Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Proteostasis control by the unfolded protein response

An Erratum to this article was published on 31 July 2015

This article has been updated

Abstract

Stress induced by accumulation of misfolded proteins in the endoplasmic reticulum is observed in many physiological and pathological conditions. To cope with endoplasmic reticulum stress, cells activate the unfolded protein response, a dynamic signalling network that orchestrates the recovery of homeostasis or triggers apoptosis, depending on the level of damage. Here we provide an overview of recent insights into the mechanisms that cells employ to maintain proteostasis and how the unfolded protein response determines cell fate under endoplasmic reticulum stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The three arms of the UPR.
Figure 2: Under irremediable ER stress, the UPR actively promotes proteotoxicity, inflammatory responses and apoptosis.
Figure 3: The UPRosome: fine-tuning ER stress signalling through protein–protein interactions and/or post-translational modifications.
Figure 4: ER stress-independent functions of the UPR.

Similar content being viewed by others

Change history

  • 13 July 2015

    In the version of this Review originally published, Fig. 1 contained a superfluous IRE1α stress sensor at the top of the schematic. This error has been corrected in all online versions.

References

  1. Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Schubert, U. et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404, 770–774 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Seino, S., Shibasaki, T. & Minami, K. Dynamics of insulin secretion and the clinical implications for obesity and diabetes. J. Clin. Invest. 121, 2118–2125 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, S. & Kaufman, R. J. The impact of the unfolded protein response on human disease. J. Cell Biol. 197, 857–867 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kozutsumi, Y., Segal, M., Normington, K., Gething, M. J. & Sambrook, J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332, 462–464 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Mori, K., Ma, W., Gething, M. J. & Sambrook, J. A transmembrane protein with a cdc2+CDC28-related kinase activity is required for signalling from the ER to the nucleus. Cell 74, 743–756 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Cox, J. S. & Walter, P. A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87, 391–404 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Tirasophon, W., Welihinda, A. A. & Kaufman, R. J. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev. 12, 1812–1824 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harding, H. P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271–274 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Haze, K., Yoshida, H., Yanagi, H., Yura, T. & Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 10, 3787–3799 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Tabas, I. & Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13, 184–190 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2, 326–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Shen, J., Chen, X., Hendershot, L. & Prywes, R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell 3, 99–111 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Carrara, M., Prischi, F., Nowak, P. R., Kopp, M. C. & Ali, M. M. Noncanonical binding of BiP ATPase domain to Ire1 and Perk is dissociated by unfolded protein CH1 to initiate ER stress signaling. eLife 4, e03522 (2015).

    Article  PubMed Central  Google Scholar 

  16. Credle, J. J., Finer-Moore, J. S., Papa, F. R., Stroud, R. M. & Walter, P. On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 102, 18773–18784 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gardner, B. M. & Walter, P. Unfolded Proteins Are Ire1-Activating Ligands that Directly Induce the Unfolded Protein Response. Science 333, 1891–1894 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oikawa, D., Kitamura, A., Kinjo, M. & Iwawaki, T. Direct association of unfolded proteins with mammalian ER stress sensor, IRE1β. PLoS ONE 7, e51290 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kimata, Y. & Kohno, K. Endoplasmic reticulum stress-sensing mechanisms in yeast and mammalian cells. Curr. Opin. Cell Biol. 23, 135–142 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Oikawa, D., Kimata, Y., Kohno, K. & Iwawaki, T. Activation of mammalian IRE1α upon ER stress depends on dissociation of BiP rather than on direct interaction with unfolded proteins. Exp. Cell Res 315, 2496–2504 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Zhou, J. et al. The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response. Proc. Natl Acad. Sci. USA 103, 14343–14348 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Scheuner, D. et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7, 1165–1176 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Harding, H. P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099–1108 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619–633 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Ye, J. & Koumenis, C. ATF4, an ER stress and hypoxia-inducible transcription factor and its potential role in hypoxia tolerance and tumorigenesis. Curr. Mol. Med. 9, 411–416 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Del Vecchio, C. A. et al. De-differentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling. PLoS Biol. 12, e1001945 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cullinan, S. B. & Diehl, J. A. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J. Biol. Chem. 279, 20108–20117 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Cullinan, S. B. et al. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell Biol. 23, 7198–7209 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Asada, R., Kanemoto, S., Kondo, S., Saito, A. & Imaizumi, K. The signalling from endoplasmic reticulum-resident bZIP transcription factors involved in diverse cellular physiology. J. Biochem. 149, 507–518 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Yamamoto, K. et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1. Dev. Cell 13, 365–376 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Shen, X. et al. Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107, 893–903 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Lee, K. et al. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 16, 452–466 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Hetz, C., Martinon, F., Rodriguez, D. & Glimcher, L. H. The unfolded protein response: integrating stress signals through the stress sensor IRE1α. Physiol. Rev. 91, 1219–1243 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Acosta-Alvear, D. et al. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol. Cell 27, 53–66 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Lee, A. H., Iwakoshi, N. N. & Glimcher, L. H. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell Biol. 23, 7448–7459 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shoulders, M. D. et al. Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep. 3, 1279–1292 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yanagitani, K. et al. Cotranslational targeting of XBP1 protein to the membrane promotes cytoplasmic splicing of its own mRNA. Mol. Cell 34, 191–200 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Yanagitani, K., Kimata, Y., Kadokura, H. & Kohno, K. Translational pausing ensures membrane targeting and cytoplasmic splicing of XBP1u mRNA. Science 331, 586–589 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Yoshida, H., Oku, M., Suzuki, M. & Mori, K. pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response. J. Cell Biol. 172, 565–575 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, C. Y. et al. Signal peptide peptidase functions in ERAD to cleave the unfolded protein response regulator XBP1u. EMBO J. 33, 2492–2506 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maurel, M., Chevet, E., Tavernier, J. & Gerlo, S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem. Sci. 39, 245–254 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Hollien, J. & Weissman, J. S. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313, 104–107 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Hollien, J. et al. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J. Cell Biol. 186, 323–331 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Han, D. et al. IRE1α kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138, 562–575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Iwawaki, T. et al. Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nat. Cell Biol. 3, 158–164 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Lerner, A. G. et al. IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab. 16, 250–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Upton, J. P. et al. IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science 338, 818–822 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ghosh, R. et al. Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress. Cell 158, 534–548 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tam, A. B., Koong, A. C. & Niwa, M. Ire1 Has Distinct Catalytic Mechanisms for XBP1/HAC1 Splicing and RIDD. Cell Rep. 9, 1–9 (2014).

    Article  CAS  Google Scholar 

  52. Bouchecareilh, M., Higa, A., Fribourg, S., Moenner, M. & Chevet, E. Peptides derived from the bifunctional kinase/RNase enzyme IRE1α modulate IRE1α activity and protect cells from endoplasmic reticulum stress. FASEB J. 25, 3115–3129 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Rubio, C. et al. Homeostatic adaptation to endoplasmic reticulum stress depends on Ire1 kinase activity. J. Cell Biol. 193, 171–184 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chawla, A., Chakrabarti, S., Ghosh, G. & Niwa, M. Attenuation of yeast UPR is essential for survival and is mediated by IRE1 kinase. J. Cell Biol. 193, 41–50 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Prischi, F., Nowak, P. R., Carrara, M. & Ali, M. M. Phosphoregulation of Ire1 RNase splicing activity. Nat. Commun. 5, 3554 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Harding, H. P. et al. An intact unfolded protein response in Trpt1 knockout mice reveals phylogenic divergence in pathways for RNA ligation. RNA 14, 225–232 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jurkin, J. et al. The mammalian tRNA ligase complex mediates splicing of XBP1 mRNA and controls antibody secretion in plasma cells. EMBO J. 33, 2922–2936 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kosmaczewski, S. G. et al. The RtcB RNA ligase is an essential component of the metazoan unfolded protein response. EMBO Rep. 15, 1278–1285 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lu, Y., Liang, F. X. & Wang, X. A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB. Mol. Cell 55, 758–770 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ray, A., Zhang, S., Rentas, C., Caldwell, K. A. & Caldwell, G. A. RTCB-1 mediates neuroprotection via XBP-1 mRNA splicing in the unfolded protein response pathway. J Neurosci. 34, 16076–16085 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Reid, D. W., Chen, Q., Tay, A. S., Shenolikar, S. & Nicchitta, C. V. The unfolded protein response triggers selective mRNA release from the endoplasmic reticulum. Cell 158, 1362–1374 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ogata, M. et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell. Biol. 26, 9220–9231 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Senft D & Ronai Z. A. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem. Sci. 40, 141–8 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Satpute-Krishnan, P. et al. ER stress-induced clearance of misfolded GPI-anchored proteins via the secretory pathway. Cell 158, 522–533 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schroder, M. & Kaufman, R. J. The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Shore, G. C., Papa, F. R. & Oakes, S. A. Signaling cell death from the endoplasmic reticulum stress response. Curr. Opin. Cell Biol. 23, 143–149 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Urra, H., Dufey, E., Lisbona, F., Rojas-Rivera, D. & Hetz, C. When ER stress reaches a dead end. Biochim. Biophys. Acta 1833, 3507–3517 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y. & Holbrook, N. J. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell Biol. 21, 1249–1259 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Marciniak, S. J. et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18, 3066–3077 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Han, J. et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 15, 481–490 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lu, M. et al. Cell death. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science 345, 98–101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Urano, F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Nishitoh, H. et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 16, 1345–1355 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Tait, S. W. & Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621–632 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Ren, D. et al. BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science 330, 1390–1393 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wei, M. C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rojas-Rivera, D. & Hetz, C. TMBIM protein family: ancestral regulators of cell death. Oncogene 34, 269–280 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Rojas-Rivera, D. et al. TMBIM3/GRINA is a novel unfolded protein response (UPR) target gene that controls apoptosis through the modulation of ER calcium homeostasis. Cell Death Differ. 19, 1013–1026 (2014).

    Article  CAS  Google Scholar 

  80. Chae, H. J. et al. BI-1 regulates an apoptosis pathway linked to endoplasmic reticulum stress. Mol. Cell 15, 355–366 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Yoshida, H. et al. A time-dependent phase shift in the mammalian unfolded protein response. Dev. Cell 4, 265–271 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. DuRose, J. B., Tam, A. B. & Niwa, M. Intrinsic capacities of molecular sensors of the unfolded protein response to sense alternate forms of endoplasmic reticulum stress. Mol. Biol. Cell 17, 3095–3107 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Maiuolo, J., Bulotta, S., Verderio, C., Benfante, R. & Borgese, N. Selective activation of the transcription factor ATF6 mediates endoplasmic reticulum proliferation triggered by a membrane protein. Proc. Natl Acad. Sci. USA 108, 7832–7837 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hong, M. et al. Underglycosylation of ATF6 as a novel sensing mechanism for activation of the unfolded protein response. J. Biol. Chem. 279, 11354–11363 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Nadanaka, S., Okada, T., Yoshida, H. & Mori, K. Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress. Mol. Cell Biol. 27, 1027–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Rutkowski, D. T. et al. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol. 4, e374 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cornejo, V. H., Pihan, P., Vidal, R. L. & Hetz, C. Role of the unfolded protein response in organ physiology: lessons from mouse models. IUBMB Life 65, 962–975 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Liu, C. Y., Schroder, M. & Kaufman, R. J. Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J. Biol. Chem. 275, 24881–24885 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Novoa, I., Zeng, H., Harding, H. P. & Ron, D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J. Cell Biol. 153, 1011–1022 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Walter, F., Schmid, J., Dussmann, H., Concannon, C. G. & Prehn, J. H. Imaging of single cell responses to ER stress indicates that the relative dynamics of IRE1/XBP1 and PERK/ATF4 signalling rather than a switch between signalling branches determine cell survival. Cell Death Differ. http://dx.doi.org/10.1038/cdd.2014.241 (2015).

  91. Hetz, C. & Glimcher, L. H. Fine-tuning of the unfolded protein response: Assembling the IRE1α interactome. Mol. Cell 35, 551–561 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89–102 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Woehlbier, U. & Hetz, C. Modulating stress responses by the UPRosome: a matter of life and death. Trends Biochem. Sci. 36, 329–337 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Hetz, C. et al. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1α. Science 312, 572–576 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Rodriguez, D.a. et al. BH3-only proteins are part of a regulatory network that control the sustained signalling of the unfolded protein response sensor IRE1α. EMBO J. 31, 2322–2335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Luo, D. et al. AIP1 is critical in transducing IRE1-mediated endoplasmic reticulum stress response. J. Biol. Chem. 283, 11905–11912 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yoneda, T. et al. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem. 276, 13935–13940 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Oono, K. et al. JAB1 participates in unfolded protein responses by association and dissociation with IRE1. Neurochem. Int. 45, 765–772 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Lisbona, F. et al. BAX inhibitor-1 is a negative regulator of the ER stress sensor IRE1α. Mol Cell 33, 679–691 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Castillo, K. et al. BAX inhibitor-1 regulates autophagy by controlling the IRE1α branch of the unfolded protein response. EMBO J. 30, 4465–4478 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Brozzi, F. et al. A combined “omics” approach identifies N-Myc interactor as a novel cytokine-induced regulator of IRE1 protein and c-Jun N-terminal kinase in pancreatic beta cells. J. Biol. Chem. 289, 20677–20693 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. He, Y. et al. Nonmuscle myosin IIB links cytoskeleton to IRE1α signaling during ER stress. Dev. Cell 23, 1141–1152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ishiwata-Kimata, Y., Yamamoto, Y. H., Takizawa, K., Kohno, K. & Kimata, Y. F-actin and a type-II myosin are required for efficient clustering of the ER stress sensor Ire1. Cell Struct. Funct. 38, 135–143 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Eletto, D., Dersh, D., Gidalevitz, T. & Argon, Y. Protein disulfide isomerase A6 controls the decay of IRE1α signaling via disulfide-dependent association. Mol. Cell 53, 562–576 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Groenendyk, J. et al. Interplay between the oxidoreductase PDIA6 and microRNA-322 controls the response to disrupted endoplasmic reticulum calcium homeostasis. Sci. Signal. 7, ra54 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yan, W. et al. Control of PERK eIF2α kinase activity by the endoplasmic reticulum stress-induced molecular chaperone P58IPK. Proc. Natl Acad. Sci. USA 99, 15920–15925 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ni, M., Zhou, H., Wey, S., Baumeister, P. & Lee, A. S. Regulation of PERK signaling and leukemic cell survival by a novel cytosolic isoform of the UPR regulator GRP78/BiP. PLoS ONE 4, e6868 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tsukumo, Y. et al. TBL2 is a novel PERK-binding protein that modulates stress-signaling and cell survival during endoplasmic reticulum stress. PLoS ONE 9, e112761 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tyagi, R. et al. Rheb inhibits protein synthesis by activating the PERK-eIF2α signaling cascade. Cell Rep. 10, 684–693 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fonseca, S. G. et al. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells. J. Clin. Invest. 120, 744–755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Higa, A. et al. Endoplasmic reticulum stress-activated transcription factor ATF6α requires the disulfide isomerase PDIA5 to modulate chemoresistance. Mol. Cell Biol. 34, 1839–1849 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mao, T. et al. PKA phosphorylation couples hepatic inositol-requiring enzyme 1α to glucagon signaling in glucose metabolism. Proc. Natl Acad. Sci. USA 108, 15852–15857 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Qiu, Y. et al. A crucial role for RACK1 in the regulation of glucose-stimulated IRE1α activation in pancreatic β-cells. Sci. Signal. 3, ra7 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lu, G. et al. PPM1l encodes an inositol requiring-protein 1 (IRE1) specific phosphatase that regulates the functional outcome of the ER stress response. Mol. Metab. 2, 405–416 (2014).

