ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Bioavailability of Curcumin: Problems and Promises

View Author Information
Cytokine Research Laboratory and Pharmaceutical Development Center, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
* To whom correspondence should be addressed. Mailing address: Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Box 143, Houston, TX 77030. Phone: 713-792-3503 . E-mail: [email protected]
†Cytokine Research Laboratory.
‡Pharmaceutical Development Center.
Cite this: Mol. Pharmaceutics 2007, 4, 6, 807–818
Publication Date (Web):November 14, 2007
https://doi.org/10.1021/mp700113r
Copyright © 2007 American Chemical Society

    Article Views

    32652

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Curcumin, a polyphenolic compound derived from dietary spice turmeric, possesses diverse pharmacologic effects including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic activities. Phase I clinical trials have shown that curcumin is safe even at high doses (12 g/day) in humans but exhibit poor bioavailability. Major reasons contributing to the low plasma and tissue levels of curcumin appear to be due to poor absorption, rapid metabolism, and rapid systemic elimination. To improve the bioavailability of curcumin, numerous approaches have been undertaken. These approaches involve, first, the use of adjuvant like piperine that interferes with glucuronidation; second, the use of liposomal curcumin; third, curcumin nanoparticles; fourth, the use of curcumin phospholipid complex; and fifth, the use of structural analogues of curcumin (e.g., EF-24). The latter has been reported to have a rapid absorption with a peak plasma half-life. Despite the lower bioavailability, therapeutic efficacy of curcumin against various human diseases, including cancer, cardiovascular diseases, diabetes, arthritis, neurological diseases and Crohnʼs disease, has been documented. Enhanced bioavailability of curcumin in the near future is likely to bring this promising natural product to the forefront of therapeutic agents for treatment of human disease.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 3804 publications.

    1. Noemi Pagliaricci, Riccardo Pettinari, Fabio Marchetti, Alessia Tombesi, Sara Pagliaricci, Massimiliano Cuccioloni, Agustín Galindo, Farzaneh Fadaei-Tirani, Mouna Hadiji, Paul J. Dyson. Ru(II)-Arene Complexes of Curcumin and Bisdesmethoxycurcumin Metabolites. Inorganic Chemistry 2024, Article ASAP.
    2. Xiaoyue Ma, Yurong Zhao, Xiaofang Jiang, Mengchen Fan, Chunyong He, Hao Qi, Yan Wang, Dong Wang, Yubin Ke, Hai Xu, Cuixia Chen, Jiqian Wang. Controlled Assembly and Disassembly of Higher-Order Peptide Nanotubes. ACS Applied Materials & Interfaces 2024, 16 (8) , 9787-9798. https://doi.org/10.1021/acsami.3c17509
    3. Alberto Boretti. Curcumin-Based Fixed Dose Combination Products for Cholesterol Management: A Narrative Review. ACS Pharmacology & Translational Science 2024, 7 (2) , 300-308. https://doi.org/10.1021/acsptsci.3c00234
    4. Junhao Liang, Xingsen Yang, Chang Li, Beibei Zhang, Danqing Liu, Yu Fan, Yong Hu, Jianzhong Du. Injectable DNA Hydrogels with Intrinsic Antioxidant and Anti-inflammatory Functions for Effectively Healing Bacteria-Infected Diabetic Wounds. Chemistry of Materials 2023, 35 (23) , 9963-9977. https://doi.org/10.1021/acs.chemmater.3c01776
    5. J. Alejandro Arboleda-Murillo, Leidy T. Sanchez, Cristian C. Villa. Development of Nanoencapsulated Curcumin-Based Photoactive Edible Packaging and Its Application on Strawberry Preservation. ACS Food Science & Technology 2023, 3 (11) , 1815-1823. https://doi.org/10.1021/acsfoodscitech.3c00214
    6. Nazrul Haq, Mudassar Shahid, Ahmed L. Alaofi, Zeeshan Heera Ahmad, Yasser F. Alrayyes, Ibrahim A. Alsarra, Faiyaz Shakeel. Evaluation of the Physicochemical and Antimicrobial Properties of Nanoemulsion-Based Polyherbal Mouthwash. ACS Omega 2023, 8 (44) , 41755-41764. https://doi.org/10.1021/acsomega.3c06176
    7. Marvin Benedikt Brenner, Sandra Flory, Matthias Wüst, Jan Frank, Karl Wagner. Novel Biphasic In Vitro Dissolution Method Correctly Predicts the Oral Bioavailability of Curcumin in Humans. Journal of Agricultural and Food Chemistry 2023, 71 (42) , 15632-15643. https://doi.org/10.1021/acs.jafc.3c04990
    8. Ali Samie, Hoda Alavian, Zeinab Vafaei-Pour, Amir Hooshang Mohammadpour, Amir Hossein Jafarian, Noor Mohammad Danesh, Khalil Abnous, Seyed Mohammad Taghdisi. Accelerated Wound Healing with a Diminutive Scar through Cocrystal Engineered Curcumin. Molecular Pharmaceutics 2023, 20 (10) , 5090-5107. https://doi.org/10.1021/acs.molpharmaceut.3c00398
    9. Chen Hang, Zhou Wei, Xiang Jieyu, Li Man, Yiru Ye, Zhou Ling, Wang Min, Chen Danyang, Guo Liang. ZIF-8/Curcumin-Loaded Electrospun Nanofiber Membrane for Wound Healing. ACS Applied Nano Materials 2023, 6 (17) , 15620-15631. https://doi.org/10.1021/acsanm.3c02443
    10. Nanigopal Bera, Souvik Layek, Shashwata Pramanik, Pratyush Kiran Nandi, Ritwik Hazra, Nilmoni Sarkar. Ultrafast Dynamics of the Medicinal Pigment Curcumin inside the Imidazolium Surface Active Ionic Liquid Containing Giant Vesicles and White Light Generation via Triple-FRET Technique. Langmuir 2023, 39 (33) , 11653-11663. https://doi.org/10.1021/acs.langmuir.3c01233
    11. Simran Nasra, Tishira Shah, Mahek Bhatt, Ramesh Chaudhari, Dhiraj Bhatia, Ashutosh Kumar. Reprogramming M1-to-M2 Phenotype to Alleviate Inflammation: Using Liposomal Curcumin as a Tool to Redefine Macrophage Functionality. ACS Applied Bio Materials 2023, 6 (7) , 2886-2897. https://doi.org/10.1021/acsabm.3c00316
    12. Jiazhen Wu, Mengyao Li, Ning Huang, Fengkun Guan, Huijuan Luo, Liping Chen, Guilan Wei, Muxia Li, Zhixiu Lin, Ziren Su, Jiannan Chen, Yuhong Liu. Curcumin Alleviates High-fat Diet-induced Nonalcoholic Steatohepatitis via Improving Hepatic Endothelial Function with Microbial Biotransformation in Rats. Journal of Agricultural and Food Chemistry 2023, 71 (27) , 10338-10348. https://doi.org/10.1021/acs.jafc.3c01067
    13. Felipe da Silva Feltrin, Natália Aimée D’Angelo, João Paulo de Oliveira Guarnieri, André Moreni Lopes, Marcelo Lancellotti, Liliane Maria Ferrareso Lona. Selection and Control of Process Conditions Enable the Preparation of Curcumin-Loaded Poly(lactic-co-glycolic acid) Nanoparticles of Superior Performance. ACS Applied Materials & Interfaces 2023, 15 (22) , 26496-26509. https://doi.org/10.1021/acsami.3c05560
    14. Ajaikumar B. Kunnumakkara, Mangala Hegde, Dey Parama, Sosmitha Girisa, Aviral Kumar, Uzini Devi Daimary, Prachi Garodia, Sarat Chandra Yenisetti, Oommen V. Oommen, Bharat B. Aggarwal. Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacology & Translational Science 2023, 6 (4) , 447-518. https://doi.org/10.1021/acsptsci.2c00012
    15. Sanjeev Kumar, Kshetramohan Sahoo. Spinning Disc–Spinning Bowl Contactor. Industrial & Engineering Chemistry Research 2023, 62 (12) , 5445-5448. https://doi.org/10.1021/acs.iecr.3c00139
    16. Mangala Hegde, Sosmitha Girisa, Bandari BharathwajChetty, Ravichandran Vishwa, Ajaikumar B. Kunnumakkara. Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far?. ACS Omega 2023, 8 (12) , 10713-10746. https://doi.org/10.1021/acsomega.2c07326
    17. Alexis M. Ziemba, Mary Clare Crochiere Woodson, Jessica L. Funnell, Douglas Wich, Bailey Balouch, Deniz Rende, Dahlia N. Amato, Jonathan Bao, Ingrid Oprea, Dominica Cao, Neda Bajalo, Evon S. Ereifej, Jeffrey R. Capadona, Edmund F. Palermo, Ryan J. Gilbert. Development of a Slow-Degrading Polymerized Curcumin Coating for Intracortical Microelectrodes. ACS Applied Bio Materials 2023, 6 (2) , 806-818. https://doi.org/10.1021/acsabm.2c00969
    18. Seyedeh Fatemeh Khalilian, Maryam Tohidi, Banafsheh Rastegari. Synthesis of Biocompatible Nanoporous ZIF-8-Gum Arabic as a New Carrier for the Targeted Delivery of Curcumin. ACS Omega 2023, 8 (3) , 3245-3257. https://doi.org/10.1021/acsomega.2c06705
    19. Ruiwen Chen, Jessica L. Funnell, Geraldine B. Quinones, Marvin Bentley, Jeffrey R. Capadona, Ryan J. Gilbert, Edmund F. Palermo. Poly(pro-curcumin) Materials Exhibit Dual Release Rates and Prolonged Antioxidant Activity as Thin Films and Self-Assembled Particles. Biomacromolecules 2023, 24 (1) , 294-307. https://doi.org/10.1021/acs.biomac.2c01135
    20. David Limón, Pablo Gil-Lianes, Laura Rodríguez-Cid, Helen L. Alvarado, Natalia Díaz-Garrido, Mireia Mallandrich, Laura Baldomà, Ana C. Calpena, Concepción Domingo, Núria Aliaga-Alcalde, Arántzazu González-Campo, Lluïsa Pérez-García. Supramolecular Hydrogels Consisting of Nanofibers Increase the Bioavailability of Curcuminoids in Inflammatory Skin Diseases. ACS Applied Nano Materials 2022, 5 (10) , 13829-13839. https://doi.org/10.1021/acsanm.2c01482
    21. Guldjan Yakub, Nevena E. Manolova, Iliya B. Rashkov, Nadya Markova, Reneta Toshkova, Ani Georgieva, Rosica Mincheva, Antoniya Toncheva, Jean-Marie Raquez, Philippe Dubois. Pegylated Curcumin Derivative: Water-Soluble Conjugates with Antitumor and Antibacterial Activity. ACS Omega 2022, 7 (41) , 36403-36414. https://doi.org/10.1021/acsomega.2c04173
    22. Sooho Yeo, Min Je Kim, Young Key Shim, Il Yoon, Woo Kyoung Lee. Solid Lipid Nanoparticles of Curcumin Designed for Enhanced Bioavailability and Anticancer Efficiency. ACS Omega 2022, 7 (40) , 35875-35884. https://doi.org/10.1021/acsomega.2c04407
    23. Maryam Haji Dehabadi, Amedeo Caflisch, Ioana M. Ilie, Rohoullah Firouzi. Interactions of Curcumin’s Degradation Products with the Aβ42 Dimer: A Computational Study. The Journal of Physical Chemistry B 2022, 126 (39) , 7627-7637. https://doi.org/10.1021/acs.jpcb.2c05846
    24. Yao Liu, Jingshan Luo, Yujing Liu, Wen Liu, Guangtao Yu, Yuting Huang, Yu Yang, Xiaojia Chen, Tongkai Chen. Brain-Targeted Biomimetic Nanodecoys with Neuroprotective Effects for Precise Therapy of Parkinson’s Disease. ACS Central Science 2022, 8 (9) , 1336-1349. https://doi.org/10.1021/acscentsci.2c00741
    25. Jian Bin Zhen, Jiajia Yi, Huan Huan Ding, Ke-Wu Yang. Self-Assembled Cationic Nanoparticles Combined with Curcumin against Multidrug-Resistant Bacteria. ACS Omega 2022, 7 (34) , 29909-29922. https://doi.org/10.1021/acsomega.2c02855
    26. Durga Mondal, Ranju Prasad Mandal, Swati De. Addressing the Superior Drug Delivery Performance of Bilosomes─A Microscopy and Fluorescence Study. ACS Applied Bio Materials 2022, 5 (8) , 3896-3911. https://doi.org/10.1021/acsabm.2c00435
    27. Zuzana Osifová, Robert Reiberger, Ivana Císařová, Aleš Machara, Martin Dračínský. Diketo–Ketoenol Tautomers in Curcuminoids: Synthesis, Separation of Tautomers, and Kinetic and Structural Studies. The Journal of Organic Chemistry 2022, 87 (15) , 10309-10318. https://doi.org/10.1021/acs.joc.2c01357
    28. Xiang Zhang, Jin Feng, Weina Feng, Buxuan Xu, Kai Zhang, Guiping Ma, Yang Li, Maowei Yang, Fu-Jian Xu. Glycosaminoglycan-Based Hydrogel Delivery System Regulates the Wound Microenvironment to Rescue Chronic Wound Healing. ACS Applied Materials & Interfaces 2022, 14 (28) , 31737-31750. https://doi.org/10.1021/acsami.2c08593
    29. Charlie T. McTernan, Jack A. Davies, Jonathan R. Nitschke. Beyond Platonic: How to Build Metal–Organic Polyhedra Capable of Binding Low-Symmetry, Information-Rich Molecular Cargoes. Chemical Reviews 2022, 122 (11) , 10393-10437. https://doi.org/10.1021/acs.chemrev.1c00763
    30. Neyra Citlali Cabrera-Quiñones, Luis José López-Méndez, Estrella Ramos, Yareli Rojas-Aguirre, Patricia Guadarrama. Mono-Dendronized β-Cyclodextrin Derivatives as Multitasking Containers for Curcumin. Impacting Its Solubility, Loading, and Tautomeric Form. The Journal of Physical Chemistry B 2022, 126 (7) , 1529-1538. https://doi.org/10.1021/acs.jpcb.1c09811
    31. Aarti Upadhyay, Paramita Kundu, Vanitha Ramu, Paturu Kondaiah, Akhil R. Chakravarty. BODIPY-Tagged Platinum(II) Curcumin Complexes for Endoplasmic Reticulum-Targeted Red Light PDT. Inorganic Chemistry 2022, 61 (3) , 1335-1348. https://doi.org/10.1021/acs.inorgchem.1c02745
    32. Durga M. Arvapalli, Alex T. Sheardy, John J. Bang, Jianjun Wei. Antiproliferative and ROS Regulation Activity of Photoluminescent Curcumin-Derived Nanodots. ACS Applied Bio Materials 2021, 4 (12) , 8477-8486. https://doi.org/10.1021/acsabm.1c00991
    33. Raghavendhar R. Kotha, Fakir Shahidullah Tareq, Craig Byrdwell, Devanand L. Luthria. Rapid and Sensitive Analytical Assessment of Curcuminoids and Three Common Turmeric Adulterants in a Single Run Using Liquid Chromatography and Tandem Mass Spectrometry. ACS Food Science & Technology 2021, 1 (11) , 2174-2181. https://doi.org/10.1021/acsfoodscitech.1c00356
    34. Miora Rakotoarisoa, Borislav Angelov, Shirly Espinoza, Krishna Khakurel, Thomas Bizien, Markus Drechsler, Angelina Angelova. Composition-Switchable Liquid Crystalline Nanostructures as Green Formulations of Curcumin and Fish Oil. ACS Sustainable Chemistry & Engineering 2021, 9 (44) , 14821-14835. https://doi.org/10.1021/acssuschemeng.1c04706
    35. Anand Kumar Sahu, Ashok Kumar Mishra. Curcumin-Induced Membrane Property Changes in DMPC Multilamellar Vesicles and the Effects of Membrane-Destabilizing Molecules on Curcumin-Loaded Multilamellar Vesicles. Langmuir 2021, 37 (43) , 12753-12766. https://doi.org/10.1021/acs.langmuir.1c02407
    36. Anup Kumar Ghosh, Monalisa Chowdhury, Prasanta Kumar Das. Nipecotic-Acid-Tethered, Naphthalene-Diimide-Based, Orange-Emitting Organic Nanoparticles as Targeted Delivery Vehicle and Diagnostic Probe toward GABAA-Receptor-Enriched Cancer Cells. ACS Applied Bio Materials 2021, 4 (10) , 7563-7577. https://doi.org/10.1021/acsabm.1c00830
    37. Lalita Subedi, Bhakta Prasad Gaire. Neuroprotective Effects of Curcumin in Cerebral Ischemia: Cellular and Molecular Mechanisms. ACS Chemical Neuroscience 2021, 12 (14) , 2562-2572. https://doi.org/10.1021/acschemneuro.1c00153
    38. Asifa Khan, Shumaila Siddiqui, Syed Akhtar Husain, Sybille Mazurek, Mohammad Askandar Iqbal. Phytocompounds Targeting Metabolic Reprogramming in Cancer: An Assessment of Role, Mechanisms, Pathways, and Therapeutic Relevance. Journal of Agricultural and Food Chemistry 2021, 69 (25) , 6897-6928. https://doi.org/10.1021/acs.jafc.1c01173
    39. Hanieh Nargeh, Fatemeh Aliabadi, Marjan Ajami, Hamidreza Pazoki-Toroudi. Role of Polyphenols on Gut Microbiota and the Ubiquitin-Proteasome System in Neurodegenerative Diseases. Journal of Agricultural and Food Chemistry 2021, 69 (22) , 6119-6144. https://doi.org/10.1021/acs.jafc.1c00923
    40. Jui-Yi Hsu, Ashish Rao Sathyan, Kai-Cheng Hsu, Liang-Chieh Chen, Cheng-Chung Yen, Hui-Ju Tseng, Kun-Chang Wu, Hui-Kang Liu, Wei-Jan Huang. Synthesis of Yakuchinone B-Inspired Inhibitors against Islet Amyloid Polypeptide Aggregation. Journal of Natural Products 2021, 84 (4) , 1096-1103. https://doi.org/10.1021/acs.jnatprod.0c01162
    41. Chamalki Madhusha, Kumudu Rajapaksha, Imalka Munaweera, Madhavi de Silva, Chandani Perera, Gayan Wijesinghe, Manjula Weerasekera, Dinesh Attygalle, Chanaka Sandaruwan, Nilwala Kottegoda. A Novel Green Approach to Synthesize Curcuminoid-Layered Double Hydroxide Nanohybrids: Adroit Biomaterials for Future Antimicrobial Applications. ACS Omega 2021, 6 (14) , 9600-9608. https://doi.org/10.1021/acsomega.1c00151
    42. Sosmitha Girisa, Aviral Kumar, Varsha Rana, Dey Parama, Uzini Devi Daimary, Saman Warnakulasuriya, Alan Prem Kumar, Ajaikumar B. Kunnumakkara. From Simple Mouth Cavities to Complex Oral Mucosal Disorders—Curcuminoids as a Promising Therapeutic Approach. ACS Pharmacology & Translational Science 2021, 4 (2) , 647-665. https://doi.org/10.1021/acsptsci.1c00017
    43. Hualu Zhou, Bingjing Zheng, David Julian McClements. In Vitro Gastrointestinal Stability of Lipophilic Polyphenols is Dependent on their Oil–Water Partitioning in Emulsions: Studies on Curcumin, Resveratrol, and Quercetin. Journal of Agricultural and Food Chemistry 2021, 69 (11) , 3340-3350. https://doi.org/10.1021/acs.jafc.0c07578
    44. Mahsa Bagheri, Marcel H. Fens, Tony G. Kleijn, Robin B. Capomaccio, Dora Mehn, Przemek M. Krawczyk, Enzo M. Scutigliani, Andrei Gurinov, Marc Baldus, Nicky C. H. van Kronenburg, Robbert J. Kok, Michal Heger, Cornelus F. van Nostrum, Wim E. Hennink. In Vitro and In Vivo Studies on HPMA-Based Polymeric Micelles Loaded with Curcumin. Molecular Pharmaceutics 2021, 18 (3) , 1247-1263. https://doi.org/10.1021/acs.molpharmaceut.0c01114
    45. Amy Corbin Farr, May P. Xiong. Challenges and Opportunities of Deferoxamine Delivery for Treatment of Alzheimer’s Disease, Parkinson’s Disease, and Intracerebral Hemorrhage. Molecular Pharmaceutics 2021, 18 (2) , 593-609. https://doi.org/10.1021/acs.molpharmaceut.0c00474
    46. Qiu-Hong Zhu, Guo-Hao Zhang, Ling He, Song Qin, Jia-He Tian, Lijian Ma, Guo-Hong Tao. Enhanced Solubility and Antitumor Activity of Curcumin via Breaking and Rebuilding of the Hydrogen Bond. ACS Applied Bio Materials 2021, 4 (1) , 918-927. https://doi.org/10.1021/acsabm.0c01398
    47. Durga M. Arvapalli, Alex T. Sheardy, Kokougan Allado, Harish Chevva, Ziyu Yin, Jianjun Wei. Design of Curcumin Loaded Carbon Nanodots Delivery System: Enhanced Bioavailability, Release Kinetics, and Anticancer Activity. ACS Applied Bio Materials 2020, 3 (12) , 8776-8785. https://doi.org/10.1021/acsabm.0c01144
    48. Yijing Tang, Dong Zhang, Yanxian Zhang, Yonglan Liu, Xiong Gong, Yung Chang, Baiping Ren, Jie Zheng. Introduction and Fundamentals of Human Islet Amyloid Polypeptide Inhibitors. ACS Applied Bio Materials 2020, 3 (12) , 8286-8308. https://doi.org/10.1021/acsabm.0c01234
    49. Feng Wang, Youhua Li, Lu Yu, Jinwen Zhu, Fuming Zhang, Robert J. Linhardt. Amphiphilic mPEG-Modified Oligo-Phenylalanine Nanoparticles Chemoenzymatically Synthesized via Papain. ACS Omega 2020, 5 (46) , 30336-30347. https://doi.org/10.1021/acsomega.0c05076
    50. Anna Puiggalí-Jou, Eric Cazorla, Guillem Ruano, Ismael Babeli, Maria-Pau Ginebra, Jose García-Torres, Carlos Alemán. Electroresponsive Alginate-Based Hydrogels for Controlled Release of Hydrophobic Drugs. ACS Biomaterials Science & Engineering 2020, 6 (11) , 6228-6240. https://doi.org/10.1021/acsbiomaterials.0c01400
    51. Yogesh M. Gangarde, Sajeev T. K., Nihar R. Panigrahi, Ram K. Mishra, Ishu Saraogi. Amphiphilic Small-Molecule Assemblies to Enhance the Solubility and Stability of Hydrophobic Drugs. ACS Omega 2020, 5 (43) , 28375-28381. https://doi.org/10.1021/acsomega.0c04395
    52. Liangzhong Lim, Mei Dang, Amrita Roy, Jian Kang, Jianxing Song. Curcumin Allosterically Inhibits the Dengue NS2B-NS3 Protease by Disrupting Its Active Conformation. ACS Omega 2020, 5 (40) , 25677-25686. https://doi.org/10.1021/acsomega.0c00039
    53. Swati Rani, Damayanti Bagchi, Uttam Pal, Mamta Kumari, Manisha Sharma, Arpan Bera, Javaid Shabir, Samir Kumar Pal, Tanusri Saha-Dasgupta, Subho Mozumdar. The Role of Imidazolium-Based Surface-Active Ionic Liquid to Restrain the Excited-State Intramolecular H-Atom Transfer Dynamics of Medicinal Pigment Curcumin: A Theoretical and Experimental Approach. ACS Omega 2020, 5 (40) , 25582-25592. https://doi.org/10.1021/acsomega.0c02438
    54. Saed Abbasi, Yusuke Sato, Kazuaki Kajimoto, Hideyoshi Harashima. New Design Strategies for Controlling the Rate of Hydrophobic Drug Release from Nanoemulsions in Blood Circulation. Molecular Pharmaceutics 2020, 17 (10) , 3773-3782. https://doi.org/10.1021/acs.molpharmaceut.0c00542
    55. Yiyan Song, Ping Zhu, Zhihui Xu, Jin Chen. Dual-Responsive Dual-Drug-Loaded Bioinspired Polydopamine Nanospheres as an Efficient Therapeutic Nanoplatform against Drug-Resistant Cancer Cells. ACS Applied Bio Materials 2020, 3 (9) , 5730-5740. https://doi.org/10.1021/acsabm.0c00512
    56. Murtada A. Oshi, Juho Lee, Muhammad Naeem, Nurhasni Hasan, Jihyun Kim, Hak Jin Kim, Eun Hee Lee, Yunjin Jung, Jin-Wook Yoo. Curcumin Nanocrystal/pH-Responsive Polyelectrolyte Multilayer Core–Shell Nanoparticles for Inflammation-Targeted Alleviation of Ulcerative Colitis. Biomacromolecules 2020, 21 (9) , 3571-3581. https://doi.org/10.1021/acs.biomac.0c00589
    57. Mahesh Kharat, Joy Aberg, Taotao Dai, David Julian McClements. Comparison of Emulsion and Nanoemulsion Delivery Systems: The Chemical Stability of Curcumin Decreases as Oil Droplet Size Decreases. Journal of Agricultural and Food Chemistry 2020, 68 (34) , 9205-9212. https://doi.org/10.1021/acs.jafc.0c01877
    58. Giacomo Reina, Shiyuan Peng, Lucas Jacquemin, Andrés Felipe Andrade, Alberto Bianco. Hard Nanomaterials in Time of Viral Pandemics. ACS Nano 2020, 14 (8) , 9364-9388. https://doi.org/10.1021/acsnano.0c04117
    59. Zolaikha Rasouli, Raouf Ghavami. Facile Approach to Fabricate a Chemical Sensor Array Based on Nanocurcumin–Metal Ions Aggregates: Detection and Identification of DNA Nucleobases. ACS Omega 2020, 5 (31) , 19331-19341. https://doi.org/10.1021/acsomega.0c00593
    60. Yichao Ma, Shuai Chen, Wenyan Liao, Liang Zhang, Jinfang Liu, Yanxiang Gao. Formation, Physicochemical Stability, and Redispersibility of Curcumin-Loaded Rhamnolipid Nanoparticles Using the pH-Driven Method. Journal of Agricultural and Food Chemistry 2020, 68 (27) , 7103-7111. https://doi.org/10.1021/acs.jafc.0c01326
    61. Yiyan Song, Ling Cai, Zhongcheng Tian, Yuan Wu, Jin Chen. Phytochemical Curcumin-Coformulated, Silver-Decorated Melanin-like Polydopamine/Mesoporous Silica Composites with Improved Antibacterial and Chemotherapeutic Effects against Drug-Resistant Cancer Cells. ACS Omega 2020, 5 (25) , 15083-15094. https://doi.org/10.1021/acsomega.0c00912
    62. Mohammad Ridwane Mungroo, Ayaz Anwar, Naveed Ahmed Khan, Ruqaiyyah Siddiqui. Gold-Conjugated Curcumin as a Novel Therapeutic Agent against Brain-Eating Amoebae. ACS Omega 2020, 5 (21) , 12467-12475. https://doi.org/10.1021/acsomega.0c01305
    63. Lizbeth A. Manzanares-Guevara, Angel Licea-Claverie, Irasema Oroz-Parra, Johanna Bernaldez-Sarabia, Fernando Diaz-Castillo, Alexei F. Licea-Navarro. Smart Nanoformulation Based on Stimuli-Responsive Nanogels and Curcumin: Promising Therapy against Colon Cancer. ACS Omega 2020, 5 (16) , 9171-9184. https://doi.org/10.1021/acsomega.9b04390
    64. Riwang Li, Zhen Lin, Qian Zhang, Yuhui Zhang, Yi Liu, Yang Lyu, Xinyang Li, Changren Zhou, Gang Wu, Ningjian Ao, Lihua Li. Injectable and In Situ-Formable Thiolated Chitosan-Coated Liposomal Hydrogels as Curcumin Carriers for Prevention of In Vivo Breast Cancer Recurrence. ACS Applied Materials & Interfaces 2020, 12 (15) , 17936-17948. https://doi.org/10.1021/acsami.9b21528
    65. Kajal Sharma, Bidisa Das, Prem Felix Siril. Molecular Distribution of Indomethacin: Impact on the Precipitation of Glassy Curcumin pH-Responsive Nanoparticles with Enhanced Solubility. Crystal Growth & Design 2020, 20 (4) , 2377-2389. https://doi.org/10.1021/acs.cgd.9b01550
    66. Siti Machmudah, Sugeng Winardi, Wahyudiono, Hideki Kanda, Motonobu Goto. Formation of Fine Particles from Curcumin/PVP by the Supercritical Antisolvent Process with a Coaxial Nozzle. ACS Omega 2020, 5 (12) , 6705-6714. https://doi.org/10.1021/acsomega.9b04495
    67. Yuewei Xi, Juan Ge, Min Wang, Mi Chen, Wen Niu, Wei Cheng, Yumeng Xue, Cai Lin, Bo Lei. Bioactive Anti-inflammatory, Antibacterial, Antioxidative Silicon-Based Nanofibrous Dressing Enables Cutaneous Tumor Photothermo-Chemo Therapy and Infection-Induced Wound Healing. ACS Nano 2020, 14 (3) , 2904-2916. https://doi.org/10.1021/acsnano.9b07173
    68. Bianfei Xuan, Si Nga Wong, Yanjie Zhang, Jingwen Weng, Henry H. Y. Tong, Chenguang Wang, Changquan Calvin Sun, Shing Fung Chow. Extended Release of Highly Water Soluble Isoniazid Attained through Cocrystallization with Curcumin. Crystal Growth & Design 2020, 20 (3) , 1951-1960. https://doi.org/10.1021/acs.cgd.9b01619
    69. Meghna Ghosh, Sangita Kundu, Arghajit Pyne, Nilmoni Sarkar. Unveiling the Behavior of Curcumin in Biocompatible Microemulsion and Its Differential Interaction with Gold and Silver Nanoparticles. The Journal of Physical Chemistry C 2020, 124 (6) , 3905-3914. https://doi.org/10.1021/acs.jpcc.9b11553
    70. Xue-Qin Wei, Juan-Fang Zhu, Xin-Bo Wang, Kai Ba. Improving the Stability of Liposomal Curcumin by Adjusting the Inner Aqueous Chamber pH of Liposomes. ACS Omega 2020, 5 (2) , 1120-1126. https://doi.org/10.1021/acsomega.9b03293
    71. Zhiyang Du, Jingbo Liu, Hui Zhang, Xinling Wu, Biying Zhang, Yuelin Chen, Boqun Liu, Long Ding, Hang Xiao, Ting Zhang. N-Acetyl-l-cysteine/l-Cysteine-Functionalized Chitosan−β-Lactoglobulin Self-Assembly Nanoparticles: A Promising Way for Oral Delivery of Hydrophilic and Hydrophobic Bioactive Compounds. Journal of Agricultural and Food Chemistry 2019, 67 (45) , 12511-12519. https://doi.org/10.1021/acs.jafc.9b05219
    72. Zhending Gan, Wenyao Wei, Jiamin Wu, Yongwei Zhao, Lili Zhang, Tian Wang, Xiang Zhong. Resveratrol and Curcumin Improve Intestinal Mucosal Integrity and Decrease m6A RNA Methylation in the Intestine of Weaning Piglets. ACS Omega 2019, 4 (17) , 17438-17446. https://doi.org/10.1021/acsomega.9b02236
    73. Rajesh Kumar, Amit Sharma, Hardev Singh, Paolo Suating, Hyeong Seok Kim, Kyoung Sunwoo, Inseob Shim, Bruce C. Gibb, Jong Seung Kim. Revisiting Fluorescent Calixarenes: From Molecular Sensors to Smart Materials. Chemical Reviews 2019, 119 (16) , 9657-9721. https://doi.org/10.1021/acs.chemrev.8b00605
    74. Pei-Yi Chu, Shih-Chang Tsai, Han-Yu Ko, Chia-Che Wu, Yu-Hsin Lin. Co-Delivery of Natural Compounds with a Dual-Targeted Nanoparticle Delivery System for Improving Synergistic Therapy in an Orthotopic Tumor Model. ACS Applied Materials & Interfaces 2019, 11 (27) , 23880-23892. https://doi.org/10.1021/acsami.9b06155
    75. Adalberto Enumo, Jr., Christhian Irineu Dias Pereira, Alexandre Luis Parize. Temperature Evaluation of Curcumin Keto–Enolic Kinetics and Its Interaction with Two Pluronic Copolymers. The Journal of Physical Chemistry B 2019, 123 (26) , 5641-5650. https://doi.org/10.1021/acs.jpcb.9b04150
    76. Gölnur Fakhrullina, Elvira Khakimova, Farida Akhatova, Giuseppe Lazzara, Filippo Parisi, Rawil Fakhrullin. Selective Antimicrobial Effects of Curcumin@Halloysite Nanoformulation: A Caenorhabditis elegans Study. ACS Applied Materials & Interfaces 2019, 11 (26) , 23050-23064. https://doi.org/10.1021/acsami.9b07499
    77. Jhansi R. Kalluri, Julianna West, Giridhar R. Akkaraju, Leigh T. Canham, Jeffery L. Coffer. Plant-Derived Tandem Drug/Mesoporous Silicon Microcarrier Structures for Anti-Inflammatory Therapy. ACS Omega 2019, 4 (5) , 8359-8364. https://doi.org/10.1021/acsomega.9b00127
    78. Naboneeta Sarkar, Susmita Bose. Liposome-Encapsulated Curcumin-Loaded 3D Printed Scaffold for Bone Tissue Engineering. ACS Applied Materials & Interfaces 2019, 11 (19) , 17184-17192. https://doi.org/10.1021/acsami.9b01218
    79. Jorge Fernández, Mario Ruiz-Ruiz, Jose-Ramon Sarasua. Electrospun Fibers of Polyester, with Both Nano- and Micron Diameters, Loaded with Antioxidant for Application as Wound Dressing or Tissue Engineered Scaffolds. ACS Applied Polymer Materials 2019, 1 (5) , 1096-1106. https://doi.org/10.1021/acsapm.9b00108
    80. Cheng-Shun Cheng, Tsang-Pai Liu, Fan-Ching Chien, Chung-Yuan Mou, Si-Han Wu, Yi-Ping Chen. Codelivery of Plasmid and Curcumin with Mesoporous Silica Nanoparticles for Promoting Neurite Outgrowth. ACS Applied Materials & Interfaces 2019, 11 (17) , 15322-15331. https://doi.org/10.1021/acsami.9b02797
    81. André J. van der Vlies, Manami Morisaki, Hoi I Neng, Emma M. Hansen, Urara Hasegawa. Framboidal Nanoparticles Containing a Curcumin–Phenylboronic Acid Complex with Antiangiogenic and Anticancer Activities. Bioconjugate Chemistry 2019, 30 (3) , 861-870. https://doi.org/10.1021/acs.bioconjchem.9b00006
    82. Miora Rakotoarisoa, Borislav Angelov, Vasil M. Garamus, Angelina Angelova. Curcumin- and Fish Oil-Loaded Spongosome and Cubosome Nanoparticles with Neuroprotective Potential against H2O2-Induced Oxidative Stress in Differentiated Human SH-SY5Y Cells. ACS Omega 2019, 4 (2) , 3061-3073. https://doi.org/10.1021/acsomega.8b03101
    83. Feiyang Jin, Di Liu, Hui Yu, Jing Qi, Yuchan You, Xiaoling Xu, Xuqi Kang, Xiaojuan Wang, Kongjun Lu, Xiaoying Ying, Jian You, Yongzhong Du, Jiansong Ji. Sialic Acid-Functionalized PEG–PLGA Microspheres Loading Mitochondrial-Targeting-Modified Curcumin for Acute Lung Injury Therapy. Molecular Pharmaceutics 2019, 16 (1) , 71-85. https://doi.org/10.1021/acs.molpharmaceut.8b00861
    84. Shengfeng Peng, Liqiang Zou, Wei Liu, Chengmei Liu, David Julian McClements. Fabrication and Characterization of Curcumin-Loaded Liposomes Formed from Sunflower Lecithin: Impact of Composition and Environmental Stress. Journal of Agricultural and Food Chemistry 2018, 66 (46) , 12421-12430. https://doi.org/10.1021/acs.jafc.8b04136
    85. Rajpreet Kaur, Poonam Khullar, Aabroo Mahal, Anita Gupta, Narpinder Singh, Gurinder Kaur Ahluwalia, Mandeep Singh Bakshi. Keto–Enol Tautomerism of Temperature and pH Sensitive Hydrated Curcumin Nanoparticles: Their Role as Nanoreactors and Compatibility with Blood Cells. Journal of Agricultural and Food Chemistry 2018, 66 (45) , 11974-11980. https://doi.org/10.1021/acs.jafc.8b03893
    86. Jianbing Wu, Jing Wang, Jue Zhang, Zhaozhu Zheng, David L. Kaplan, Gang Li, Xiaoqin Wang. Oral Delivery of Curcumin Using Silk Nano- and Microparticles. ACS Biomaterials Science & Engineering 2018, 4 (11) , 3885-3894. https://doi.org/10.1021/acsbiomaterials.8b00454
    87. Soo-Bong Park, Da-Woon Bae, Nina Abigail B. Clavio, Lei Zhao, Chang-Sook Jeong, Bo Mee Choi, Stephani Joy Y. Macalino, Hee-Jeong Cha, Jin-Byung Park, Jun Hyuck Lee, Sang-Jip Nam, Sun Choi, Min-Kyu Kim, Sun-Shin Cha. Structural and Biochemical Characterization of the Curcumin-Reducing Activity of CurA from Vibrio vulnificus. Journal of Agricultural and Food Chemistry 2018, 66 (40) , 10608-10616. https://doi.org/10.1021/acs.jafc.8b03647
    88. Gianpaolo Dagrada, Katia Rupel, Serena Zacchigna, Elena Tamborini, Silvana Pilotti, Adalberto Cavalleri, Loryn E. Fechner, Erik Laurini, David K. Smith, Silvia Brich, Sabrina Pricl. Self-Assembled Nanomicelles as Curcumin Drug Delivery Vehicles: Impact on Solitary Fibrous Tumor Cell Protein Expression and Viability. Molecular Pharmaceutics 2018, 15 (10) , 4689-4701. https://doi.org/10.1021/acs.molpharmaceut.8b00655
    89. Palash Sanphui, Geetha Bolla. Curcumin, a Biological Wonder Molecule: A Crystal Engineering Point of View. Crystal Growth & Design 2018, 18 (9) , 5690-5711. https://doi.org/10.1021/acs.cgd.8b00646
    90. Yimin Zhao, Zhen-Yu Chen. Roles of Spicy Foods and Their Bioactive Compounds in Management of Hypercholesterolemia. Journal of Agricultural and Food Chemistry 2018, 66 (33) , 8662-8671. https://doi.org/10.1021/acs.jafc.8b02975
    91. Shubhashis Datta, Annamária Jutková, Petra Šrámková, Lenka Lenkavská, Veronika Huntošová, Dušan Chorvát, Pavol Miškovský, Daniel Jancura, Juraj Kronek. Unravelling the Excellent Chemical Stability and Bioavailability of Solvent Responsive Curcumin-Loaded 2-Ethyl-2-oxazoline-grad-2-(4-dodecyloxyphenyl)-2-oxazoline Copolymer Nanoparticles for Drug Delivery. Biomacromolecules 2018, 19 (7) , 2459-2471. https://doi.org/10.1021/acs.biomac.8b00057
    92. Lukas Hahn, Michael M. Lübtow, Thomas Lorson, Frederik Schmitt, Antje Appelt-Menzel, Rainer Schobert, Robert Luxenhofer. Investigating the Influence of Aromatic Moieties on the Formulation of Hydrophobic Natural Products and Drugs in Poly(2-oxazoline)-Based Amphiphiles. Biomacromolecules 2018, 19 (7) , 3119-3128. https://doi.org/10.1021/acs.biomac.8b00708
    93. Bingqian Lei, Mengfan Wang, Zelei Jiang, Wei Qi, Rongxin Su, Zhimin He. Constructing Redox-Responsive Metal–Organic Framework Nanocarriers for Anticancer Drug Delivery. ACS Applied Materials & Interfaces 2018, 10 (19) , 16698-16706. https://doi.org/10.1021/acsami.7b19693
    94. Fengzhang Wang, Yijie Yang, Xingrong Ju, Chibuike C. Udenigwe, Rong He. Polyelectrolyte Complex Nanoparticles from Chitosan and Acylated Rapeseed Cruciferin Protein for Curcumin Delivery. Journal of Agricultural and Food Chemistry 2018, 66 (11) , 2685-2693. https://doi.org/10.1021/acs.jafc.7b05083
    95. Wolfgang Langhans. Food Components in Health Promotion and Disease Prevention. Journal of Agricultural and Food Chemistry 2018, 66 (10) , 2287-2294. https://doi.org/10.1021/acs.jafc.7b02121
    96. Saravanan Govindaraju, Arunkumar Rengaraj, Roshini Arivazhagan, Yun-Suk Huh, and Kyusik Yun . Curcumin-Conjugated Gold Clusters for Bioimaging and Anticancer Applications. Bioconjugate Chemistry 2018, 29 (2) , 363-370. https://doi.org/10.1021/acs.bioconjchem.7b00683
    97. Shengfeng Peng, Ziling Li, Liqiang Zou, Wei Liu, Chengmei Liu, and David Julian McClements . Enhancement of Curcumin Bioavailability by Encapsulation in Sophorolipid-Coated Nanoparticles: An in Vitro and in Vivo Study. Journal of Agricultural and Food Chemistry 2018, 66 (6) , 1488-1497. https://doi.org/10.1021/acs.jafc.7b05478
    98. Shanshan Zhang, Jun Zou, Peiyang Li, Xiumei Zheng, and Dan Feng . Curcumin Protects against Atherosclerosis in Apolipoprotein E-Knockout Mice by Inhibiting Toll-like Receptor 4 Expression. Journal of Agricultural and Food Chemistry 2018, 66 (2) , 449-456. https://doi.org/10.1021/acs.jafc.7b04260
    99. K. N. Chidambara Murthy P. Monika G. K. Jayaprakasha Bhimanagouda S. Patil . Nanoencapsulation: An Advanced Nanotechnological Approach To Enhance the Biological Efficacy of Curcumin. 2018, 383-405. https://doi.org/10.1021/bk-2018-1286.ch021
    100. Yuting Fan, Jiang Yi, Yuzhu Zhang, and Wallace Yokoyama . Improved Chemical Stability and Antiproliferative Activities of Curcumin-Loaded Nanoparticles with a Chitosan Chlorogenic Acid Conjugate. Journal of Agricultural and Food Chemistry 2017, 65 (49) , 10812-10819. https://doi.org/10.1021/acs.jafc.7b04451
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect