Skip to main content

Advertisement

Log in

In vitro and in vivo anti-cancer activity of formononetin on human cervical cancer cell line HeLa

  • Research Article
  • Published:
Tumor Biology

Abstract

Worldwide, cervical cancer (CC) is the third most common malignancy in women, and it remains a leading cause of cancer-related death of women. Genomic studies indicate that phosphoinositide 3-kinase (PI3K)/AKT signaling is one of the most frequently deregulated pathways in several human cancers, including CC. This signaling pathway has an important role in cancer cell proliferation, survival, motility, and metabolism, and therefore could be an attractive therapeutic target. In a previous study, we used a sensitive and high-speed homogeneous assay for the detection of kinase activity and for screening of PI3K/AKT signaling inhibitors in a high-throughput screening (HTS) format and then obtain formononetin, as an O-methylated isoflavone existed in a number of plants and herbs like Astragalus membranaceus. We showed that formononetin inhibited the phosphorylation of AKT and induced the apoptosis of CC cell line HeLa in a dose-dependent manner. Furthermore, formononetin suppressed xenograft tumor growth in nude mice. Our results indicated that formononetin may be used as an anti-cancer drug for cervical cancer in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Reference

  1. Baussano I, Ronco G, Segnan N, et al. HPV-16 infection and cervical cancer: modeling the influence of duration of infection and precancerous lesions. Epidemics. 2010;2:21–8.

    Article  PubMed  Google Scholar 

  2. Papp A, Cseke L, Varga G, et al. The role of neoadjuvant therapy in the treatment of locally advanced squamous cell cancer of the cervical oesophagus. Magy Seb. 2012;65:340–7.

    Article  PubMed  Google Scholar 

  3. Xia S, Zhao Y, Yu S, et al. Activated PI3K/Akt/COX-2 pathway induces resistance to radiation in human cervical cancer HeLa cells. Cancer Biother Radiopharm. 2010;25:317–23.

    Article  PubMed  CAS  Google Scholar 

  4. Schwarz JK, Payton JE, Rashmi R, et al. Pathway-specific analysis of gene expression data identifies the PI3K/Akt pathway as a novel therapeutic target in cervical cancer. Clin Cancer Res. 2012;18:1464–71.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Roy SK, Srivastava RK, Shankar S. Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FOXO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer. J Mol Signal. 2010;5:10.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Assinder SJ, Dong Q, Kovacevic Z, et al. The TGF-beta, PI3K/Akt and PTEN pathways: established and proposed biochemical integration in prostate cancer. Biochem J. 2009;417:411–21.

    Article  PubMed  CAS  Google Scholar 

  7. Kang S, Dong SM, Kim BR, et al. Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells. Apoptosis. 2012;17:989–97.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Page C, Huang M, Jin X, et al. Elevated phosphorylation of AKT and Stat3 in prostate, breast, and cervical cancer cells. Int J Oncol. 2000;17:23–8.

    PubMed  CAS  Google Scholar 

  9. Lee CM, Fuhrman CB, Planelles V, et al. Phosphatidylinositol 3-kinase inhibition by LY294002 radiosensitizes human cervical cancer cell lines. Clin Cancer Res. 2006;12:250–6.

    Article  PubMed  CAS  Google Scholar 

  10. Sarveswaran S, Gautam SC, Ghosh J. Wedelolactone, a medicinal plant-derived coumestan, induces caspase-dependent apoptosis in prostate cancer cells via downregulation of PKCε without inhibiting Akt. Int J Oncol. 2012;41:2191–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Yang X, Fraser M, Moll UM, et al. Akt-mediated cisplatin resistance in ovarian cancer: modulation of p53 action on caspase-dependent mitochondrial death pathway. Cancer Res. 2006;66:3126–36.

    Article  PubMed  CAS  Google Scholar 

  12. Wang YB, Qin J, Zheng XY, et al. Diallyl trisulfide induces Bcl-2 and caspase-3-dependent apoptosis via downregulation of Akt phosphorylation in human T24 bladder cancer cells. Phytomedicine. 2010;17:363–8.

    Article  PubMed  CAS  Google Scholar 

  13. Cui F, Li X, Zhu X, et al. MiR-125b inhibits tumor growth and promotes apoptosis of cervical cancer cells by targeting phosphoinositide 3-kinase catalytic subunit delta. Cell Physiol Biochem. 2012;30:1310–8.

    Article  PubMed  CAS  Google Scholar 

  14. Kim MJ, Lee TH, Kim SH, et al. Triptolide inactivates Akt and induces caspase-dependent death in cervical cancer cells via the mitochondrial pathway. Int J Oncol. 2010;37:1177–85.

    PubMed  CAS  Google Scholar 

  15. Yu J, Zhao P, Niu J, et al. Research on phytoestrogenic effect of formononetin. Zhongguo Zhong Yao Za Zhi. 2010;35:3060–4.

    PubMed  CAS  Google Scholar 

  16. Ye Y, Hou R, Chen J, et al. Formononetin-induced apoptosis of human prostate cancer cells through ERK1/2 mitogen-activated protein kinase inactivation. Horm Metab Res. 2012;44:263–7.

    Article  PubMed  CAS  Google Scholar 

  17. Auyeung KK, Law PC, Ko JK. Novel anti-angiogenic effects of formononetin in human colon cancer cells and tumor xenograft. Oncol Rep. 2012;28:2188–94.

    PubMed  CAS  Google Scholar 

  18. Wang Y, Gao L, Li Y, et al. Nifedipine protects INS-1 β-cell from high glucose-induced ER stress and apoptosis. Int J Mol Sci. 2011;12:7569–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Ferreira CG, Epping M, Kruyt FA, et al. Apoptosis: target of cancer therapy. Clin Cancer Res. 2002;8:2024–34.

    PubMed  CAS  Google Scholar 

  20. Kasibhatla S, Tseng B. Why target apoptosis in cancer treatment? Mol Cancer Ther. 2003;2:573–80.

    PubMed  CAS  Google Scholar 

  21. Vilquin P, Villedieu M, Grisard E, et al. Molecular characterization of anastrozole resistance in breast cancer: pivotal role of the Akt/mTOR pathway in the emergence of de novo or acquired resistance and importance of combining the allosteric Akt inhibitor MK-2206 with an aromatase inhibitor. Int J Cancer. 2013;133:1589–602.

    Article  PubMed  CAS  Google Scholar 

  22. Chen B, Li W. Current status of Akt in non-small cell lung cancer. Zhongguo Fei Ai Za Zhi. 2010;13:1059–63.

    PubMed  CAS  Google Scholar 

  23. Passarella RJ, Zhou L, Phillips JG, et al. Recombinant peptides as biomarkers for tumor response to molecular targeted therapy. Clin Cancer Res. 2009;15:6421–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Smith RA, Brooks D, Cokkinides V, et al. Cancer screening in the United States, 2013: a review of current American Cancer Society guidelines, current issues in cancer screening, and new guidance on cervical cancer screening and lung cancer screening. CA Cancer J Clin. 2013;63:88–105.

    Article  PubMed  Google Scholar 

  25. Peralta-Zaragoza O, Bermudez-Morales VH, Perez-Plasencia C, et al. Targeted treatments for cervical cancer: a review. Onco Targets Ther. 2012;5:315–28.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Sarker D, Reid AH, Yap TA, et al. Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res. 2009;15:4799–805.

    Article  PubMed  CAS  Google Scholar 

  27. Calvo E, Bolos V, Grande E. Multiple roles and therapeutic implications of Akt signaling in cancer. Onco Targets Ther. 2009;2:135–50.

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Khan KH, Yap TA, Yan L, et al. Targeting the PI3K-AKT-mTOR signaling network in cancer. Chin J Cancer. 2013;32:253–65.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Yao G, Yang L, Hu Y, et al. Nonylphenol-induced thymocyte apoptosis involved caspase-3 activation and mitochondrial depolarization. Mol Immunol. 2006;43:915–26.

    Article  PubMed  CAS  Google Scholar 

  30. Stahnke K, Mohr A, Liu J, et al. Identification of deficient mitochondrial signaling in apoptosis resistant leukemia cells by flow cytometric analysis of intracellular cytochrome c, caspase-3 and apoptosis. Apoptosis. 2004;9:457–65.

    Article  PubMed  CAS  Google Scholar 

  31. Sakamoto T, Kondo K, Kashio A, et al. Methimazole-induced cell death in rat olfactory receptor neurons occurs via apoptosis triggered through mitochondrial cytochrome c-mediated caspase-3 activation pathway. J Neurosci Res. 2007;85:548–57.

    Article  PubMed  CAS  Google Scholar 

  32. Lin TK, Cheng CH, Chen SD, et al. Mitochondrial dysfunction and oxidative stress promote apoptotic cell death in the striatum via cytochrome c/caspase-3 signaling cascade following chronic rotenone intoxication in rats. Int J Mol Sci. 2012;13:8722–39.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Chen J, Zeng J, Xin M, et al. Formononetin induces cell cycle arrest of human breast cancer cells via IGF1/PI3K/Akt pathways in vitro and in vivo. Horm Metab Res. 2011;43:681–6.

    Article  PubMed  CAS  Google Scholar 

  34. Chen J, Sun L. Formononetin-induced apoptosis by activation of Ras/p38 mitogen-activated protein kinase in estrogen receptor-positive human breast cancer cells. Horm Metab Res. 2012;44:943–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (grant no. 31001084).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man-hua Cui.

Additional information

Tian-min Xu and Yan-hui Zhao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, Ym., Xu, Tm., Zhao, Yh. et al. In vitro and in vivo anti-cancer activity of formononetin on human cervical cancer cell line HeLa. Tumor Biol. 35, 2279–2284 (2014). https://doi.org/10.1007/s13277-013-1302-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1302-1

Keywords

Navigation