    Article  CAS  Google Scholar 

  115. Ren, S. et al. IRE1 phosphatase PP2Ce regulates adaptive ER stress response in the postpartum mammary gland. PLoS ONE 9, e111606 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gu, F. et al. Protein-tyrosine phosphatase 1B potentiates IRE1 signaling during endoplasmic reticulum stress. J. Biol. Chem. 279, 49689–49693 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Jwa, M. & Chang, P. PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1α-mediated unfolded protein response. Nat. Cell Biol. 14, 1223–1230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhu, X. et al. Ubiquitination of Inositol-requiring Enzyme 1 (IRE1) by the E3 Ligase CHIP Mediates the IRE1/TRAF2/JNK Pathway. J. Biol. Chem. 289, 30567–30577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gade, P. et al. Regulation of the death-associated protein kinase 1 expression and autophagy via ATF6 requires apoptosis signal-regulating kinase 1. Mol. Cell Biol. 34, 4033–4048 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lee, J. et al. p38 MAPK-mediated regulation of Xbp1s is crucial for glucose homeostasis. Nat. Med. 17, 1251–1260 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang, F. M. & Ouyang, H. J. Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation. Biochem. J. 433, 245–252 (2010).

    Article  CAS  Google Scholar 

  122. Chen, H. & Qi, L. SUMO modification regulates the transcriptional activity of XBP1. Biochem. J. 429, 95–102 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Ameri, K. & Harris, A. L. Activating transcription factor 4. Int. J. Biochem. Cell Biol. 40, 14–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Chow, C. Y., Wang, X., Riccardi, D., Wolfner, M. F. & Clark, A. G. The genetic architecture of the genome-wide transcriptional response to ER stress in the mouse. PLoS Genet. 11, e1004924 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dombroski, B. A. et al. Gene expression and genetic variation in response to endoplasmic reticulum stress in human cells. Am. J. Hum. Genet. 86, 719–729 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sakaki, K. et al. RNA surveillance is required for endoplasmic reticulum homeostasis. Proc. Natl Acad. Sci. USA 109, 8079–8084 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Carreras-Sureda, A. & Hetz, C. RNA metabolism: Putting the brake on the UPR. EMBO Rep. 16, 545–546 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Karam, R. et al. The unfolded protein response is shaped by the NMD pathway. EMBO Rep. 16, 599–609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Raina, K. et al. Targeted protein destabilization reveals an estrogen-mediated ER stress response. Nat. Chem. Biol. 10, 957–962 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Genereux, J. C. et al. Unfolded protein response-induced ERdj3 secretion links ER stress to extracellular proteostasis. EMBO J. 34, 4–19 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cooley, C. B. et al. Unfolded protein response activation reduces secretion and extracellular aggregation of amyloidogenic immunoglobulin light chain. Proc. Natl Acad. Sci. USA 111, 13046–13051 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Moenner, M., Pluquet, O., Bouchecareilh, M. & Chevet, E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 67, 10631–10634 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Ilani, T. et al. A secreted disulfide catalyst controls extracellular matrix composition and function. Science 341, 74–76 (2014).

    Article  CAS  Google Scholar 

  134. Dihazi, H. et al. Secretion of ERP57 is important for extracellular matrix accumulation and progression of renal fibrosis, and is an early sign of disease onset. J. Cell Sci. 126, 3649–3663 (2014).

    Article  CAS  Google Scholar 

  135. Martinon, F., Chen, X., Lee, A. H. & Glimcher, L. H. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat. Immunol. 11, 411–418 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Woo, C. W. et al. Adaptive suppression of the ATF4-CHOP branch of the unfolded protein response by toll-like receptor signalling. Nat. Cell Biol. 11, 1473–1480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Woo, C. W., Kutzler, L., Kimball, S. R. & Tabas, I. Toll-like receptor activation suppresses ER stress factor CHOP and translation inhibition through activation of eIF2B. Nat. Cell Biol. 14, 192–200 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Reimold, A. M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300–307 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Hu, C. C., Dougan, S. K., McGehee, A. M., Love, J. C. & Ploegh, H. L. XBP-1 regulates signal transduction, transcription factors and bone marrow colonization in B cells. EMBO J. 28, 1624–1636 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Huh, W. J. et al. XBP1 controls maturation of gastric zymogenic cells by induction of MIST1 and expansion of the rough endoplasmic reticulum. Gastroenterology 139, 2038–2049 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Lipson, K. L. et al. Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1. Cell Metab. 4, 245–254 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Villeneuve, J. et al. A protective role for CD154 in hepatic steatosis in mice. Hepatology 52, 1968–1979 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Karali, E. et al. VEGF Signals through ATF6 and PERK to promote endothelial cell survival and angiogenesis in the absence of ER stress. Mol. Cell 54, 559–572 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Verfaillie, T. et al. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 19, 1880–1891 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Munoz, J. P. et al. Mfn2 modulates the UPR and mitochondrial function via repression of PERK. EMBO J. 32, 2348–2361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ngoh, G. A., Papanicolaou, K. N. & Walsh, K. Loss of mitofusin 2 promotes endoplasmic reticulum stress. J. Biol. Chem. 287, 20321–20332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mori, T., Hayashi, T., Hayashi, E. & Su, T. P. Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival. PLoS ONE 8, e76941 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Son, S. M., Byun, J., Roh, S. E., Kim, S. J. & Mook-Jung, I. Reduced IRE1α mediates apoptotic cell death by disrupting calcium homeostasis via the InsP3 receptor. Cell Death Dis. 5, e1188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Arruda, A. P. et al. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat. Med. 20, 1427–1435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mardones, P., Martinez, G. & Hetz, C. Control of systemic proteostasis by the nervous system. Trends Cell Biol. 25, 1–10 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Taylor, R. C. & Dillin, A. XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153, 1435–1447 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Williams, K. W. et al. Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis. Cell Metab. 20, 471–482 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hetz, C., Chevet, E. & Harding, H. P. Targeting the unfolded protein response in disease. Nat. Rev. Drug Discov. 12, 703–719 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Hery Urra and Victor Hugo Cornejo for figure design. Funded by ECOS-CONICYT C13S02 (C.H., E.C.), Ring Initiative-ACT1109, FONDEF-D11I1007, Millennium Institute-P09-015-F, the Frick Foundation, FONDECYT no. 1140549, Michael J. Fox Foundation for Parkinson Research, COPEC-UC Foundation, CONICYT grant USA2013-0003 (C.H.), the Institut National du Cancer (PLBio and ICGC; INCa) and La Ligue Nationale Contre le Cancer (LARGE) (E.C.); NIH: RO1CA136577 and R01-DK095306, American Cancer Society Research Scholar Award, Harrington Discovery Institute Scholar-Innovator Award, Michael J. Fox Foundation for Parkinson's Research, Caring for Carcinoid Foundation and American Association for Cancer Research (S.A.O.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Claudio Hetz, Eric Chevet or Scott A. Oakes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hetz, C., Chevet, E. & Oakes, S. Proteostasis control by the unfolded protein response. Nat Cell Biol 17, 829–838 (2015). https://doi.org/10.1038/ncb3184

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3184

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing