Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Epithelial-to-mesenchymal transition and the cancer stem cell phenotype: insights from cancer biology with therapeutic implications for colorectal cancer

Subjects

Abstract

Although mortality from colorectal cancer (CRC) is decreasing, CRC is still the second highest cause of cancer-related deaths in America. Chemotherapy and radiation therapy now have central roles in our strategies to fight cancer, although we continue to lack novel strategies overcoming therapeutic resistance. Molecular mechanisms of therapeutic resistance in CRC continue to be under intense investigation. In this review, we highlight the recent evidence linking epithelial-to-mesenchymal transition (EMT) with aggressive tumor biology as well as with the cancer stem cells (CSCs) across multiple organ systems including colon cancer. Furthermore, in the era of neo-adjuvant treatment, the clinical implications are concerning that our treatments may have the potential to induce more aggressive cancer cells through EMT, perhaps even generating CSCs more capable of metastasis and further resistant to treatment. This concern and potential reality highlights the critical need for further understanding the impact of clinical therapy on the pathobiology of cancer and further supports the need to therapeutically target the CSC. Besides serving as potential biomarkers for aggressive tumor biology and therapeutic resistance, EMT and CSC molecular pathways may highlight novel therapeutic targets as strategies for improving the response to conventional anti-neoplastic agents translating into improved oncologic outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A . Cancer statistics, 2012. CA Cancer J Clin 2012; 62: 10–29.

    PubMed  Google Scholar 

  2. Sauer R, Becker H, Hohenberger W, Rodel C, Wittekind C, Fietkau R et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 2004; 351: 1731–1740.

    Article  CAS  PubMed  Google Scholar 

  3. Glynne-Jones R, Wallace M, Livingstone JI, Meyrick-Thomas J . Complete clinical response after preoperative chemoradiation in rectal cancer: is a "wait and see" policy justified? Dis Colon Rectum 2008; 51: 10–19 discussion 19-20.

    CAS  PubMed  Google Scholar 

  4. Das P, Skibber JM, Rodriguez-Bigas MA, Feig BW, Chang GJ, Wolff RA et al. Predictors of tumor response and downstaging in patients who receive preoperative chemoradiation for rectal cancer. Cancer 2007; 109: 1750–1755.

    CAS  PubMed  Google Scholar 

  5. Park IJ, You YN, Agarwal A, Skibber JM, Rodriguez-Bigas MA, Eng C et al. Neoadjuvant treatment response as an early response indicator for patients with rectal cancer. J Clin Oncol 2012; 30: 1770–1776.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rodel C, Martus P, Papadoupolos T, Fuzesi L, Klimpfinger M, Fietkau R et al. Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J Clin Oncol 2005; 23: 8688–8696.

    PubMed  Google Scholar 

  7. Bouzourene H, Bosman FT, Seelentag W, Matter M, Coucke P . Importance of tumor regression assessment in predicting the outcome in patients with locally advanced rectal carcinoma who are treated with preoperative radiotherapy. Cancer 2002; 94: 1121–1130.

    PubMed  Google Scholar 

  8. Ellis LM, Hicklin DJ . Resistance to targeted therapies: refining anticancer therapy in the era of molecular oncology. Clin Cancer Res 2009; 15: 7471–7478.

    CAS  PubMed  Google Scholar 

  9. Yang AD, Fan F, Camp ER, van Buren G, Liu W, Somcio R et al. Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin Cancer Res 2006; 12 (14 Pt 1): 4147–4153.

    CAS  PubMed  Google Scholar 

  10. Dallas NA, Xia L, Fan F, Gray MJ, Gaur P, van Buren G II et al. Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res 2009; 69: 1951–1957.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fan F, Samuel S, Evans KW, Lu J, Xia L, Zhou Y et al. Overexpression of snail induces epithelial-mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells. Cancer Med 2012; 1: 5–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Thiery JP, Sleeman JP . Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006; 7: 131–142.

    CAS  PubMed  Google Scholar 

  13. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000; 2: 84–89.

    CAS  PubMed  Google Scholar 

  14. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2: 76–83.

    CAS  PubMed  Google Scholar 

  15. Wheeler JM, Kim HC, Efstathiou JA, Ilyas M, Mortensen NJ, Bodmer WF . Hypermethylation of the promoter region of the E-cadherin gene (CDH1) in sporadic and ulcerative colitis associated colorectal cancer. Gut 2001; 48: 367–371.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Efstathiou JA, Liu D, Wheeler JM, Kim HC, Beck NE, Ilyas M et al. Mutated epithelial cadherin is associated with increased tumorigenicity and loss of adhesion and of responsiveness to the motogenic trefoil factor 2 in colon carcinoma cells. Proc Natl Acad Sci USA 1999; 96: 2316–2321.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zavadil J, Bottinger EP . TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 2005; 24: 5764–5774.

    CAS  PubMed  Google Scholar 

  18. Li G, Schaider H, Satyamoorthy K, Hanakawa Y, Hashimoto K, Herlyn M . Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development. Oncogene 2001; 20: 8125–8135.

    CAS  PubMed  Google Scholar 

  19. Shiozaki H, Kadowaki T, Doki Y, Inoue M, Tamura S, Oka H et al. Effect of epidermal growth factor on cadherin-mediated adhesion in a human oesophageal cancer cell line. Br J Cancer 1995; 71: 250–258.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilding J, Vousden KH, Soutter WP, McCrea PD, Del Buono R, Pignatelli M . E-cadherin transfection down-regulates the epidermal growth factor receptor and reverses the invasive phenotype of human papilloma virus-transfected keratinocytes. Cancer Res 1996; 56: 5285–5292.

    CAS  PubMed  Google Scholar 

  21. Leptin M . twist and snail as positive and negative regulators during Drosophila mesoderm development. Genes Dev 1991; 5: 1568–1576.

    CAS  PubMed  Google Scholar 

  22. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

    CAS  PubMed  Google Scholar 

  24. Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 2010; 12: 247–256.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hwang-Verslues WW, Chang PH, Wei PC, Yang CY, Huang CK, Kuo WH et al. miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. Oncogene 2011; 30: 2463–2474.

    CAS  PubMed  Google Scholar 

  26. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R . MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 2008; 105: 1608–1613.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cheng CW, Wang HW, Chang CW, Chu HW, Chen CY, Yu JC et al. MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Res Treat 2012; 134: 1081–1093.

    CAS  PubMed  Google Scholar 

  28. Yamasaki T, Seki N, Yamada Y, Yoshino H, Hidaka H, Chiyomaru T et al. Tumor suppressive microRNA138 contributes to cell migration and invasion through its targeting of vimentin in renal cell carcinoma. Int J Oncol 2012; 41: 805–817.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang X, Ladd A, Dragoescu E, Budd WT, Ware JL, Zehner ZE . MicroRNA-17-3p is a prostate tumor suppressor in vitro and in vivo, and is decreased in high grade prostate tumors analyzed by laser capture microdissection. Clin Exp Metastasis 2009; 26: 965–979.

    CAS  PubMed  Google Scholar 

  30. Gao P, Xing AY, Zhou GY, Zhang TG, Zhang JP, Gao C et al. The molecular mechanism of microRNA-145 to suppress invasion-metastasis cascade in gastric cancer. Oncogene 2013; 32: 491–501.

    CAS  PubMed  Google Scholar 

  31. Meng Z, Fu X, Chen X, Zeng S, Tian Y, Jove R et al. miR-194 is a marker of hepatic epithelial cells and suppresses metastasis of liver cancer cells in mice. Hepatology 2010; 52: 2148–2157.

    CAS  PubMed  Google Scholar 

  32. Zhang W, Feng M, Zheng G, Chen Y, Wang X, Pen B et al. Chemoresistance to 5-fluorouracil induces epithelial-mesenchymal transition via up-regulation of Snail in MCF7 human breast cancer cells. Biochem Biophys Res Commun 2012; 417: 679–685.

    CAS  PubMed  Google Scholar 

  33. Xia H, Cheung WK, Ng SS, Jiang X, Jiang S, Sze J et al. Loss of brain-enriched miR-124 microRNA enhances stem-like traits and invasiveness of glioma cells. J Biol Chem 2012; 287: 9962–9971.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Olson P, Lu J, Zhang H, Shai A, Chun MG, Wang Y et al. MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev 2009; 23: 2152–2165.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Korpal M, Lee ES, Hu G, Kang Y . The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 2008; 283: 14910–14914.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Paterson EL, Kazenwadel J, Bert AG, Khew-Goodall Y, Ruszkiewicz A, Goodall GJ . Down-regulation of the miRNA-200 family at the invasive front of colorectal cancers with degraded basement membrane indicates EMT is involved in cancer progression. Neoplasia 2013; 15: 180–191.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593–601.

    CAS  PubMed  Google Scholar 

  38. Korpal M, Kang Y . The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol 2008; 5: 115–119.

    CAS  PubMed  Google Scholar 

  39. Arndt GM, Dossey L, Cullen LM, Lai A, Druker R, Eisbacher M et al. Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer. BMC Cancer 2009; 9: 374.

    PubMed  PubMed Central  Google Scholar 

  40. Baskerville S, Bartel DP . Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 2005; 11: 241–247.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bauer KM, Hummon AB . Effects of the miR-143/-145 microRNA cluster on the colon cancer proteome and transcriptome. J Proteome Res 2012; 11: 4744–4754.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Vega S, Morales AV, Ocana OH, Valdes F, Fabregat I, Nieto MA . Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 2004; 18: 1131–1143.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kajita M, McClinic KN, Wade PA . Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol Cell Biol 2004; 24: 7559–7566.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shah AN, Summy JM, Zhang J, Park SI, Parikh NU, Gallick GE . Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol 2007; 14: 3629–3637.

    PubMed  Google Scholar 

  45. Yin T, Wang C, Liu T, Zhao G, Zha Y, Yang M . Expression of snail in pancreatic cancer promotes metastasis and chemoresistance. J Surg Res 2007; 141: 196–203.

    CAS  PubMed  Google Scholar 

  46. Camp ER, Summy J, Bauer TW, Liu W, Gallick GE, Ellis LM . Molecular mechanisms of resistance to therapies targeting the epidermal growth factor receptor. Clin Cancer Res 2005; 11: 397–405.

    CAS  PubMed  Google Scholar 

  47. Ellis LM, Hicklin DJ . VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 2008; 8: 579–591.

    CAS  PubMed  Google Scholar 

  48. Yauch RL, Januario T, Eberhard DA, Cavet G, Zhu W, Fu L et al. Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin Cancer Res 2005; 11 (24 Pt 1): 8686–8698.

    CAS  PubMed  Google Scholar 

  49. Frederick BA, Helfrich BA, Coldren CD, Zheng D, Chan D, Bunn PA Jr. et al. Epithelial to mesenchymal transition predicts gefitinib resistance in cell lines of head and neck squamous cell carcinoma and non-small cell lung carcinoma. Mol Cancer Ther 2007; 6: 1683–1691.

    CAS  PubMed  Google Scholar 

  50. Witta SE, Gemmill RM, Hirsch FR, Coldren CD, Hedman K, Ravdel L et al. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res 2006; 66: 944–950.

    CAS  PubMed  Google Scholar 

  51. Fan F, Samuel S, Gaur P, Lu J, Dallas NA, Xia L et al. Chronic exposure of colorectal cancer cells to bevacizumab promotes compensatory pathways that mediate tumour cell migration. Br J Cancer 2011; 104: 1270–1277.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Fearon ER, Vogelstein B . A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–767.

    CAS  PubMed  Google Scholar 

  53. Puglisi MA, Sgambato A, Saulnier N, Rafanelli F, Barba M, Boninsegna A et al. Isolation and characterization of CD133+ cell population within human primary and metastatic colon cancer. Eur Rev Med Pharmacol Sci 2009; 13 (Suppl 1): 55–62.

    PubMed  Google Scholar 

  54. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    CAS  PubMed  Google Scholar 

  55. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445: 111–115.

    CAS  PubMed  Google Scholar 

  56. O'Brien CA, Pollett A, Gallinger S, Dick JE . A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445: 106–110.

    CAS  PubMed  Google Scholar 

  57. Greaves M, Maley CC . Clonal evolution in cancer. Nature 2012; 481: 306–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K, Perez Alea M et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA 2008; 105: 13427–13432.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. Identification of human brain tumour initiating cells. Nature 2004; 432: 396–401.

    CAS  PubMed  Google Scholar 

  61. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67: 1030–1037.

    CAS  PubMed  Google Scholar 

  62. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 2005; 65: 5506–5511.

    CAS  PubMed  Google Scholar 

  63. Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J et al. Molecular definition of breast tumor heterogeneity. Cancer Cell 2007; 11: 259–273.

    CAS  PubMed  Google Scholar 

  64. Polyak K, Weinberg RA . Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9: 265–273.

    CAS  PubMed  Google Scholar 

  65. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 2008; 40: 499–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Marotta LL, Polyak K . Cancer stem cells: a model in the making. Curr Opin Genet Dev 2009; 19: 44–50.

    PubMed  Google Scholar 

  67. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 2007; 104: 10158–10163.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Botchkina IL, Rowehl RA, Rivadeneira DE, Karpeh MS Jr., Crawford H, Dufour A et al. Phenotypic subpopulations of metastatic colon cancer stem cells: genomic analysis. Cancer Genomics Proteomics 2009; 6: 19–29.

    CAS  PubMed  Google Scholar 

  69. Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS . MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 2009; 137: 647–658.

    CAS  PubMed  Google Scholar 

  70. Cittelly DM, Finlay-Schultz J, Howe EN, Spoelstra NS, Axlund SD, Hendricks P et al. Progestin suppression of miR-29 potentiates dedifferentiation of breast cancer cells via KLF4. Oncogene 2013; 32: 2555–2564.

    CAS  PubMed  Google Scholar 

  71. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    CAS  PubMed  Google Scholar 

  72. Di J, Duiveman-de Boer T, Zusterzeel PL, Figdor CG, Massuger LF, Torensma R . The stem cell markers Oct4A, Nanog and c-Myc are expressed in ascites cells and tumor tissue of ovarian cancer patients. Cell Oncol (Dordr) 2013; 36: 363–374.

    CAS  Google Scholar 

  73. Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 2007; 67: 9762–9770.

    CAS  PubMed  Google Scholar 

  74. Yamamura S, Saini S, Majid S, Hirata H, Ueno K, Deng G et al. MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells. PLoS One 2012; 7: e29722.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA 2009; 106: 3207–3212.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen Z, Zeng H, Guo Y, Liu P, Pan H, Deng A et al. miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc. J Exp Clin Cancer Res 2010; 29: 151.

    PubMed  PubMed Central  Google Scholar 

  77. Bitarte N, Bandres E, Boni V, Zarate R, Rodriguez J, Gonzalez-Huarriz M et al. MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. Stem Cells 2011; 29: 1661–1671.

    CAS  PubMed  Google Scholar 

  78. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB . Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 2009; 8: 806–823.

    CAS  PubMed  Google Scholar 

  79. Allikmets R, Schriml LM, Hutchinson A, Romano-Spica V, Dean M . A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res 1998; 58: 5337–5339.

    CAS  PubMed  Google Scholar 

  80. Resetkova E, Reis-Filho JS, Jain RK, Mehta R, Thorat MA, Nakshatri H et al. Prognostic impact of ALDH1 in breast cancer: a story of stem cells and tumor microenvironment. Breast Cancer Res Treat 2010; 123: 97–108.

    PubMed  Google Scholar 

  81. Todaro M, Perez Alea M, Scopelliti A, Medema JP, Stassi G . IL-4-mediated drug resistance in colon cancer stem cells. Cell Cycle 2008; 7: 309–313.

    CAS  PubMed  Google Scholar 

  82. Todaro M, Francipane MG, Medema JP, Stassi G . Colon cancer stem cells: promise of targeted therapy. Gastroenterology 2010; 138: 2151–2162.

    CAS  PubMed  Google Scholar 

  83. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009; 458: 780–783.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444: 756–760.

    CAS  PubMed  Google Scholar 

  85. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008; 100: 672–679.

    CAS  PubMed  Google Scholar 

  86. Dylla SJ, Beviglia L, Park IK, Chartier C, Raval J, Ngan L et al. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One 2008; 3: e2428.

    PubMed  PubMed Central  Google Scholar 

  87. Giampieri R, Scartozzi M, Loretelli C, Piva F, Mandolesi A, Lezoche G et al. Cancer stem cell gene profile as predictor of relapse in high risk stage II and stage III, radically resected colon cancer patients. PLoS One 2013; 8: e72843.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Saigusa S, Tanaka K, Toiyama Y, Yokoe T, Okugawa Y, Ioue Y et al. Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy. Ann Surg Oncol 2009; 16: 3488–3498.

    PubMed  Google Scholar 

  89. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH et al. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 2006; 8: R59.

    PubMed  PubMed Central  Google Scholar 

  91. Sarkar FH, Li Y, Wang Z, Kong D . Pancreatic cancer stem cells and EMT in drug resistance and metastasis. Minerva Chir 2009; 64: 489–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Brabletz S, Bajdak K, Meidhof S, Burk U, Niedermann G, Firat E et al. The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J 2011; 30: 770–782.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 2009; 11: 1487–1495.

    CAS  PubMed  Google Scholar 

  94. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009; 138: 592–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Polytarchou C, Iliopoulos D, Struhl K . An integrated transcriptional regulatory circuit that reinforces the breast cancer stem cell state. Proc Natl Acad Sci USA 2012; 109: 14470–14475.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE . Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006; 12: 1167–1174.

    PubMed  Google Scholar 

  97. Pham PV, Phan NL, Nguyen NT, Truong NH, Duong TT, Le DV et al. Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy. J Transl Med 2011; 9: 209.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009; 138: 645–659.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K . Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 2009; 69: 7507–7511.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Iliopoulos D, Hirsch HA, Struhl K . Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res 2011; 71: 3196–3201.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Saeki T, Nomizu T, Toi M, Ito Y, Noguchi S, Kobayashi T et al. Dofequidar fumarate (MS-209) in combination with cyclophosphamide, doxorubicin, and fluorouracil for patients with advanced or recurrent breast cancer. J Clin Oncol 2007; 25: 411–417.

    CAS  PubMed  Google Scholar 

  102. Kelly RJ, Draper D, Chen CC, Robey RW, Figg WD, Piekarz RL et al. A pharmacodynamic study of docetaxel in combination with the P-glycoprotein antagonist tariquidar (XR9576) in patients with lung, ovarian, and cervical cancer. Clin Cancer Res 2011; 17: 569–580.

    CAS  PubMed  Google Scholar 

  103. Feldmann G, Fendrich V, McGovern K, Bedja D, Bisht S, Alvarez H et al. An orally bioavailable small-molecule inhibitor of Hedgehog signaling inhibits tumor initiation and metastasis in pancreatic cancer. Mol Cancer Ther 2008; 7: 2725–2735.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. McGowan PM, Simedrea C, Ribot EJ, Foster PJ, Palmieri D, Steeg PS et al. Notch1 inhibition alters the CD44hi/CD24lo population and reduces the formation of brain metastases from breast cancer. Mol Cancer Res 2011; 9: 834–844.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Uy GL, Rettig MP, Motabi IH, McFarland K, Trinkaus KM, Hladnik LM et al. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood 2012; 119: 3917–3924.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institutes of Health, 5R 1K08CA142904 (ERC), Hollings Cancer Center Translational Research Award and American Cancer Society: Institutional Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E R Camp.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Findlay, V., Wang, C., Watson, D. et al. Epithelial-to-mesenchymal transition and the cancer stem cell phenotype: insights from cancer biology with therapeutic implications for colorectal cancer. Cancer Gene Ther 21, 181–187 (2014). https://doi.org/10.1038/cgt.2014.15

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2014.15

This article is cited by

Search

Quick links