:335–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Ulu R, Dogukan A, Tuzcu M et al (2012) Regulation of renal organic anion and cation transporters by thymoquinone in cisplatin induced kidney injury. Food Chem Toxicol 50:1675–1679

    Article  CAS  PubMed  Google Scholar 

  21. Karatepe M (2004) Simultaneous determination of ascorbic acid and free malondialdehyde in human serum by HPLC/UV. LC-GC North Am 22:362–365

    CAS  Google Scholar 

  22. Wong YT, Ruan R, Tay FE (2006) Relationship between levels of oxidative DNA damage, lipid peroxidation and mitochondrial membrane potential in young and old F344 rats. Free Radic Res 40:393–402

    Article  CAS  PubMed  Google Scholar 

  23. Banerjee S, Kaseb AO, Wang Z et al (2009) Antitumor activity of gemcitabine and oxaliplatin is augmented by thymoquinone in pancreatic cancer. Cancer Res 69:5575–5583

    Article  CAS  PubMed  Google Scholar 

  24. Azmi AS, Philip PA, Beck FW et al (2011) MI-219–zinc combination: a new paradigm in MDM2 inhibitor-based therapy. Oncogene 30:117–126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Piccart MJ, Lamb H, Vermorken JB (2001) Current and future potential roles of the platinum drugs in the treatment of ovarian cancer. Ann Oncol 12:1195–1203

    Article  CAS  PubMed  Google Scholar 

  26. Surendiran A, Balamurugan N, Gunaseelan K et al (2010) Adverse drug reaction profile of cisplatin-based chemotherapy regimen in a tertiary care hospital in India: an evaluative study. Indian J Pharmacol 42:40–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hanigan MH, Devarajan P (2003) Cisplatin nephrotoxicity: molecular mechanisms. Cancer Ther 1:47–61

    PubMed Central  PubMed  Google Scholar 

  28. Alaikov T, Konstantinov SM, Tzanova T et al (2007) Antineoplastic and anticlastogenic properties of curcumin. Ann N Y Acad Sci 1095:355–370

    Article  CAS  PubMed  Google Scholar 

  29. Antunes LMG, Darin JDC, Bianchi NLP (2001) Effects of the antioxidants curcumin or selenium on cisplatin-induced nephrotoxicity and lipid peroxidation in rats. Pharmacol Res 43:145–150

    Article  CAS  PubMed  Google Scholar 

  30. Antunes LMG, Araújo MC, Darin JD et al (2000) Effects of the antioxidants curcumin and vitamin C on cisplatin-induced clastogenesis in Wistar rat bone marrow cells. Mutat Res 465:131–137

    Article  CAS  PubMed  Google Scholar 

  31. Kuhad A, Pilkhwal S, Sharma S et al (2007) Effect of curcumin on inflammation and oxidative stress in cisplatin-induced experimental nephrotoxicity. J Agric Food Chem 55:10150–10155

    Article  CAS  PubMed  Google Scholar 

  32. Ilbey YO, Ozbek E, Cekmen M et al (2009) Protective effect of curcumin in cisplatin-induced oxidative injury in rat testis: mitogen-activated protein kinase and nuclear factor-kappa B signaling pathways. Hum Reprod 24:1717–1725

    Article  CAS  PubMed  Google Scholar 

  33. Mendonça LM, dos Santos GC, dos Santos RA et al (2010) Evaluation of curcumin and cisplatin-induced DNA damage in PC12 cells by the alkaline comet assay. Hum Exp Toxicol 29:635–643

    Article  PubMed  Google Scholar 

  34. Anand P, Kunnumakkara AB, Newman RA et al (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818

    Article  CAS  PubMed  Google Scholar 

  35. Kim SH, Hong KO, Chung WY et al (2004) Abrogation of cisplatin-induced hepatotoxicity in mice by xanthorrhizol is related to its effect on the regulation of gene transcription. Toxicol Appl Pharmacol 196:346–355

    Article  CAS  PubMed  Google Scholar 

  36. Banning A, Brigelius-Flohé R (2005) NF-kappaB, Nrf2, and HO-1 interplay in redox-regulated VCAM-1 expression. Antioxid Redox Signal 7:889–899

    Article  CAS  PubMed  Google Scholar 

  37. Trujillo J, Chirino YI, Molina-Jijón E et al (2013) Renoprotective effect of the antioxidant curcumin: recent findings. Redox Biol 17:448–456

    Article  Google Scholar 

  38. Soetikno V, Sari FR, Lakshmanan AP et al (2013) Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the Nrf2-keap1 pathway. Mol Nutr Food Res 57:1649–1659

    Article  CAS  PubMed  Google Scholar 

  39. Ramadoss J, Stewart RH, Cudd TA (2011) Acute renal response to rapid onset respiratory acidosis. Can J Physiol Pharmacol 89:227–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Pritchard JB, Miller DS (1996) Renal secretion of organic anions and cations. Kidney Int 49:1649–1654

    Article  CAS  PubMed  Google Scholar 

  41. Srimaroeng C, Perry JL, Pritchard JB (2008) Physiology, structure, and regulation of the cloned organic anion transporters. Xenobiotica 38:889–935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Ciarimboli G (2008) Organic cation transporters. Xenobiotica 38:936–971

    Article  CAS  PubMed  Google Scholar 

  43. Aleksunes LM, Augustine LM, Scheffer GL et al (2008) Renal xenobiotic transporters are differentially expressed in mice following cisplatin treatment. Toxicology 250:82–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Tirkey N, Kaur G, Vij G et al (2005) Curcumin, a diferuloylmethane, attenuates cyclosporine-induced renal dysfunction and oxidative stress in rat kidneys. BMC Pharmacol 5:15

    Article  PubMed Central  PubMed  Google Scholar 

  45. Cole SP, Sparks KE, Fraser K et al (1994) Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res 54:5902–5910

    CAS  PubMed  Google Scholar 

  46. Altenberg GA (2004) Structure of multidrug-resistance proteins of the ATP-binding cassette (ABC) superfamily. Curr Med Chem Anticancer Agents 4:53–62

    Article  CAS  PubMed  Google Scholar 

  47. Reid G, Wielinga P, Zelcer N et al (2003) The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci U S A 100:9244–9249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Reid G, Wielinga P, Zelcer N et al (2003) Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol Pharmacol 63:1094–1103

    Article  CAS  PubMed  Google Scholar 

  49. Wortelboer HM, Usta M, van der Velde AE et al (2003) Interplay between MRP inhibition and metabolism of MRP inhibitors: the case of curcumin. Chem Res Toxicol 16:1642–1651

    Article  CAS  PubMed  Google Scholar 

  50. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Laplante M, Sabatini DM (2012) mTOR Signaling. Cold Spring Harb Perspect Biol 4:1–3

    Article  Google Scholar 

  52. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22

    Article  CAS  PubMed  Google Scholar 

  53. Johnson SM, Gulhati P, Rampy BA et al (2010) Novel expression patterns of PI3K/Akt/mTOR signaling pathway components in colorectal cancer. J Am Coll Surg 210:767–778

    Article  PubMed Central  PubMed  Google Scholar 

  54. Johnson SM, Gulhati P, Arrieta I (2009) Curcumin inhibits proliferation of colorectal carcinoma by modulating Akt/mTOR signaling. Anticancer Res 29:3185–3190

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Veterinary Control and Research Institute of Elazig for providing the experimental facility and the Turkish Academy of Sciences (TUBA) for providing the fund.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazim Sahin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahin, K., Orhan, C., Tuzcu, M. et al. Comparative In Vivo Evaluations of Curcumin and Its Analog Difluorinated Curcumin Against Cisplatin-Induced Nephrotoxicity. Biol Trace Elem Res 157, 156–163 (2014). https://doi.org/10.1007/s12011-014-9886-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-9886-x

Keywords

Navigation