ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Synergistic Interaction of Paclitaxel and Curcumin with Cyclodextrin Polymer Complexation in Human Cancer Cells

View Author Information
Texas Institute of Biotechnology Education and Research, 10555 Stella Link Road, Houston, Texas, 77025, United States
Department of Chemical Engineering, University of Surrey, Guildford, GU2 7XH, United Kingdom
*E-mail: [email protected]. Tel.: +44(0)1483 686555. Fax: +44(0)1483 686581.
Cite this: Mol. Pharmaceutics 2013, 10, 7, 2676–2683
Publication Date (Web):June 3, 2013
https://doi.org/10.1021/mp400101k
Copyright © 2013 American Chemical Society

    Article Views

    2815

    Altmetric

    -

    Citations

    90
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The use of cytotoxic chemotherapic agents is the most common method for the treatment of metastatic cancers. Poor water solubility and low efficiency of chemotherapic agents are among the major hurdles of effective chemotherapy treatments. Curcumin and paclitaxel are well-known chemotherapic agents with poor water solubility and undesired side effects. In this study, a novel drug nanocarrier system was formulated by encapsulating curcumin and paclitaxel in poly(β-cyclodextrin triazine) (PCDT) for the therapy of four cancer models; ovarian, lung, prostate, and breast cancer. Cell viability and colony formation assays revealed enhanced curcumin cytotoxicity upon complexation. Annexin V apoptotic studies showed that the PCDT complexation improved curcumin induced apoptosis in human ovarian cancer cell lines A2780 and SKOV-3, human nonsmall cell lung carcinoma cell line H1299, and human prostate cancer line DU-145, while no significant effect was observed with paclitaxel/PCDT complexation. The bioactivity of combining curcumin and paclitaxel was also investigated. A synergism was found between curcumin and paclitaxel, particularly when complexed with PCDT on A2780, SKOV-3, and H1299 cancer cell lines.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Cytotoxic effect of curcumin alone and complexed with PCDT, cytotoxic effect of paclitaxel alone and complexed with PCDT, cytotoxic effect of free paclitaxel and free curcumin combined with paclitaxel/PCDT and curcumin/PCDT in combination, representative images of colony forming assays curcumin (Cur) and curcumin/PCDT complexes, and representative images of colony forming assays paclitaxel (Pax) and paclitaxel/PCDT complexes. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 90 publications.

    1. Liwei Chen, Ziyue Song, Xiujuan Zhi, Bin Du. Photoinduced Antimicrobial Activity of Curcumin-Containing Coatings: Molecular Interaction, Stability and Potential Application in Food Decontamination. ACS Omega 2020, 5 (48) , 31044-31054. https://doi.org/10.1021/acsomega.0c04065
    2. Poonam Ratrey, Sameer V. Dalvi, Abhijit Mishra. Enhancing Aqueous Solubility and Antibacterial Activity of Curcumin by Complexing with Cell-Penetrating Octaarginine. ACS Omega 2020, 5 (30) , 19004-19013. https://doi.org/10.1021/acsomega.0c02321
    3. Santosh K. Misra, Zhe Wu, Fatemeh Ostadhossein, Mao Ye, Kingsley Boateng, Klaus Schulten, Emad Tajkhorshid, Dipanjan Pan. Pro-Nifuroxazide Self-Assembly Leads to Triggerable Nanomedicine for Anti-cancer Therapy. ACS Applied Materials & Interfaces 2019, 11 (20) , 18074-18089. https://doi.org/10.1021/acsami.9b01343
    4. Qing Yao, David C. Gutierrez, Ngoc Ha Hoang, Dongin Kim, Ruoning Wang, Christopher Hobbs, and Lin Zhu . Efficient Codelivery of Paclitaxel and Curcumin by Novel Bottlebrush Copolymer-based Micelles. Molecular Pharmaceutics 2017, 14 (7) , 2378-2389. https://doi.org/10.1021/acs.molpharmaceut.7b00278
    5. Haiqiang Cao, Yixin Wang, Xinyu He, Zhiwen Zhang, Qi Yin, Yi Chen, Haijun Yu, Yongzhuo Huang, Lingli Chen, Minghua Xu, Wangwen Gu, and Yaping Li . Codelivery of Sorafenib and Curcumin by Directed Self-Assembled Nanoparticles Enhances Therapeutic Effect on Hepatocellular Carcinoma. Molecular Pharmaceutics 2015, 12 (3) , 922-931. https://doi.org/10.1021/mp500755j
    6. Stabak Das, Prithviraj Chakraborty, Debarupa Dutta Chakraborty, Lila Kanta Nath. Advancements in Nanoengineered Paclitaxel Formulations: A Comprehensive Review of Blood-Brain Barrier Infiltration Strategies for Glioblastoma Therapy. Biomedical Engineering Advances 2024, 3 , 100122. https://doi.org/10.1016/j.bea.2024.100122
    7. Ho Wan Chan, Xinyue Zhang, Stephanie Chow, David Chi Leung Lam, Shing Fung Chow. Inhalable paclitaxel nanoagglomerate dry powders for lung cancer chemotherapy: Design of experiments-guided development, characterization and in vitro evaluation. International Journal of Pharmaceutics 2024, 653 , 123877. https://doi.org/10.1016/j.ijpharm.2024.123877
    8. Benjamin D Besasie, Achinto Saha, John DiGiovanni, Michael A Liss. Effects of curcumin and ursolic acid in prostate cancer: A systematic review. Urologia Journal 2024, 91 (1) , 90-106. https://doi.org/10.1177/03915603231202304
    9. Pramod Kumar, Vijay Kumar Bhardwaj, Rituraj Purohit. Highly robust quantum mechanics and umbrella sampling studies on inclusion complexes of curcumin and β-cyclodextrin. Carbohydrate Polymers 2024, 323 , 121432. https://doi.org/10.1016/j.carbpol.2023.121432
    10. Seyedeh Alia Moosavian, Prashant Kesharwani, Amirhossein Sahebkar. Nanoemulsion-based curcumin delivery systems as cancer therapeutics. 2024, 147-163. https://doi.org/10.1016/B978-0-443-15412-6.00017-9
    11. Shengnan Zhang, Taiqiang Ye, Yibin Liu, Guige Hou, Qibao Wang, Fenglan Zhao, Feng Li, Qingguo Meng. Research Advances in Clinical Applications, Anticancer Mechanism, Total Chemical Synthesis, Semi-Synthesis and Biosynthesis of Paclitaxel. Molecules 2023, 28 (22) , 7517. https://doi.org/10.3390/molecules28227517
    12. Bakr Ahmed, Anuradha Sharma, Zakiya Usmani, Garima Sharma, Joga Singh, Radhika Yadav, Indu Sharma, Indu Pal Kaur. Magic shotgun over magic bullet for treatment of ovarian cancer via polymeric nanoparticles. Journal of Drug Delivery Science and Technology 2023, 88 , 104945. https://doi.org/10.1016/j.jddst.2023.104945
    13. Zhen Wu, Xin Tang, Simei Liu, Sheng Li, Xiaowan Zhao, Yongde Wang, Xiaogang Wang, Hong Li. Mechanism underlying joint loading and controlled release of β-carotene and curcumin by octenylsuccinated Gastrodia elata starch aggregates. Food Research International 2023, 172 , 113136. https://doi.org/10.1016/j.foodres.2023.113136
    14. Zerrin Sezgin-Bayindir, Sonia Losada-Barreiro, Sofía Fernández-Bravo, Carlos Bravo-Díaz. Innovative Delivery and Release Systems for Antioxidants and Other Active Substances in the Treatment of Cancer. Pharmaceuticals 2023, 16 (7) , 1038. https://doi.org/10.3390/ph16071038
    15. Mehrdad Hashemi, Mohammad Arad Zandieh, Yasmin Talebi, Parham Rahmanian, Sareh Sadat Shafiee, Melina Maghsodlou Nejad, Roghayeh Babaei, Farzaneh Hasani Sadi, Romina Rajabi, Zahra Oryan Abkenar, Shamin Rezaei, Jun Ren, Noushin Nabavi, Ramin Khorrami, Mohsen Rashidi, Kiavash Hushmandi, Maliheh Entezari, Afshin Taheriazam. Paclitaxel and docetaxel resistance in prostate cancer: Molecular mechanisms and possible therapeutic strategies. Biomedicine & Pharmacotherapy 2023, 160 , 114392. https://doi.org/10.1016/j.biopha.2023.114392
    16. Xueli Xu, Ao Liu, Shuangqing Liu, Yanling Ma, Xinyu Zhang, Meng Zhang, Jinhua Zhao, Shuo Sun, Xiao Sun. Application of molecular dynamics simulation in self-assembled cancer nanomedicine. Biomaterials Research 2023, 27 (1) https://doi.org/10.1186/s40824-023-00386-7
    17. Mahsa Shahriari, Prashant Kesharwani, Thomas P. Johnston, Amirhossein Sahebkar. Anticancer potential of curcumin-cyclodextrin complexes and their pharmacokinetic properties. International Journal of Pharmaceutics 2023, 631 , 122474. https://doi.org/10.1016/j.ijpharm.2022.122474
    18. Jing Li, Fang Xu, Yujie Dai, Jiawen Zhang, Yuan Shi, Danning Lai, Natthida Sriboonvorakul, Jiamiao Hu. A Review of Cyclodextrin Encapsulation and Intelligent Response for the Release of Curcumin. Polymers 2022, 14 (24) , 5421. https://doi.org/10.3390/polym14245421
    19. Sena Karaosmanoglu, Yunsen Zhang, Wenli Zhou, Defang Ouyang, Xianfeng Chen. Synthesis of Carrier-Free Paclitaxel–Curcumin Nanoparticles: The Role of Curcuminoids. Bioengineering 2022, 9 (12) , 815. https://doi.org/10.3390/bioengineering9120815
    20. Mehrab Pourmadadi, Parisa Abbasi, Mohammad Mahdi Eshaghi, Ali Bakhshi, Amanda-Lee Ezra Manicum, Abbas Rahdar, Sadanand Pandey, Sapana Jadoun, Ana M. Díez-Pascual. Curcumin delivery and co-delivery based on nanomaterials as an effective approach for cancer therapy. Journal of Drug Delivery Science and Technology 2022, 78 , 103982. https://doi.org/10.1016/j.jddst.2022.103982
    21. Jinrui Bai, Dan Qi, Zhuoheng Song, Bin Li, Lin Guo, Chao Yang, Wujiong Xia. Synthesis of α-Hydroxy and α-Alkoxy Esters Enabled by a Visible-Light-Induced O–H Insertion Reaction of Diazo Compounds. Synlett 2022, 33 (20) , 2048-2052. https://doi.org/10.1055/a-1951-2950
    22. Malihe Mohamadian, Afsane Bahrami, Maryam Moradi Binabaj, Fereshteh Asgharzadeh, Gordon A. Ferns. Molecular Targets of Curcumin and Its Therapeutic Potential for Ovarian Cancer. Nutrition and Cancer 2022, 74 (8) , 2713-2730. https://doi.org/10.1080/01635581.2022.2049321
    23. Renjith P. Johnson, Chandrahas Koumar Ratnacaram, Lalit Kumar, Jobin Jose. Combinatorial approaches of nanotherapeutics for inflammatory pathway targeted therapy of prostate cancer. Drug Resistance Updates 2022, 64 , 100865. https://doi.org/10.1016/j.drup.2022.100865
    24. Ming-Fang Wu, Yen-Hsiang Huang, Ling-Yen Chiu, Shur-Hueih Cherng, Gwo-Tarng Sheu, Tsung-Ying Yang. Curcumin Induces Apoptosis of Chemoresistant Lung Cancer Cells via ROS-Regulated p38 MAPK Phosphorylation. International Journal of Molecular Sciences 2022, 23 (15) , 8248. https://doi.org/10.3390/ijms23158248
    25. Kamini Velhal, Sagar Barage, Arpita Roy, Jaya Lakkakula, Ramesh Yamgar, Mohammed S. Alqahtani, Krishna Kumar Yadav, Yongtae Ahn, Byong-Hun Jeon. A Promising Review on Cyclodextrin Conjugated Paclitaxel Nanoparticles for Cancer Treatment. Polymers 2022, 14 (15) , 3162. https://doi.org/10.3390/polym14153162
    26. Elina Khatoon, Kishore Banik, Choudhary Harsha, Bethsebie Lalduhsaki Sailo, Krishan Kumar Thakur, Amrita Devi Khwairakpam, Rajesh Vikkurthi, Thengujam Babita Devi, Subash C. Gupta, Ajaikumar B. Kunnumakkara. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Seminars in Cancer Biology 2022, 80 , 306-339. https://doi.org/10.1016/j.semcancer.2020.06.014
    27. Faisal Raza, Hajra Zafar, Muhammad Wasim Khan, Aftab Ullah, Asif Ullah Khan, Abdul Baseer, Rameesha Fareed, Muhammad Sohail. Recent advances in the targeted delivery of paclitaxel nanomedicine for cancer therapy. Materials Advances 2022, 3 (5) , 2268-2290. https://doi.org/10.1039/D1MA00961C
    28. Satish Kumar Vemuri, Satyajit Halder, Rajkiran Reddy Banala, Hari Krishnreddy Rachamalla, Vijaya Madhuri Devraj, Chandra Shekar Mallarpu, Uttam Kumar Neerudu, Ravikiran Bodlapati, Sudip Mukherjee, Subbaiah Goli Peda Venkata, Gurava Reddy Annapareddy Venkata, Malarvilli Thakkumalai, Kuladip Jana. Modulatory Effects of Biosynthesized Gold Nanoparticles Conjugated with Curcumin and Paclitaxel on Tumorigenesis and Metastatic Pathways—In Vitro and In Vivo Studies. International Journal of Molecular Sciences 2022, 23 (4) , 2150. https://doi.org/10.3390/ijms23042150
    29. Sulata Sahu, Bairagi C. Mallick. Curcumin-Alginate Mixed Nanocomposite: An Evolving Therapy for Wound Healing. 2022https://doi.org/10.5772/intechopen.98830
    30. Tiancong Ma, Yan Chen, Xiujuan Zhi, Bin Du. Cellulose laurate films containing curcumin as photoinduced antibacterial agent for meat preservation. International Journal of Biological Macromolecules 2021, 193 , 1986-1995. https://doi.org/10.1016/j.ijbiomac.2021.11.029
    31. T.S. Anirudhan, Susan Varghese, V. Manjusha. Hyaluronic acid coated Pluronic F127/Pluronic P123 mixed micelle for targeted delivery of Paclitaxel and Curcumin. International Journal of Biological Macromolecules 2021, 192 , 950-957. https://doi.org/10.1016/j.ijbiomac.2021.10.061
    32. Nathaniel R. Twarog, Nancy E. Martinez, Jessica Gartrell, Jia Xie, Christopher L. Tinkle, Anang A. Shelat. Using response surface models to analyze drug combinations. Drug Discovery Today 2021, 26 (8) , 2014-2024. https://doi.org/10.1016/j.drudis.2021.06.002
    33. Shambhavi Borde, Pooja Hegde, Pavan Prathipati, Jeffrey North, Dunesh Kumari, Harsh Chauhan. Formulation and characterization of ternary amorphous solid dispersions of a highly potent anti-tubercular agent and curcumin. Journal of Drug Delivery Science and Technology 2021, 64 , 102564. https://doi.org/10.1016/j.jddst.2021.102564
    34. Pooja Rathaur, Mehul N. Soni, Brijesh Gelat, Rakesh Rawal, Himanshu A. Pandya, Kaid Johar. Network pharmacology-based evaluation of natural compounds with paclitaxel for the treatment of metastatic breast cancer. Toxicology and Applied Pharmacology 2021, 423 , 115576. https://doi.org/10.1016/j.taap.2021.115576
    35. Hend M. Nawara, Said M. Afify, Ghmkin Hassan, Maram H. Zahra, Akimasa Seno, Masaharu Seno. Paclitaxel-Based Chemotherapy Targeting Cancer Stem Cells from Mono- to Combination Therapy. Biomedicines 2021, 9 (5) , 500. https://doi.org/10.3390/biomedicines9050500
    36. Ashok Kumar Jangid, Deep Pooja, Poonam Jain, Nitin Gupta, Shwathy Ramesan, Hitesh Kulhari. Self-assembled and pH-responsive polymeric nanomicelles impart effective delivery of paclitaxel to cancer cells. RSC Advances 2021, 11 (23) , 13928-13939. https://doi.org/10.1039/D1RA01574E
    37. Shani L. Levit, Christina Tang. Polymeric Nanoparticle Delivery of Combination Therapy with Synergistic Effects in Ovarian Cancer. Nanomaterials 2021, 11 (4) , 1048. https://doi.org/10.3390/nano11041048
    38. Dharambir Kashyap, Hardeep Singh Tuli, Mukerrem Betul Yerer, Ajay Sharma, Katrin Sak, Saumya Srivastava, Anjana Pandey, Vivek Kumar Garg, Gautam Sethi, Anupam Bishayee. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Seminars in Cancer Biology 2021, 69 , 5-23. https://doi.org/10.1016/j.semcancer.2019.08.014
    39. Wing-Hin Lee, Ching-Yee Loo, Daniela Traini, Paul M. Young. Development and Evaluation of Paclitaxel and Curcumin Dry Powder for Inhalation Lung Cancer Treatment. Pharmaceutics 2021, 13 (1) , 9. https://doi.org/10.3390/pharmaceutics13010009
    40. Eva Pinho. Cyclodextrins-based hydrogel. 2021, 113-141. https://doi.org/10.1016/B978-0-12-821649-1.00004-0
    41. Lamia Yazgi Alyazici, Fatih Kocabas. Identification of Small Molecules That Enhance the Expansion of Mesenchymal Stem Cells Originating from Bone Marrow. 2021, 43-55. https://doi.org/10.1007/5584_2021_677
    42. Raife Dilek Turan, Esra Albayrak, Merve Uslu, Pinar Siyah, Lamia Yazgi Alyazici, Batuhan Mert Kalkan, Galip Servet Aslan, Dogacan Yucel, Merve Aksoz, Emre Can Tuysuz, Neslihan Meric, Serdar Durdagi, Zafer Gulbas, Fatih Kocabas. Development of Small Molecule MEIS Inhibitors that modulate HSC activity. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-64888-3
    43. Merve Uslu, Esra Albayrak, Fatih Kocabaş. Temporal modulation of calcium sensing in hematopoietic stem cells is crucial for proper stem cell expansion and engraftment. Journal of Cellular Physiology 2020, 235 (12) , 9644-9666. https://doi.org/10.1002/jcp.29777
    44. Shiyu Chen, Zhimei Song, Runliang Feng. Recent Development of Copolymeric Nano-Drug Delivery System for Paclitaxel. Anti-Cancer Agents in Medicinal Chemistry 2020, 20 (18) , 2169-2189. https://doi.org/10.2174/1871520620666200719001038
    45. Humeyra Sidal, Pinar Colakoglu Erkan, Merve Uslu, Fatih Kocabas. Development of small‐molecule‐induced fibroblast expansion technologies. Journal of Tissue Engineering and Regenerative Medicine 2020, 14 (10) , 1476-1487. https://doi.org/10.1002/term.3112
    46. Batuhan Mert Kalkan, Sezer Akgol, Deniz Ak, Dogacan Yucel, Gulen Guney Esken, Fatih Kocabas. CASIN and AMD3100 enhance endothelial cell proliferation, tube formation and sprouting. Microvascular Research 2020, 130 , 104001. https://doi.org/10.1016/j.mvr.2020.104001
    47. Tatul Saghatelyan, Armen Tananyan, Naira Janoyan, Anna Tadevosyan, Hasmik Petrosyan, Araxia Hovhannisyan, Lidia Hayrapetyan, Mikael Arustamyan, Jürgen Arnhold, Andre-Robert Rotmann, Areg Hovhannisyan, Alexander Panossian. Efficacy and safety of curcumin in combination with paclitaxel in patients with advanced, metastatic breast cancer: A comparative, randomized, double-blind, placebo-controlled clinical trial. Phytomedicine 2020, 70 , 153218. https://doi.org/10.1016/j.phymed.2020.153218
    48. Batuhan Mert Kalkan, Ezgi Yagmur Kala, Melek Yuce, Medine Karadag Alpaslan, Fatih Kocabas. Development of gene editing strategies for human β-globin (HBB) gene mutations. Gene 2020, 734 , 144398. https://doi.org/10.1016/j.gene.2020.144398
    49. Bingren Tian, Shiyao Hua, Jiayue Liu. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review. Carbohydrate Polymers 2020, 232 , 115805. https://doi.org/10.1016/j.carbpol.2019.115805
    50. Zeynep Busra Bolat, Zeynep Islek, Bilun Nas Demir, Elif Nur Yilmaz, Fikrettin Sahin, Mehmet Hikmet Ucisik. Curcumin- and Piperine-Loaded Emulsomes as Combinational Treatment Approach Enhance the Anticancer Activity of Curcumin on HCT116 Colorectal Cancer Model. Frontiers in Bioengineering and Biotechnology 2020, 8 https://doi.org/10.3389/fbioe.2020.00050
    51. Katiúscia Vieira Jardim, Joseilma Luciana Neves Siqueira, Sônia Nair Báo, Marcelo Henrique Sousa, Alexandre Luis Parize. The role of the lecithin addition in the properties and cytotoxic activity of chitosan and chondroitin sulfate nanoparticles containing curcumin. Carbohydrate Polymers 2020, 227 , 115351. https://doi.org/10.1016/j.carbpol.2019.115351
    52. Falian Zhu, Guozhu Tan, Yingtao Zhong, Yaodong Jiang, Lulu Cai, Zhiqiang Yu, Shuwen Liu, Fei Ren. Smart nanoplatform for sequential drug release and enhanced chemo-thermal effect of dual drug loaded gold nanorod vesicles for cancer therapy. Journal of Nanobiotechnology 2019, 17 (1) https://doi.org/10.1186/s12951-019-0473-3
    53. Merve Aksoz, Esra Albayrak, Galip Servet Aslan, Raife Dilek Turan, Lamia Yazgi Alyazici, Pınar Siyah, Emre Can Tuysuz, Serli Canikyan, Dogacan Yucel, Neslihan Meric, Zafer Gulbas, Fikrettin Sahin, Fatih Kocabas. c-Myc Inhibitor 10074-G5 Induces Murine and Human Hematopoietic Stem and Progenitor Cell Expansion and HDR Modulator Rad51 Expression. Current Cancer Drug Targets 2019, 19 (6) , 479-494. https://doi.org/10.2174/1568009618666180905100608
    54. Behdad Delavari, Fatemeh Mamashli, Bahareh Bigdeli, Atefeh Poursoleiman, Leila Karami, Zahra Zolmajd-Haghighi, Atiyeh Ghasemi, Samaneh Samaei-Daryan, Morteza Hosseini, Thomas Haertlé, Vladimir I. Muronetz, Øyvind Halskau, Ali Akbar Moosavi-Movahedi, Bahram Goliaei, Ali Hossein Rezayan, Ali Akbar Saboury. A biophysical study on the mechanism of interactions of DOX or PTX with α-lactalbumin as a delivery carrier. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-35559-1
    55. Sivaraj Ramasamy, Rex Jeya Rajkumar Sam David, Israel V. M. V. Enoch. Folate-molecular encapsulator-tethered biocompatible polymer grafted with magnetic nanoparticles for augmented drug delivery. Artificial Cells, Nanomedicine, and Biotechnology 2018, 46 (sup2) , 675-682. https://doi.org/10.1080/21691401.2018.1468340
    56. Katiúscia Vieira Jardim, Abraham Francisco Palomec-Garfias, Bárbara Yasmin Garcia Andrade, Juliano Alexandre Chaker, Sônia Nair Báo, César Márquez-Beltrán, Sergio Enrique Moya, Alexandre Luis Parize, Marcelo Henrique Sousa. Novel magneto-responsive nanoplatforms based on MnFe2O4 nanoparticles layer-by-layer functionalized with chitosan and sodium alginate for magnetic controlled release of curcumin. Materials Science and Engineering: C 2018, 92 , 184-195. https://doi.org/10.1016/j.msec.2018.06.039
    57. Tânia F. Cova, Dina Murtinho, Alberto A. C. C. Pais, Artur J. M. Valente. Combining Cellulose and Cyclodextrins: Fascinating Designs for Materials and Pharmaceutics. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00271
    58. J. Falke, J. Parkkinen, L. Vaahtera, C. A. Hulsbergen-van de Kaa, E. Oosterwijk, J. A. Witjes. Curcumin as Treatment for Bladder Cancer: A Preclinical Study of Cyclodextrin-Curcumin Complex and BCG as Intravesical Treatment in an Orthotopic Bladder Cancer Rat Model. BioMed Research International 2018, 2018 , 1-7. https://doi.org/10.1155/2018/9634902
    59. Eneko Larrañeta, Sarah Stewart, Michael Ervine, Rehan Al-Kasasbeh, Ryan Donnelly. Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications. Journal of Functional Biomaterials 2018, 9 (1) , 13. https://doi.org/10.3390/jfb9010013
    60. Amir Tajbakhsh, Malihe Hasanzadeh, Mehdi Rezaee, Mostafa Khedri, Majid Khazaei, Soodabeh ShahidSales, Gordon A. Ferns, Seyed Mahdi Hassanian, Amir Avan. Therapeutic potential of novel formulated forms of curcumin in the treatment of breast cancer by the targeting of cellular and physiological dysregulated pathways. Journal of Cellular Physiology 2018, 233 (3) , 2183-2192. https://doi.org/10.1002/jcp.25961
    61. Grégorio Crini, Sophie Fourmentin, Éva Fenyvesi, Giangiacomo Torri, Marc Fourmentin, Nadia Morin-Crini. Fundamentals and Applications of Cyclodextrins. 2018, 1-55. https://doi.org/10.1007/978-3-319-76159-6_1
    62. Nazlı Erdoğar, Erem Bilensoy. Cyclodextrin-Based Nanosystems in Targeted Cancer Therapy. 2018, 59-80. https://doi.org/10.1007/978-3-319-76162-6_3
    63. Devivasha Bordoloi, Ajaikumar B. Kunnumakkara. The Potential of Curcumin: A Multitargeting Agent in Cancer Cell Chemosensitization. 2018, 31-60. https://doi.org/10.1016/B978-0-12-812373-7.00002-4
    64. Yong Zhao, Jia‑Guo Liu, Wei‑Min Chen, Ai‑Xi Yu. Efficacy of thermosensitive chitosan/β‑glycerophosphate hydrogel loaded with β‑cyclodextrin‑curcumin for the treatment of cutaneous wound infection in rats. Experimental and Therapeutic Medicine 2017, https://doi.org/10.3892/etm.2017.5552
    65. Peiyuan Li, Wei Su, Xiaolin Lei, Qi Xiao, Shan Huang. Synthesis, characterization and anticancer activity of a series of curcuminoids and their half‐sandwich ruthenium(II) complexes. Applied Organometallic Chemistry 2017, 31 (9) https://doi.org/10.1002/aoc.3685
    66. Yumeng Wei, Xinlin Pu, Ling Zhao. Preclinical studies for the combination of paclitaxel and curcumin in cancer therapy. Oncology Reports 2017, 37 (6) , 3159-3166. https://doi.org/10.3892/or.2017.5593
    67. H.J. Wiggers, S. Zaioncz, J. Cheleski, R.M. Mainardes, N.M. Khalil. Curcumin, a Multitarget Phytochemical. 2017, 243-276. https://doi.org/10.1016/B978-0-444-63930-1.00007-7
    68. Kasturi Muthoosamy, Ibrahim Babangida Abubakar, Renu Geetha Bai, Hwei-San Loh, Sivakumar Manickam. Exceedingly Higher co-loading of Curcumin and Paclitaxel onto Polymer-functionalized Reduced Graphene Oxide for Highly Potent Synergistic Anticancer Treatment. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep32808
    69. Mohammed Anwar, Sohail Akhter, Neha Mallick, Sharmistha Mohapatra, Sobiya Zafar, M. Moshahid A. Rizvi, Asgar Ali, Farhan J.. Ahmad. Enhanced anti-tumor efficacy of paclitaxel with PEGylated lipidic nanocapsules in presence of curcumin and poloxamer: In vitro and in vivo studies. Pharmacological Research 2016, 113 , 146-165. https://doi.org/10.1016/j.phrs.2016.08.025
    70. Huihui Yuan, Bo Sun, Feng Gao, Minbo Lan. Synergistic anticancer effects of andrographolide and paclitaxel against A549 NSCLC cells. Pharmaceutical Biology 2016, 54 (11) , 2629-2635. https://doi.org/10.1080/13880209.2016.1176056
    71. Songlin Li, Chunshu Fang, Jingqing Zhang, Bilin Liu, Zhuanqin Wei, Xiaoqing Fan, Zheng Sui, Qunyou Tan. Catanionic lipid nanosystems improve pharmacokinetics and anti-lung cancer activity of curcumin. Nanomedicine: Nanotechnology, Biology and Medicine 2016, 12 (6) , 1567-1579. https://doi.org/10.1016/j.nano.2016.02.007
    72. Ziyuan Meng, Quanxia Lv, Jun Lu, Houzong Yao, Xiaoqing Lv, Feng Jiang, Aiping Lu, Ge Zhang. Prodrug Strategies for Paclitaxel. International Journal of Molecular Sciences 2016, 17 (5) , 796. https://doi.org/10.3390/ijms17050796
    73. Shanmei Yuan, Jiao Chen, Jie Sheng, Yong Hu, Zhongying Jiang. Paclitaxel‐Loaded β ‐Cyclodextrin‐Modified Poly(Acrylic Acid) Nanoparticles through Multivalent Inclusion for Anticancer Therapy. Macromolecular Bioscience 2016, 16 (3) , 341-349. https://doi.org/10.1002/mabi.201500302
    74. Gautier M.A. Ndong Ntoutoume, Robert Granet, Jean Pierre Mbakidi, Frédérique Brégier, David Y. Léger, Chloë Fidanzi-Dugas, Vincent Lequart, Nicolas Joly, Bertrand Liagre, Vincent Chaleix, Vincent Sol. Development of curcumin–cyclodextrin/cellulose nanocrystals complexes: New anticancer drug delivery systems. Bioorganic & Medicinal Chemistry Letters 2016, 26 (3) , 941-945. https://doi.org/10.1016/j.bmcl.2015.12.060
    75. RUINIAN ZHENG, ZHIJIAN YOU, JUN JIA, SHUNHUAN LIN, SHUAI HAN, AIXUE LIU, HUIDONG LONG, SENMING WANG. Curcumin enhances the antitumor effect of ABT-737 via activation of the ROS-ASK1-JNK pathway in hepatocellular carcinoma cells. Molecular Medicine Reports 2016, 13 (2) , 1570-1576. https://doi.org/10.3892/mmr.2015.4715
    76. Thayyath S. Anirudhan, Peethambaran L. Divya, Jayachandran Nima. Synthesis and characterization of novel drug delivery system using modified chitosan based hydrogel grafted with cyclodextrin. Chemical Engineering Journal 2016, 284 , 1259-1269. https://doi.org/10.1016/j.cej.2015.09.057
    77. Sin-Yeang Teow, Kitson Liew, Syed A. Ali, Alan Soo-Beng Khoo, Suat-Cheng Peh. Antibacterial Action of Curcumin against Staphylococcus aureus : A Brief Review. Journal of Tropical Medicine 2016, 2016 , 1-10. https://doi.org/10.1155/2016/2853045
    78. Huarong Huang, Xuan Chen, Dongli Li, Yan He, Yu Li, Zhiyun Du, Kun Zhang, Robert DiPaola, Susan Goodin, Xi Zheng, . Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells. PLOS ONE 2015, 10 (12) , e0144293. https://doi.org/10.1371/journal.pone.0144293
    79. Michele F. Oliveira, Diego Suarez, Júlio Cézar Barbosa Rocha, Alvaro Vianna Novaes de Carvalho Teixeira, Maria E. Cortés, Frederico B. De Sousa, Rubén D. Sinisterra. Electrospun nanofibers of polyCD/PMAA polymers and their potential application as drug delivery system. Materials Science and Engineering: C 2015, 54 , 252-261. https://doi.org/10.1016/j.msec.2015.04.042
    80. Jian-Qiang Zhang, Di Wu, Kun-Ming Jiang, Da Zhang, Xi Zheng, Chun-Ping Wan, Hong-You Zhu, Xiao-Guang Xie, Yi Jin, Jun Lin. Preparation, spectroscopy and molecular modelling studies of the inclusion complex of cordycepin with cyclodextrins. Carbohydrate Research 2015, 406 , 55-64. https://doi.org/10.1016/j.carres.2015.01.005
    81. YU-PING DANG, XIAO-YING YUAN, RONG TIAN, DONG-GUANG LI, WEI LIU. Curcumin improves the paclitaxel-induced apoptosis of HPV-positive human cervical cancer cells via the NF-κB-p53-caspase-3 pathway. Experimental and Therapeutic Medicine 2015, 9 (4) , 1470-1476. https://doi.org/10.3892/etm.2015.2240
    82. Jinglei Li, Gye Hwa Shin, Xiguang Chen, Hyun Jin Park. Modified curcumin with hyaluronic acid: Combination of pro-drug and nano-micelle strategy to address the curcumin challenge. Food Research International 2015, 69 , 202-208. https://doi.org/10.1016/j.foodres.2014.12.045
    83. Wei Scarano, Paul de Souza, Martina H. Stenzel. Dual-drug delivery of curcumin and platinum drugs in polymeric micelles enhances the synergistic effects: a double act for the treatment of multidrug-resistant cancer. Biomaterials Science 2015, 3 (1) , 163-174. https://doi.org/10.1039/C4BM00272E
    84. Soon Gil Choi, Sang-Eun Lee, Bong-Seok Kang, Choon Lian Ng, Enkhzaya Davaa, Jeong-Sook Park, . Thermosensitive and Mucoadhesive Sol-Gel Composites of Paclitaxel/Dimethyl-β-Cyclodextrin for Buccal Delivery. PLoS ONE 2014, 9 (10) , e109090. https://doi.org/10.1371/journal.pone.0109090
    85. Chang Liu, Wang Zhang, Hao Yang, Weidong Sun, Xiangdong Gong, Junxian Zhao, Yun Sun, Guowang Diao, . A Water-Soluble Inclusion Complex of Pedunculoside with the Polymer β-Cyclodextrin: A Novel Anti-Inflammation Agent with Low Toxicity. PLoS ONE 2014, 9 (7) , e101761. https://doi.org/10.1371/journal.pone.0101761
    86. Mukesh K. Pandey, Abhishek Kumar, Sethu Ravichandran, Virinder S. Parmar, Arthur C. Watterson, Jayant Kumar. Chemo-enzymatic Synthesis of Polydimethylsiloxane Curcumin Copolymer for Detection of Nitro-aromatics. Journal of Macromolecular Science, Part A 2014, 51 (5) , 399-404. https://doi.org/10.1080/10601325.2014.893131
    87. Alicja Karabasz, Monika Bzowska, Sylwia Łukasiewicz, Joanna Bereta, Krzysztof Szczepanowicz. Cytotoxic activity of paclitaxel incorporated into polyelectrolyte nanocapsules. Journal of Nanoparticle Research 2014, 16 (4) https://doi.org/10.1007/s11051-014-2340-3
    88. Ornchuma Naksuriya, Siriporn Okonogi, Raymond M. Schiffelers, Wim E. Hennink. Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 2014, 35 (10) , 3365-3383. https://doi.org/10.1016/j.biomaterials.2013.12.090
    89. Ian M. Thompson, April B. Cabang, Michael J. Wargovich. Future directions in the prevention of prostate cancer. Nature Reviews Clinical Oncology 2014, 11 (1) , 49-60. https://doi.org/10.1038/nrclinonc.2013.211
    90. Reza Takjoo, Alireza Akbari, Seyyed Yousef Ebrahimipour, Hadi Amiri Rrudbari, Giuseppe Brunò. Synthesis, characterization, X-ray structure and DFT calculation of two Mo(VI) and Ni(II) Schiff-base complexes. Comptes Rendus. Chimie 2014, 17 (11) , 1144-1153. https://doi.org/10.1016/j.crci.2014.01.009

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect