Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting apoptosis in cancer therapy

Abstract

For over three decades, a mainstay and goal of clinical oncology has been the development of therapies promoting the effective elimination of cancer cells by apoptosis. This programmed cell death process is mediated by several signalling pathways (referred to as intrinsic and extrinsic) triggered by multiple factors, including cellular stress, DNA damage and immune surveillance. The interaction of apoptosis pathways with other signalling mechanisms can also affect cell death. The clinical translation of effective pro-apoptotic agents involves drug discovery studies (addressing the bioavailability, stability, tumour penetration, toxicity profile in non-malignant tissues, drug interactions and off-target effects) as well as an understanding of tumour biology (including heterogeneity and evolution of resistant clones). While tumour cell death can result in response to therapy, the selection, growth and dissemination of resistant cells can ultimately be fatal. In this Review, we present the main apoptosis pathways and other signalling pathways that interact with them, and discuss actionable molecular targets, therapeutic agents in clinical translation and known mechanisms of resistance to these agents.

Key points

  • Apoptosis can be induced in cancer cells through intrinsic and extrinsic pathways, which converge on the regulation of caspase-dependent proteolysis of thousands of cellular proteins, membrane blebbing and endonucleolytic cleavage of chromosomal DNA.

  • A limited number of FDA-approved anticancer agents directly target apoptotic pathways; these small molecules are designed to inhibit anti-apoptotic BCL-2 family members.

  • Other promising therapeutic strategies for activating apoptosis in cancer cells include agents that trigger the extrinsic apoptosis pathway, those that target tumour suppressor pathways or the tumour microenvironment, and combination drug therapies.

  • The antitumour efficacy of several FDA-approved agents targeting cell survival and proliferation pathways in cancer cells is also dependent on their effects on apoptosis signalling pathways.

  • Both cell-mediated immunotherapy and immune-checkpoint inhibition induce apoptosis in cancer cells through the extrinsic pathway; the possibility of potentiating this effect using combination regimens (involving targeted therapies, cytotoxic agents or radiotherapy) is currently under investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of apoptosis signalling pathways and the effects of pro-survival signalling, immune cells and the tumour microenvironment.
Fig. 2: Therapeutic approaches targeting apoptosis pathways in cancer cells.

Similar content being viewed by others

References

  1. Ellis, H. M. & Horvitz, H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817–829 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Ellis, R. E., Yuan, J. Y. & Horvitz, H. R. Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7, 663–698 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Varmus, H. E. Nobel lecture. Retroviruses and oncogenes. I. Biosci. Rep. 10, 413–430 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Wyllie, A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555–556 (1980).

    Article  CAS  PubMed  Google Scholar 

  5. Kaufmann, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N. E. & Poirier, G. G. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 53, 3976–3985 (1993).

    CAS  PubMed  Google Scholar 

  6. Tsujimoto, Y., Finger, L. R., Yunis, J., Nowell, P. C. & Croce, C. M. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226, 1097–1099 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Boise, L. H. et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 597–608 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Hockenbery, D., Nunez, G., Milliman, C., Schreiber, R. D. & Korsmeyer, S. J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348, 334–336 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Rathmell, J. C. & Thompson, C. B. Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell 109, S97–S107 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Fuchs, Y. & Steller, H. Programmed cell death in animal development and disease. Cell 147, 742–758 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fulda, S. Tumor resistance to apoptosis. Int. J. Cancer 124, 511–515 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Thomas, S. et al. Targeting the Bcl-2 family for cancer therapy. Expert Opin. Ther. Targets 17, 61–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Ashkenazi, A. & Salvesen, G. Regulated cell death: signaling and mechanisms. Annu. Rev. Cell Dev. Biol. 30, 337–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Green, D. R. & Llambi, F. Cell death signaling. Cold Spring Harb. Perspect. Biol. 7, a006080 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Nagata, S. & Tanaka, M. Programmed cell death and the immune system. Nat. Rev. Immunol. 17, 333–340 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Martinou, J. C. & Youle, R. J. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev. Cell 21, 92–101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chang, H. Y. & Yang, X. Proteases for cell suicide: functions and regulation of caspases. Microbiol. Mol. Biol. Rev. 64, 821–846 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ledgerwood, E. C. & Morison, I. M. Targeting the apoptosome for cancer therapy. Clin. Cancer Res. 15, 420–424 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Silke, J. & Meier, P. Inhibitor of apoptosis (IAP) proteins-modulators of cell death and inflammation. Cold Spring Harb. Perspect. Biol. 5, a008730 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Chowdhury, D. & Lieberman, J. Death by a thousand cuts: granzyme pathways of programmed cell death. Annu. Rev. Immunol. 26, 389–420 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saraste, A. & Pulkki, K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc. Res. 45, 528–537 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bhullar, K. S. et al. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol. Cancer 17, 48 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G. & Earnshaw, W. C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346–347 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Ulukaya, E. et al. Chemotherapy increases caspase-cleaved cytokeratin 18 in the serum of breast cancer patients. Radiol. Oncol. 45, 116–122 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Newbold, A., Martin, B. P., Cullinane, C. & Bots, M. Detection of apoptotic cells using immunohistochemistry. Cold Spring Harb. Protoc. 2014, 1196–1201 (2014).

    PubMed  Google Scholar 

  28. Hameed, A., Truong, L. D., Price, V., Kruhenbuhl, O. & Tschopp, J. Immunohistochemical localization of granzyme B antigen in cytotoxic cells in human tissues. Am. J. Pathol. 138, 1069–1075 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wlodkowic, D., Skommer, J. & Darzynkiewicz, Z. Flow cytometry-based apoptosis detection. Methods Mol. Biol. 559, 19–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, J. J., Wang, W., Dicker, D. T. & El-Deiry, W. S. Bioluminescent imaging of TRAIL-induced apoptosis through detection of caspase activation following cleavage of DEVD-aminoluciferin. Cancer Biol. Ther. 4, 885–892 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Blankenberg, F. G. et al. Imaging of apoptosis (programmed cell death) with 99mTc annexin V. J. Nucl. Med. 40, 184–191 (1999).

    CAS  PubMed  Google Scholar 

  32. Larimer, B. M. et al. Granzyme B PET imaging as a predictive biomarker of immunotherapy response. Cancer Res. 77, 2318–2327 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kalkavan, H. & Green, D. R. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 25, 46–55 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, X., Kim, C. N., Yang, J., Jemmerson, R. & Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147–157 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Yang, J. et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129–1132 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Kharbanda, S. et al. Role for Bcl-xL as an inhibitor of cytosolic cytochrome C accumulation in DNA damage-induced apoptosis. Proc. Natl Acad. Sci. USA 94, 6939–6942 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nijhawan, D. et al. Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev. 17, 1475–1486 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zha, H., Aime-Sempe, C., Sato, T. & Reed, J. C. Proapoptotic protein Bax heterodimerizes with Bcl-2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J. Biol. Chem. 271, 7440–7444 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, K., Yin, X. M., Chao, D. T., Milliman, C. L. & Korsmeyer, S. J. BID: a novel BH3 domain-only death agonist. Genes. Dev. 10, 2859–2869 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. O’Connor, L. et al. Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J. 17, 384–395 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Letai, A. et al. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Cheng, E. H. et al. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol. Cell 8, 705–711 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Kuwana, T. et al. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111, 331–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Nakano, K. & Vousden, K. H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7, 683–694 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, H. et al. Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol. Cell 36, 487–499 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bleicken, S. et al. Structural model of active Bax at the membrane. Mol. Cell 56, 496–505 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang, E. et al. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80, 285–291 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Youle, R. J. & Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 9, 47–59 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Czabotar, P. E., Lessene, G., Strasser, A. & Adams, J. M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49–63 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Del Gaizo Moore, V. & Letai, A. BH3 profiling–measuring integrated function of the mitochondrial apoptotic pathway to predict cell fate decisions. Cancer Lett. 332, 202–205 (2013).

    Article  PubMed  CAS  Google Scholar 

  51. Certo, M. et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9, 351–365 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Inuzuka, H. et al. SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature 471, 104–109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Del Re, D. P. et al. Mst1 promotes cardiac myocyte apoptosis through phosphorylation and inhibition of Bcl-xL. Mol. Cell 54, 639–650 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Gardai, S. J. et al. Phosphorylation of Bax Ser184 by Akt regulates its activity and apoptosis in neutrophils. J. Biol. Chem. 279, 21085–21095 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Edlich, F. et al. Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. Cell 145, 104–116 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gojo, I., Zhang, B. & Fenton, R. G. The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in multiple myeloma cells through transcriptional repression and down-regulation of Mcl-1. Clin. Cancer Res. 8, 3527–3538 (2002).

    CAS  PubMed  Google Scholar 

  57. Chen, S. et al. CDK inhibitors upregulate BH3-only proteins to sensitize human myeloma cells to BH3 mimetic therapies. Cancer Res. 72, 4225–4237 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lowman, X. H. et al. The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose. Mol. Cell 40, 823–833 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Kour, S. et al. CDK5 inhibitor downregulates Mcl-1 and sensitizes pancreatic cancer cell lines to navitoclax. Mol. Pharmacol. 96, 419–429 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Deveraux, Q. L. & Reed, J. C. IAP family proteins–suppressors of apoptosis. Genes Dev. 13, 239–252 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. van Loo, G. et al. The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ. 9, 1031–1042 (2002).

    Article  PubMed  CAS  Google Scholar 

  62. Vogler, M., Dinsdale, D., Dyer, M. J. & Cohen, G. M. Bcl-2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death Differ. 16, 360–367 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Park, D. et al. Novel small-molecule inhibitors of Bcl-XL to treat lung cancer. Cancer Res. 73, 5485–5496 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Caenepeel, S. et al. AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. Cancer Discov. 8, 1582–1597 (2018).

    PubMed  CAS  Google Scholar 

  65. Walensky, L. D. & Bird, G. H. Hydrocarbon-stapled peptides: principles, practice, and progress. J. Med. Chem. 57, 6275–6288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rezaei Araghi, R. et al. Iterative optimization yields Mcl-1-targeting stapled peptides with selective cytotoxicity to Mcl-1-dependent cancer cells. Proc. Natl Acad. Sci. USA 115, E886–E895 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Fulda, S. Promises and challenges of Smac mimetics as cancer therapeutics. Clin. Cancer Res. 21, 5030–5036 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Korsmeyer, S. J., Shutter, J. R., Veis, D. J., Merry, D. E. & Oltvai, Z. N. Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin. Cancer Biol. 4, 327–332 (1993).

    CAS  PubMed  Google Scholar 

  69. Miyashita, T. & Reed, J. C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293–299 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Kastenhuber, E. R. & Lowe, S. W. Putting p53 in context. Cell 170, 1062–1078 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Adams, J. M. & Cory, S. The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322–1326 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Jin, Z. & El-Deiry, W. S. Overview of cell death signaling pathways. Cancer Biol. Ther. 4, 139–163 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Itoh, N. et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66, 233–243 (1991).

    Article  CAS  PubMed  Google Scholar 

  74. Pan, G. et al. The receptor for the cytotoxic ligand TRAIL. Science 276, 111–113 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Schneider, P. et al. TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-κB. Immunity 7, 831–836 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Wu, G. S. et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat. Genet. 17, 141–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Walczak, H. et al. TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J. 16, 5386–5397 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chaudhary, P. M. et al. Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-κB pathway. Immunity 7, 821–830 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. MacFarlane, M. et al. Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J. Biol. Chem. 272, 25417–25420 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Hymowitz, S. G. et al. Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol. Cell 4, 563–571 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Schneider, P. et al. Characterization of Fas (Apo-1, CD95)-Fas ligand interaction. J. Biol. Chem. 272, 18827–18833 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Pennica, D. et al. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 312, 724–729 (1984).

    Article  CAS  PubMed  Google Scholar 

  83. Wiley, S. R. et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3, 673–682 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Huang, B., Eberstadt, M., Olejniczak, E. T., Meadows, R. P. & Fesik, S. W. NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 384, 638–641 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Guicciardi, M. E. & Gores, G. J. Life and death by death receptors. FASEB J. 23, 1625–1637 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Irmler, M. et al. Inhibition of death receptor signals by cellular FLIP. Nature 388, 190–195 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Billen, L. P., Shamas-Din, A. & Andrews, D. W. Bid: a Bax-like BH3 protein. Oncogene 27, S93–S104 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Sax, J. K. et al. BID regulation by p53 contributes to chemosensitivity. Nat. Cell Biol. 4, 842–849 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Ozoren, N. & El-Deiry, W. S. Defining characteristics of types I and II apoptotic cells in response to TRAIL. Neoplasia 4, 551–557 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Pitti, R. M. et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 396, 699–703 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. LeBlanc, H. N. & Ashkenazi, A. Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ. 10, 66–75 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Crowder, R. N., Dicker, D. T. & El-Deiry, W. S. The deubiquitinase inhibitor PR-619 sensitizes normal human fibroblasts to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated cell death. J. Biol. Chem. 291, 5960–5970 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang, L. et al. Accelerated degradation of caspase-8 protein correlates with TRAIL resistance in a DLD1 human colon cancer cell line. Neoplasia 7, 594–602 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hayden, M. S. & Ghosh, S. Regulation of NF-κB by TNF family cytokines. Semin. Immunol. 26, 253–266 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yin, X. M. et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400, 886–891 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Blick, M., Sherwin, S. A., Rosenblum, M. & Gutterman, J. Phase I study of recombinant tumor necrosis factor in cancer patients. Cancer Res. 47, 2986–2989 (1987).

    CAS  PubMed  Google Scholar 

  97. Kimura, K. et al. Phase I study of recombinant human tumor necrosis factor. Cancer Chemother. Pharmacol. 20, 223–229 (1987).

    Article  CAS  PubMed  Google Scholar 

  98. Moritz, T. et al. Phase I study of recombinant human tumor necrosis factor α in advanced malignant disease. Cancer Immunol. Immunother. 29, 144–150 (1989).

    Article  CAS  PubMed  Google Scholar 

  99. Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer 9, 361–371 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Smith, H. G. et al. Isolated limb perfusion with melphalan and tumour necrosis factor α for in-transit melanoma and soft tissue sarcoma. Ann. Surg. Oncol. 22, S356–361 (2015).

    Article  PubMed  Google Scholar 

  101. Deroose, J. P. et al. Long-term results of tumor necrosis factor α- and melphalan-based isolated limb perfusion in locally advanced extremity soft tissue sarcomas. J. Clin. Oncol. 29, 4036–4044 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Ruggiero, V., Latham, K. & Baglioni, C. Cytostatic and cytotoxic activity of tumor necrosis factor on human cancer cells. J. Immunol. 138, 2711–2717 (1987).

    CAS  PubMed  Google Scholar 

  103. Watanabe, N. et al. Toxic effect of tumor necrosis factor on tumor vasculature in mice. Cancer Res. 48, 2179–2183 (1988).

    CAS  PubMed  Google Scholar 

  104. von Karstedt, S. et al. Cancer cell-autonomous TRAIL-R signaling promotes KRAS-driven cancer progression, invasion, and metastasis. Cancer Cell 27, 561–573 (2015).

    Article  CAS  Google Scholar 

  105. Hartwig, T. et al. The TRAIL-induced cancer secretome promotes a tumor-supportive immune microenvironment via CCR2. Mol. Cell 65, 730–742.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. El-Deiry, W. S. Regulation of p53 downstream genes. Semin. Cancer Biol. 8, 345–357 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Finnberg, N. et al. DR5 knockout mice are compromised in radiation-induced apoptosis. Mol. Cell Biol. 25, 2000–2013 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Finnberg, N., Klein-Szanto, A. J. & El-Deiry, W. S. TRAIL-R deficiency in mice promotes susceptibility to chronic inflammation and tumorigenesis. J. Clin. Invest. 118, 111–123 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Spencer, S. L. & Sorger, P. K. Measuring and modeling apoptosis in single cells. Cell 144, 926–939 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. & Sorger, P. K. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459, 428–432 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Santos, L. C. et al. Mitochondrial origins of fractional control in regulated cell death. Nat. Commun. 10, 1313 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Green, D. R. The coming decade of cell death research: five riddles. Cell 177, 1094–1107 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Boroughs, L. K. & DeBerardinis, R. J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17, 351–359 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hassan, M., Watari, H., AbuAlmaaty, A., Ohba, Y. & Sakuragi, N. Apoptosis and molecular targeting therapy in cancer. Biomed. Res. Int. 2014, 150845 (2014).

    PubMed  PubMed Central  Google Scholar 

  115. Levy, D. S., Kahana, J. A. & Kumar, R. AKT inhibitor, GSK690693, induces growth inhibition and apoptosis in acute lymphoblastic leukemia cell lines. Blood 113, 1723–1729 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Wang, X., Martindale, J. L. & Holbrook, N. J. Requirement for ERK activation in cisplatin-induced apoptosis. J. Biol. Chem. 275, 39435–39443 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Will, M. et al. Rapid induction of apoptosis by PI3K inhibitors is dependent upon their transient inhibition of RAS-ERK signaling. Cancer Discov. 4, 334–347 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lin, L., Ding, D., Jiang, Y., Li, Y. & Li, S. MEK inhibitors induce apoptosis via FoxO3a-dependent PUMA induction in colorectal cancer cells. Oncogenesis 7, 67 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. He, K., Zheng, X., Li, M., Zhang, L. & Yu, J. mTOR inhibitors induce apoptosis in colon cancer cells via CHOP-dependent DR5 induction on 4E-BP1 dephosphorylation. Oncogene 35, 148–157 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Goel, S., Hidalgo, M. & Perez-Soler, R. EGFR inhibitor-mediated apoptosis in solid tumors. J. Exp. Ther. Oncol. 6, 305–320 (2007).

    CAS  PubMed  Google Scholar 

  121. Sun, Q. et al. PUMA mediates EGFR tyrosine kinase inhibitor-induced apoptosis in head and neck cancer cells. Oncogene 28, 2348–2357 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Faber, A. C. et al. Differential induction of apoptosis in HER2 and EGFR addicted cancers following PI3K inhibition. Proc. Natl Acad. Sci. USA 106, 19503–19508 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fleming, I. N., Hogben, M., Frame, S., McClue, S. J. & Green, S. R. Synergistic inhibition of ErbB signaling by combined treatment with seliciclib and ErbB-targeting agents. Clin. Cancer Res. 14, 4326–4335 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Sattler, M. et al. A novel small molecule met inhibitor induces apoptosis in cells transformed by the oncogenic TPR-MET tyrosine kinase. Cancer Res. 63, 5462–5469 (2003).

    CAS  PubMed  Google Scholar 

  125. Dai, L. et al. Targeting HGF/c-MET induces cell cycle arrest, DNA damage, and apoptosis for primary effusion lymphoma. Blood 126, 2821–2831 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cocco, E., Scaltriti, M. & Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 15, 731–747 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Faber, A. C. et al. BIM expression in treatment-naive cancers predicts responsiveness to kinase inhibitors. Cancer Discov. 1, 352–365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ley, R., Balmanno, K., Hadfield, K., Weston, C. & Cook, S. J. Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. J. Biol. Chem. 278, 18811–18816 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Bonni, A. et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358–1362 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Hata, A. N. et al. Failure to induce apoptosis via BCL-2 family proteins underlies lack of efficacy of combined MEK and PI3K inhibitors for KRAS-mutant lung cancers. Cancer Res. 74, 3146–3156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nangia, V. et al. Exploiting MCL1 dependency with combination MEK + MCL1 inhibitors leads to induction of apoptosis and tumor regression in KRAS-mutant non-small cell lung cancer. Cancer Discov. 8, 1598–1613 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Levy, J. M. M., Towers, C. G. & Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer 17, 528–542 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Chude, C. I. & Amaravadi, R. K. Targeting autophagy in cancer: update on clinical trials and novel inhibitors. Int. J. Mol. Sci. 18, 1279 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  135. Galluzzi, L. & Green, D. R. Autophagy-independent functions of the autophagy machinery. Cell 177, 1682–1699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Maiuri, M. C. et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J. 26, 2527–2539 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Friedmann Angeli, J. P., Krysko, D. V. & Conrad, M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Cancer 19, 405–414 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tsoi, J. et al. Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell 33, 890–904 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hao, S. et al. Cysteine dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells. Neoplasia 19, 1022–1032 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Baumann, C., Ullrich, A. & Torka, R. GAS6-expressing and self-sustaining cancer cells in 3D spheroids activate the PDK-RSK-mTOR pathway for survival and drug resistance. Mol. Oncol. 11, 1430–1447 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hassannia, B. et al. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J. Clin. Invest. 128, 3341–3355 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Shimada, K. et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol. 12, 497–503 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Guan, J. et al. The xc cystine/glutamate antiporter as a potential therapeutic target for small-cell lung cancer: use of sulfasalazine. Cancer Chemother. Pharmacol. 64, 463–472 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Louandre, C. et al. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett. 356, 971–977 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Kim, S. E. et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol. 11, 977–985 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhao, Y., Zhao, W., Lim, Y. C. & Liu, T. Salinomycin-loaded gold nanoparticles for treating cancer stem cells by ferroptosis-induced cell death. Mol. Pharm. 16, 2532–2539 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Li, T. et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149, 1269–1283 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tarangelo, A. et al. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep. 22, 569–575 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hassannia, B., Vandenabeele, P. & Vanden Berghe, T. Targeting ferroptosis to iron out cancer. Cancer Cell 35, 830–849 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Pekarsky, Y., Balatti, V. & Croce, C. M. BCL2 and miR-15/16: from gene discovery to treatment. Cell Death Differ. 25, 21–26 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Del Gaizo Moore, V. et al. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J. Clin. Invest. 117, 112–121 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Tse, C. et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68, 3421–3428 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Roberts, A. W. et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J. Clin. Oncol. 30, 488–496 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Kipps, T. J. et al. A phase 2 study of the BH3 mimetic BCL2 inhibitor navitoclax (ABT-263) with or without rituximab, in previously untreated B-cell chronic lymphocytic leukemia. Leuk. Lymphoma 56, 2826–2833 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wilson, W. H. et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 11, 1149–1159 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Souers, A. J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19, 202–208 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Roberts, A. W. et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 374, 311–322 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. Davids, M. S. et al. Revised dose ramp-up to mitigate the risk of tumor lysis syndrome when initiating venetoclax in patients with mantle cell lymphoma. J. Clin. Oncol. 36, 3525–3527 (2018).

    Article  CAS  Google Scholar 

  166. Roberts, A. W. et al. Efficacy of venetoclax in relapsed chronic lymphocytic leukemia is influenced by disease and response variables. Blood 134, 111–122 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Stilgenbauer, S. et al. Venetoclax for patients with chronic lymphocytic leukemia with 17p deletion: results from the full population of a phase II pivotal trial. J. Clin. Oncol. 36, 1973–1980 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Seymour, J. F. et al. Venetoclax-rituximab in relapsed or refractory chronic lymphocytic leukemia. N. Engl. J. Med. 378, 1107–1120 (2018).

    Article  CAS  PubMed  Google Scholar 

  169. Fischer, K. et al. Venetoclax and obinutuzumab in patients with CLL and coexisting conditions. N. Engl. J. Med. 380, 2225–2236 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Jain, N. et al. Ibrutinib and venetoclax for first-line treatment of CLL. N. Engl. J. Med. 380, 2095–2103 (2019).

    Article  CAS  PubMed  Google Scholar 

  171. Zelenetz, A. D. et al. Venetoclax plus R- or G-CHOP in non-Hodgkin lymphoma: results from the CAVALLI phase 1b trial. Blood 133, 1964–1976 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Pan, R. et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 4, 362–375 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Konopleva, M. et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 10, 375–388 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Beurlet, S. et al. BCL-2 inhibition with ABT-737 prolongs survival in an NRAS/BCL-2 mouse model of AML by targeting primitive LSK and progenitor cells. Blood 122, 2864–2876 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Konopleva, M. et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 6, 1106–1117 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wei, A. H. et al. Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ib/II study. J. Clin. Oncol. 37, 1277–1284 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Tilly, H. et al. Low-dose cytarabine versus intensive chemotherapy in the treatment of acute nonlymphocytic leukemia in the elderly. J. Clin. Oncol. 8, 272–279 (1990).

    Article  CAS  PubMed  Google Scholar 

  178. Kantarjian, H. et al. Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: predictive prognostic models for outcome. Cancer 106, 1090–1098 (2006).

    Article  PubMed  Google Scholar 

  179. Kantarjian, H. et al. Intensive chemotherapy does not benefit most older patients (age 70 years or older) with acute myeloid leukemia. Blood 116, 4422–4429 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Tsao, T. et al. Concomitant inhibition of DNA methyltransferase and BCL-2 protein function synergistically induce mitochondrial apoptosis in acute myelogenous leukemia cells. Ann. Hematol. 91, 1861–1870 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Bogenberger, J. M. et al. Ex vivo activity of BCL-2 family inhibitors ABT-199 and ABT-737 combined with 5-azacytidine in myeloid malignancies. Leuk. Lymphoma 56, 226–229 (2015).

    Article  PubMed  Google Scholar 

  182. DiNardo, C. D. et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood 133, 7–17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Leverson, J. D. et al. Found in translation: how preclinical research is guiding the clinical development of the BCL2-selective inhibitor venetoclax. Cancer Discov. 7, 1376–1393 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lakhani, N. J. et al. A phase I study of novel dual Bcl-2/Bcl-xL inhibitor APG-1252 in patients with advanced small cell lung cancer (SCLC) or other solid tumor. J. Clin. Oncol. 36, 2594–2594 (2018).

    Article  Google Scholar 

  185. Ye, L. et al. The small-molecule compound BM-1197 inhibits the antiapoptotic regulators Bcl-2/Bcl-xL and triggers apoptotic cell death in human colorectal cancer cells. Tumour Biol. 36, 3447–3455 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Nemati, F. et al. Targeting Bcl-2/Bcl-XL induces antitumor activity in uveal melanoma patient-derived xenografts. PLoS One 9, e80836 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Loriot, Y. et al. Radiosensitization by a novel Bcl-2 and Bcl-XL inhibitor S44563 in small-cell lung cancer. Cell Death Dis. 5, e1423 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Adam, A. et al. A dual Bcl-2/XL inhibitor induces tumor cell apoptosis in a hematopoietic xenograft model. Blood 124, 5304–5304 (2014).

    Article  Google Scholar 

  189. Takimoto-Shimomura, T. et al. Dual targeting of bromodomain-containing 4 by AZD5153 and BCL2 by AZD4320 against B-cell lymphomas concomitantly overexpressing c-MYC and BCL2. Invest. New Drugs 37, 210–222 (2019).

    Article  CAS  PubMed  Google Scholar 

  190. Casara, P. et al. S55746 is a novel orally active BCL-2 selective and potent inhibitor that impairs hematological tumor growth. Oncotarget 9, 20075–20088 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Fang, D. D. et al. BCL-2 selective inhibitor APG-2575 synergizes with BTK inhibitor in preclinical xenograft models of follicular lymphoma and diffuse large B-cell lymphoma [abstract]. Cancer Res. 79 (Suppl. 13), 2058 (2019).

    Google Scholar 

  192. Le Gouill, S. et al. A new Bcl-2 inhibitor (S55746/BCL201) as monotherapy in patients with relapsed or refractory non-Hodgkin lymphoma: preliminary results of the first-in-human trial. Hematol. Oncol. 35, 47–48 (2017).

    Article  Google Scholar 

  193. Phillips, A. C. New Drugs on the Horizon: Part 2. Presented at the 110th Annual Meeting of the American Association for Cancer Research (2019).

  194. Koehler, M. F. et al. Structure-guided rescaffolding of selective antagonists of BCL-XL. ACS Med. Chem. Lett. 5, 662–667 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Tao, Z. F. et al. Discovery of a potent and selective BCL-XL inhibitor with in vivo activity. ACS Med. Chem. Lett. 5, 1088–1093 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Baranski, Z. et al. Pharmacological inhibition of Bcl-xL sensitizes osteosarcoma to doxorubicin. Oncotarget 6, 36113–36125 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Abed, M. N., Abdullah, M. I. & Richardson, A. Antagonism of Bcl-XL is necessary for synergy between carboplatin and BH3 mimetics in ovarian cancer cells. J. Ovarian Res. 9, 25 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Lucantoni, F., Lindner, A. U., O’Donovan, N., Dussmann, H. & Prehn, J. H. M. Systems modeling accurately predicts responses to genotoxic agents and their synergism with BCL-2 inhibitors in triple negative breast cancer cells. Cell Death Dis. 9, 42 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. de Jong, Y. et al. Bcl-xl as the most promising Bcl-2 family member in targeted treatment of chondrosarcoma. Oncogenesis 7, 74 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Lucantoni, F., Dussmann, H., Llorente-Folch, I. & Prehn, J. H. M. BCL2 and BCL(X)L selective inhibitors decrease mitochondrial ATP production in breast cancer cells and are synthetically lethal when combined with 2-deoxy-D-glucose. Oncotarget 9, 26046–26063 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Faqar-Uz-Zaman, S. F., Heinicke, U., Meister, M. T., Vogler, M. & Fulda, S. BCL-xL-selective BH3 mimetic sensitizes rhabdomyosarcoma cells to chemotherapeutics by activation of the mitochondrial pathway of apoptosis. Cancer Lett. 412, 131–142 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Ali, A. M., Atmaj, J., Van Oosterwijk, N., Groves, M. R. & Domling, A. Stapled peptides inhibitors: a new window for target drug discovery. Comput. Struct. Biotechnol. J. 17, 263–281 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Tsomaia, N. Peptide therapeutics: targeting the undruggable space. Eur. J. Med. Chem. 94, 459–470 (2015).

    Article  CAS  PubMed  Google Scholar 

  204. Walensky, L. D. et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Chang, Y. S. et al. Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc. Natl Acad. Sci. USA 110, E3445–E3454 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Carvajal, L. A. et al. Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Sci. Transl Med. 10, eaao3003 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Ng, S. Y. et al. Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. Nat. Commun. 9, 2024 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Shustov, A. R. et al. Preliminary results of the stapled peptide ALRN-6924, a dual inhibitor of MDMX and MDM2, in two phase IIa dose expansion cohorts in relapsed/refractory TP53 wild-type peripheral T-cell lymphoma [abstract]. Blood 132 (Suppl. 1), 1623 (2018).

    Article  Google Scholar 

  209. Stewart, M. L., Fire, E., Keating, A. E. & Walensky, L. D. The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat. Chem. Biol. 6, 595–601 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Grossmann, T. N. et al. Inhibition of oncogenic Wnt signaling through direct targeting of β-catenin. Proc. Natl Acad. Sci. USA 109, 17942–17947 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Kussie, P. H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953 (1996).

    Article  CAS  PubMed  Google Scholar 

  212. Baek, S. et al. Structure of the stapled p53 peptide bound to Mdm2. J. Am. Chem. Soc. 134, 103–106 (2012).

    Article  CAS  PubMed  Google Scholar 

  213. Harvey, E. P. et al. Crystal structures of anti-apoptotic BFL-1 and its complex with a covalent stapled peptide inhibitor. Structure 26, 153–160 (2018).

    Article  CAS  PubMed  Google Scholar 

  214. Xin, M. et al. Small-molecule Bax agonists for cancer therapy. Nat. Commun. 5, 4935 (2014).

    Article  CAS  PubMed  Google Scholar 

  215. Li, R. et al. Modulation of Bax and mTOR for cancer therapeutics. Cancer Res. 77, 3001–3012 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Liu, G. et al. Discovery and optimization of small molecule Bax activators for cancer therapy. Cancer Res. 79 (suppl. 13), abstr. 3 (2019).

    Google Scholar 

  217. Gavathiotis, E., Reyna, D. E., Bellairs, J. A., Leshchiner, E. S. & Walensky, L. D. Direct and selective small-molecule activation of proapoptotic BAX. Nat. Chem. Biol. 8, 639–645 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Daniele, S. et al. Bax activation blocks self-renewal and induces apoptosis of human glioblastoma stem cells. ACS Chem. Neurosci. 9, 85–99 (2018).

    Article  CAS  PubMed  Google Scholar 

  219. Reyna, D. E. et al. Direct activation of BAX by BTSA1 overcomes apoptosis resistance in acute myeloid leukemia. Cancer Cell 32, 490–505 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Garner, T. P. et al. Small-molecule allosteric inhibitors of BAX. Nat. Chem. Biol. 15, 322–330 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Weston, C. R. et al. Activation of ERK1/2 by deltaRaf-1:ER* represses Bim expression independently of the JNK or PI3K pathways. Oncogene 22, 1281–1293 (2003).

    Article  CAS  PubMed  Google Scholar 

  222. Sarosiek, K. A. et al. BID preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response. Mol. Cell 51, 751–765 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Costa, D. B. et al. BIM mediates EGFR tyrosine kinase inhibitor-induced apoptosis in lung cancers with oncogenic EGFR mutations. PLoS Med. 4, 1669–1679 (2007).

    Article  CAS  PubMed  Google Scholar 

  224. Kuribara, R. et al. Roles of Bim in apoptosis of normal and Bcr-Abl-expressing hematopoietic progenitors. Mol. Cell Biol. 24, 6172–6183 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Ng, K. P. et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat. Med. 18, 521–528 (2012).

    Article  CAS  PubMed  Google Scholar 

  226. Yuan, J. et al. Clinical Implications of the BIM deletion polymorphism in advanced lung adenocarcinoma treated with gefitinib. Clin. Lung Cancer 19, e431–e438 (2018).

    Article  CAS  PubMed  Google Scholar 

  227. Zhang, L. et al. Clinical features of Bim deletion polymorphism and its relation with crizotinib primary resistance in Chinese patients with ALK/ROS1 fusion-positive non-small cell lung cancer. Cancer 123, 2927–2935 (2017).

    Article  CAS  PubMed  Google Scholar 

  228. Tan, T. T. et al. Key roles of BIM-driven apoptosis in epithelial tumors and rational chemotherapy. Cancer Cell 7, 227–238 (2005).

    Article  CAS  PubMed  Google Scholar 

  229. Steele, A. J. et al. Cerdulatinib induces Bim expression and synergistic cell kill in combination with venetoclax in follicular lymphoma cell lines [abstract]. Cancer Res. 78 (Suppl. 13), 305 (2018).

    Google Scholar 

  230. Wertz, I. E. et al. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 471, 110–114 (2011).

    Article  CAS  PubMed  Google Scholar 

  231. Tron, A. E. et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat. Commun. 9, 5341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Prukova, D. et al. Cotargeting of BCL2 with venetoclax and MCL1 with S63845 is synthetically lethal in vivo in relapsed mantle cell lymphoma. Clin. Cancer Res. 25, 4455–4465 (2019).

    Article  PubMed  Google Scholar 

  233. Li, Z., He, S. & Look, A. T. The MCL1-specific inhibitor S63845 acts synergistically with venetoclax/ABT-199 to induce apoptosis in T-cell acute lymphoblastic leukemia cells. Leukemia 33, 262–266 (2019).

    Article  PubMed  Google Scholar 

  234. Ramsey, H. E. et al. A novel MCL1 inhibitor combined with venetoclax rescues venetoclax-resistant acute myelogenous leukemia. Cancer Discov. 8, 1566–1581 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Moujalled, D. M. et al. Combining BH3-mimetics to target both BCL-2 and MCL1 has potent activity in pre-clinical models of acute myeloid leukemia. Leukemia 33, 905–917 (2019).

    Article  CAS  PubMed  Google Scholar 

  236. Lee, T. et al. Discovery and biological characterization of potent myeloid cell leukemia-1 inhibitors. FEBS Lett. 591, 240–251 (2017).

    Article  CAS  PubMed  Google Scholar 

  237. Deng, J. et al. BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell 12, 171–185 (2007).

    Article  CAS  PubMed  Google Scholar 

  238. Soderquist, R. S. et al. Systematic mapping of BCL-2 gene dependencies in cancer reveals molecular determinants of BH3 mimetic sensitivity. Nat. Commun. 9, 3513 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Matulis, S. M. et al. Preclinical activity of novel MCL1 inhibitor AZD5991 in multiple myeloma. Blood 132, 952–952 (2018).

    Article  Google Scholar 

  240. Abulwerdi, F. et al. A novel small-molecule inhibitor of Mcl-1 blocks pancreatic cancer growth in vitro and in vivo. Mol. Cancer Ther. 13, 565–575 (2014).

    Article  CAS  PubMed  Google Scholar 

  241. Ow, T. J. et al. Optimal targeting of BCL-family proteins in head and neck squamous cell carcinoma requires inhibition of both BCL-xL and MCL-1. Oncotarget 10, 494–510 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Wang, Q., Wan, J., Zhang, W. & Hao, S. MCL-1 or BCL-xL-dependent resistance to the BCL-2 antagonist (ABT-199) can be overcome by specific inhibitor as single agents and in combination with ABT-199 in acute myeloid leukemia cells. Leuk. Lymphoma 60, 2170–2180 (2019).

    Article  CAS  PubMed  Google Scholar 

  243. Guerra, R. M. et al. Precision targeting of BFL-1/A1 and an ATM co-dependency in human cancer. Cell Rep. 24, 3393–3403.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Vogler, M. BCL2A1: the underdog in the BCL2 family. Cell Death Differ. 19, 67–74 (2012).

    Article  CAS  PubMed  Google Scholar 

  245. Brien, G. et al. Characterization of peptide aptamers targeting Bfl-1 anti-apoptotic protein. Biochemistry 50, 5120–5129 (2011).

    Article  CAS  PubMed  Google Scholar 

  246. Fulda, S. & Vucic, D. Targeting IAP proteins for therapeutic intervention in cancer. Nat. Rev. Drug. Discov. 11, 109–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  247. Gyrd-Hansen, M. & Meier, P. IAPs: from caspase inhibitors to modulators of NF-κB, inflammation and cancer. Nat. Rev. Cancer 10, 561–574 (2010).

    Article  CAS  PubMed  Google Scholar 

  248. Monian, P. & Jiang, X. Clearing the final hurdles to mitochondrial apoptosis: regulation post cytochrome C release. Exp. Oncol. 34, 185–191 (2012).

    CAS  PubMed  Google Scholar 

  249. Eckelman, B. P., Salvesen, G. S. & Scott, F. L. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep. 7, 988–994 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Vucic, D. et al. Engineering ML-IAP to produce an extraordinarily potent caspase 9 inhibitor: implications for Smac-dependent anti-apoptotic activity of ML-IAP. Biochem. J. 385, 11–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  251. Infante, J. R. et al. Phase I dose-escalation study of LCL161, an oral inhibitor of apoptosis proteins inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 32, 3103–3110 (2014).

    Article  CAS  PubMed  Google Scholar 

  252. Amaravadi, R. K. et al. A phase I study of the SMAC-mimetic birinapant in adults with refractory solid tumors or lymphoma. Mol. Cancer Ther. 14, 2569–2575 (2015).

    Article  CAS  PubMed  Google Scholar 

  253. Sikic, B. I. et al. Safety, pharmacokinetics (PK), and pharmacodynamics (PD) of HGS1029, an inhibitor of apoptosis protein (IAP) inhibitor, in patients (Pts) with advanced solid tumors: results of a phase I study [abstract]. J. Clin. Oncol. 29 (Suppl.15), 3008 (2011).

    Article  Google Scholar 

  254. Tolcher, A. W. et al. A phase I dose-escalation study evaluating the safety tolerability and pharmacokinetics of CUDC-427, a potent, oral, monovalent IAP antagonist, in patients with refractory solid tumors. Clin. Cancer Res. 22, 4567–4573 (2016).

    Article  CAS  PubMed  Google Scholar 

  255. Chesi, M. et al. IAP antagonists induce anti-tumor immunity in multiple myeloma. Nat. Med. 22, 1411–1420 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Yang, L. et al. LCL161, a SMAC-mimetic, preferentially radiosensitizes human papillomavirus-negative head and neck squamous cell carcinoma. Mol. Cancer Ther. 18, 1025–1035 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Zarnegar, B. J. et al. Noncanonical NF-κB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat. Immunol. 9, 1371–1378 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Tao, Z. et al. SMAC mimetic Debio 1143 and ablative radiation therapy synergize to enhance antitumor immunity against lung cancer. Clin. Cancer Res. 25, 1113–1124 (2019).

    Article  CAS  PubMed  Google Scholar 

  259. Juergens, R. A. et al. A dose-finding study of the SMAC mimetic Debio 1143 when given in combination with avelumab to patients with advanced solid malignancies. J. Clin. Oncol. 37, 2599–2599 (2019).

    Article  Google Scholar 

  260. Fresquet, V., Rieger, M., Carolis, C., Garcia-Barchino, M. J. & Martinez-Climent, J. A. Acquired mutations in BCL2 family proteins conferring resistance to the BH3 mimetic ABT-199 in lymphoma. Blood 123, 4111–4119 (2014).

    Article  CAS  PubMed  Google Scholar 

  261. Blombery, P. et al. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia. Cancer Discov. 9, 342–353 (2019).

    Article  PubMed  Google Scholar 

  262. Blombery, P. et al. Characterization of a novel venetoclax resistance mutation (BCL2 Phe104Ile) observed in follicular lymphoma. Br. J. Haematol. 186, e188–e191 (2019).

    Article  PubMed  Google Scholar 

  263. Birkinshaw, R. W. et al. Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations. Nat. Commun. 10, 2385 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Herling, C. D. et al. Clonal dynamics towards the development of venetoclax resistance in chronic lymphocytic leukemia. Nat. Commun. 9, 727 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Bose, P., Gandhi, V. & Konopleva, M. Pathways and mechanisms of venetoclax resistance. Leuk. Lymphoma 58, 1–17 (2017).

    Article  PubMed  CAS  Google Scholar 

  266. Jayappa, K. D. et al. Microenvironmental agonists generate de novo phenotypic resistance to combined ibrutinib plus venetoclax in CLL and MCL. Blood Adv. 1, 933–946 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Chiron, D. et al. Rational targeted therapies to overcome microenvironment-dependent expansion of mantle cell lymphoma. Blood 128, 2808–2818 (2016).

    Article  CAS  PubMed  Google Scholar 

  268. Tam, C. S. et al. Ibrutinib plus venetoclax for the treatment of mantle-cell lymphoma. N. Engl. J. Med. 378, 1211–1223 (2018).

    Article  CAS  PubMed  Google Scholar 

  269. Agarwal, R. et al. Dynamic molecular monitoring reveals that SWI-SNF mutations mediate resistance to ibrutinib plus venetoclax in mantle cell lymphoma. Nat. Med. 25, 119–129 (2019).

    Article  CAS  PubMed  Google Scholar 

  270. Nechiporuk, T. et al. The TP53 apoptotic network is a primary mediator of resistance to BCL2 inhibition in AML cells. Cancer Discov. 9, 910–925 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Chen, X. et al. Targeting mitochondrial structure sensitizes acute myeloid leukemia to venetoclax treatment. Cancer Discov. 9, 890–909 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Scorrano, L. et al. A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell 2, 55–67 (2002).

    Article  CAS  PubMed  Google Scholar 

  273. McQuibban, G. A., Saurya, S. & Freeman, M. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423, 537–541 (2003).

    Article  CAS  PubMed  Google Scholar 

  274. Frezza, C. et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  275. Rottgers, K., Zufall, N., Guiard, B. & Voos, W. The ClpB homolog Hsp78 is required for the efficient degradation of proteins in the mitochondrial matrix. J. Biol. Chem. 277, 45829–45837 (2002).

    Article  CAS  PubMed  Google Scholar 

  276. Wortmann, S. B. et al. CLPB mutations cause 3-methylglutaconic aciduria, progressive brain atrophy, intellectual disability, congenital neutropenia, cataracts, movement disorder. Am. J. Hum. Genet. 96, 245–257 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Rampino, N. et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275, 967–969 (1997).

    Article  CAS  PubMed  Google Scholar 

  278. Brimmell, M., Mendiola, R., Mangion, J. & Packham, G. BAX frameshift mutations in cell lines derived from human haemopoietic malignancies are associated with resistance to apoptosis and microsatellite instability. Oncogene 16, 1803–1812 (1998).

    Article  CAS  PubMed  Google Scholar 

  279. Renault, T. T. et al. Mitochondrial shape governs BAX-induced membrane permeabilization and apoptosis. Mol. Cell 57, 69–82 (2015).

    Article  CAS  PubMed  Google Scholar 

  280. Shamas-Din, A. et al. Distinct lipid effects on tBid and Bim activation of membrane permeabilization by pro-apoptotic Bax. Biochem. J. 467, 495–505 (2015).

    Article  CAS  PubMed  Google Scholar 

  281. Falschlehner, C., Schaefer, U. & Walczak, H. Following TRAIL’s path in the immune system. Immunology 127, 145–154 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Pan, G. et al. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277, 815–818 (1997).

    Article  CAS  PubMed  Google Scholar 

  283. Sheridan, J. P. et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277, 818–821 (1997).

    Article  CAS  PubMed  Google Scholar 

  284. Degli-Esposti, M. A. et al. Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J. Exp. Med. 186, 1165–1170 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Marsters, S. A. et al. A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr. Biol. 7, 1003–1006 (1997).

    Article  CAS  PubMed  Google Scholar 

  286. Emery, J. G. et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J. Biol. Chem. 273, 14363–14367 (1998).

    Article  CAS  PubMed  Google Scholar 

  287. Falschlehner, C., Ganten, T. M., Koschny, R., Schaefer, U. & Walczak, H. TRAIL and other TRAIL receptor agonists as novel cancer therapeutics. Adv. Exp. Med. Biol. 647, 195–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  288. Herbst, R. S. et al. A first-in-human study of conatumumab in adult patients with advanced solid tumors. Clin. Cancer Res. 16, 5883–5891 (2010).

    Article  CAS  PubMed  Google Scholar 

  289. Luster, T. A., Carrell, J. A., McCormick, K., Sun, D. & Humphreys, R. Mapatumumab and lexatumumab induce apoptosis in TRAIL-R1 and TRAIL-R2 antibody-resistant NSCLC cell lines when treated in combination with bortezomib. Mol. Cancer Ther. 8, 292–302 (2009).

    Article  CAS  PubMed  Google Scholar 

  290. Belyanskaya, L. L. et al. Human agonistic TRAIL receptor antibodies mapatumumab and lexatumumab induce apoptosis in malignant mesothelioma and act synergistically with cisplatin. Mol. Cancer 6, 66 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  291. Amm, H. M., Oliver, P. G., Lee, C. H., Li, Y. & Buchsbaum, D. J. Combined modality therapy with TRAIL or agonistic death receptor antibodies. Cancer Biol. Ther. 11, 431–449 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Herbst, R. S. et al. Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer. J. Clin. Oncol. 28, 2839–2846 (2010).

    Article  CAS  PubMed  Google Scholar 

  293. Soria, J. C. et al. Randomized phase II study of dulanermin in combination with paclitaxel, carboplatin, and bevacizumab in advanced non-small-cell lung cancer. J. Clin. Oncol. 29, 4442–4451 (2011).

    Article  CAS  PubMed  Google Scholar 

  294. Cheah, C. Y. et al. Dulanermin with rituximab in patients with relapsed indolent B-cell lymphoma: an open-label phase 1b/2 randomised study. Lancet Haematol. 2, e166–e174 (2015).

    Article  PubMed  Google Scholar 

  295. Wainberg, Z. A. et al. A phase 1B study of dulanermin in combination with modified FOLFOX6 plus bevacizumab in patients with metastatic colorectal cancer. Clin. Colorectal Cancer 12, 248–254 (2013).

    Article  CAS  PubMed  Google Scholar 

  296. Elias, A. et al. Epigenetic silencing of death receptor 4 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in gliomas. Clin. Cancer Res. 15, 5457–5465 (2009).

    Article  CAS  PubMed  Google Scholar 

  297. Horak, P. et al. Contribution of epigenetic silencing of tumor necrosis factor-related apoptosis inducing ligand receptor 1 (DR4) to TRAIL resistance and ovarian cancer. Mol. Cancer Res. 3, 335–343 (2005).

    Article  CAS  PubMed  Google Scholar 

  298. Wagner, K. W. et al. Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat. Med. 13, 1070–1077 (2007).

    Article  CAS  PubMed  Google Scholar 

  299. Bae, S. I., Cheriyath, V., Jacobs, B. S., Reu, F. J. & Borden, E. C. Reversal of methylation silencing of Apo2L/TRAIL receptor 1 (DR4) expression overcomes resistance of SK-MEL-3 and SK-MEL-28 melanoma cells to interferons (IFNs) or Apo2L/TRAIL. Oncogene 27, 490–498 (2008).

    Article  CAS  PubMed  Google Scholar 

  300. Tang, Z., Bauer, J. A., Morrison, B. & Lindner, D. J. Nitrosylcobalamin promotes cell death via S nitrosylation of Apo2L/TRAIL receptor DR4. Mol. Cell Biol. 26, 5588–5594 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Jin, Z., McDonald, E. R. III, Dicker, D. T. & El-Deiry, W. S. Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. J. Biol. Chem. 279, 35829–35839 (2004).

    Article  CAS  PubMed  Google Scholar 

  302. Gillissen, B. et al. Endogenous Bak inhibitors Mcl-1 and Bcl-xL: differential impact on TRAIL resistance in Bax-deficient carcinoma. J. Cell Biol. 188, 851–862 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Vogler, M. et al. Targeting XIAP bypasses Bcl-2-mediated resistance to TRAIL and cooperates with TRAIL to suppress pancreatic cancer growth in vitro and in vivo. Cancer Res. 68, 7956–7965 (2008).

    Article  CAS  PubMed  Google Scholar 

  304. Zhang, L. & Fang, B. Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther. 12, 228–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  305. Gillissen, B. et al. Targeted therapy of the XIAP/proteasome pathway overcomes TRAIL-resistance in carcinoma by switching apoptosis signaling to a Bax/Bak-independent ‘type I’ mode. Cell Death Dis. 4, e643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Muhlenbeck, F. et al. The tumor necrosis factor-related apoptosis-inducing ligand receptors TRAIL-R1 and TRAIL-R2 have distinct cross-linking requirements for initiation of apoptosis and are non-redundant in JNK activation. J. Biol. Chem. 275, 32208–32213 (2000).

    Article  CAS  PubMed  Google Scholar 

  307. Berg, D. et al. Enforced covalent trimerization increases the activity of the TNF ligand family members TRAIL and CD95L. Cell Death Differ. 14, 2021–2034 (2007).

    Article  CAS  PubMed  Google Scholar 

  308. von Pawel, J. et al. Phase II trial of mapatumumab, a fully human agonist monoclonal antibody to tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1), in combination with paclitaxel and carboplatin in patients with advanced non-small-cell lung cancer. Clin. Lung Cancer 15, 188–196 (2014).

    Article  CAS  Google Scholar 

  309. Hotte, S. J. et al. A phase 1 study of mapatumumab (fully human monoclonal antibody to TRAIL-R1) in patients with advanced solid malignancies. Clin. Cancer Res. 14, 3450–3455 (2008).

    Article  CAS  PubMed  Google Scholar 

  310. Trarbach, T. et al. Phase II trial of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer. Br. J. Cancer 102, 506–512 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Mom, C. H. et al. Mapatumumab, a fully human agonistic monoclonal antibody that targets TRAIL-R1, in combination with gemcitabine and cisplatin: a phase I study. Clin. Cancer Res. 15, 5584–5590 (2009).

    Article  CAS  PubMed  Google Scholar 

  312. Younes, A. et al. A Phase 1b/2 trial of mapatumumab in patients with relapsed/refractory non-Hodgkin’s lymphoma. Br. J. Cancer 103, 1783–1787 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Ciuleanu, T. et al. A randomized, double-blind, placebo-controlled phase II study to assess the efficacy and safety of mapatumumab with sorafenib in patients with advanced hepatocellular carcinoma. Ann. Oncol. 27, 680–687 (2016).

    Article  CAS  PubMed  Google Scholar 

  314. Plummer, R. et al. Phase 1 and pharmacokinetic study of lexatumumab in patients with advanced cancers. Clin. Cancer Res. 13, 6187–6194 (2007).

    Article  CAS  PubMed  Google Scholar 

  315. Merchant, M. S. et al. Phase I trial and pharmacokinetic study of lexatumumab in pediatric patients with solid tumors. J. Clin. Oncol. 30, 4141–4147 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Sikic, B. I. et al. A phase Ib study to assess the safety of lexatumumab, a human monoclonal antibody that activates TRAIL-R2, in combination with gemcitabine, pemetrexed, doxorubicin or FOLFIRI [abstract]. J. Clin. Oncol. 25 (Suppl. 18), 14006 (2007).

    Article  Google Scholar 

  317. Wakelee, H. A. et al. Phase I and pharmacokinetic study of lexatumumab (HGS-ETR2) given every 2 weeks in patients with advanced solid tumors. Ann. Oncol. 21, 376–381 (2010).

    Article  CAS  PubMed  Google Scholar 

  318. Fuchs, C. S. et al. TRAIL receptor agonist conatumumab with modified FOLFOX6 plus bevacizumab for first-line treatment of metastatic colorectal cancer: a randomized phase 1b/2 trial. Cancer 119, 4290–4298 (2013).

    Article  CAS  PubMed  Google Scholar 

  319. Paz-Ares, L. et al. A randomized phase 2 study of paclitaxel and carboplatin with or without conatumumab for first-line treatment of advanced non-small-cell lung cancer. J. Thorac. Oncol. 8, 329–337 (2013).

    Article  CAS  PubMed  Google Scholar 

  320. Forero-Torres, A. et al. TBCRC 019: a phase II trial of nanoparticle albumin-bound paclitaxel with or without the anti-death receptor 5 monoclonal antibody tigatuzumab in patients with triple-negative breast cancer. Clin. Cancer Res. 21, 2722–2729 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Sharma, S. et al. Safety, pharmacokinetics, and pharmacodynamics of the DR5 antibody LBY135 alone and in combination with capecitabine in patients with advanced solid tumors. Invest. New Drugs 32, 135–144 (2014).

    Article  CAS  PubMed  Google Scholar 

  322. Camidge, D. R. et al. A phase I safety and pharmacokinetic study of the death receptor 5 agonistic antibody PRO95780 in patients with advanced malignancies. Clin. Cancer Res. 16, 1256–1263 (2010).

    Article  CAS  PubMed  Google Scholar 

  323. Lemke, J. et al. Selective CDK9 inhibition overcomes TRAIL resistance by concomitant suppression of cFlip and Mcl-1. Cell Death Differ. 21, 491–502 (2014).

    Article  CAS  PubMed  Google Scholar 

  324. De Blasio, A. et al. Loss of MCL1 function sensitizes the MDA-MB-231 breast cancer cells to rh-TRAIL by increasing DR4 levels. J. Cell Physiol. 234, 18432–18447 (2019).

    Article  PubMed  CAS  Google Scholar 

  325. Graves, J. D. et al. Apo2L/TRAIL and the death receptor 5 agonist antibody AMG 655 cooperate to promote receptor clustering and antitumor activity. Cancer Cell 26, 177–189 (2014).

    Article  CAS  PubMed  Google Scholar 

  326. Allen, J. E. et al. Dual inactivation of Akt and ERK by TIC10 signals Foxo3a nuclear translocation, TRAIL gene induction, and potent antitumor effects. Sci. Transl Med. 5, 171ra117 (2013).

    Article  CAS  Google Scholar 

  327. Prabhu, V. V., Allen, J. E., Dicker, D. T. & El-Deiry, W. S. Small-molecule ONC201/TIC10 targets chemotherapy-resistant colorectal cancer stem-like cells in an Akt/Foxo3a/TRAIL-dependent manner. Cancer Res. 75, 1423–1432 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Kline, C. L. B. et al. Role of dopamine receptors in the anticancer activity of ONC201. Neoplasia 20, 80–91 (2018).

    Article  CAS  PubMed  Google Scholar 

  329. Graves, P. R. et al. Mitochondrial protease ClpP is a target for the anticancer compounds ONC201 and related analogues. ACS Chem. Biol. 14, 1020–1029 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Ishizawa, J. et al. Mitochondrial ClpP-mediated proteolysis induces selective cancer cell lethality. Cancer Cell 35, 721–737 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Kline, C. L. et al. ONC201 kills solid tumor cells by triggering an integrated stress response dependent on ATF4 activation by specific eIF2α kinases. Sci. Signal. 9, ra18 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  332. Ishizawa, J. et al. ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies. Sci. Signal. 9, ra17 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  333. Ralff, M. D. et al. Recombinant human TRAIL or a DR5 agonistic antibody convert the response of non-triple negative breast cancer cells to ONC201 from anti-proliferative to apoptotic [abstract]. Cancer Res. 79 (Suppl. 13), 258 (2019).

    Google Scholar 

  334. Ray, J., Ralff, M., Dicker, D. & El-Deiry, W. Anti-tumorigenic effect of ONC201 is enhanced by combination treatment with TRAIL or a DR5 agonist in endometrial cancer in vitro [abstract]. Cancer Res. 79 (Suppl. 13), 262 (2019).

    Google Scholar 

  335. Wagner, J. et al. Dose intensification of TRAIL-inducing ONC201 inhibits metastasis and promotes intratumoral NK cell recruitment. J. Clin. Invest. 128, 2325–2338 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  336. Stein, M. N. et al. Safety and enhanced immunostimulatory activity of the DRD2 antagonist ONC201 in advanced solid tumor patients with weekly oral administration. J. Immunother. Cancer 7, 136 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  337. Arrillaga, I. et al. Single agent ONC201 in adult recurrent H3 K27M-mutant glioma [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 3005 (2019).

    Article  Google Scholar 

  338. Hall, M. D. et al. First clinical experience with DRD2/3 antagonist ONC201 in H3 K27M-mutant pediatric diffuse intrinsic pontine glioma: a case report [abstract]. J. Neurosurg. Pediatr. 23, 719–725 (2019).

    Article  PubMed  Google Scholar 

  339. Prabhu, V. V. et al. Dopamine receptor D5 is a modulator of tumor response to dopamine receptor D2 antagonism. Clin. Cancer Res. 25, 2305–2313 (2019).

    Article  PubMed  Google Scholar 

  340. Cubillos-Ruiz, J. R., Bettigole, S. E. & Glimcher, L. H. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell 168, 692–706 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Tameire, F. et al. ATF4 couples MYC-dependent translational activity to bioenergetic demands during tumour progression. Nat. Cell Biol. 21, 889–899 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. de Jong, R. N. et al. A novel platform for the potentiation of therapeutic antibodies based on antigen-dependent formation of IgG hexamers at the cell surface. PLoS Biol. 14, e1002344 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  343. Overdijk, M. B. et al. DR5 agonist activity of HexaBody DR5/DR5 (GEN1029) is potentiated by C1q and independent of Fc-gamma receptor binding in preclinical tumor models [abstract]. Cancer Res. 79 (Suppl. 13), 2391 (2019).

    Google Scholar 

  344. Tahir, S. K. et al. ABBV-621 is a novel and potent TRAIL receptor agonist fusion protein that induces apoptosis alone and in combination with navitoclax and venetoclax in hematological tumors. Blood 130, 2812–2812 (2017).

    Google Scholar 

  345. Ratain, M. J. et al. Phase 1, first-in-human study of TRAIL receptor agonist fusion protein ABBV-621 [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 3013 (2019).

    Article  Google Scholar 

  346. Sawyer, A. J. et al. Engineering and preclinical activity of MM-201, a best-in-class TRAIL receptor agonist [abstract]. Cancer Res. 79, 2491 (2019).

    Google Scholar 

  347. Park, J. S. et al. Targeting of dermal myofibroblasts through death receptor 5 arrests fibrosis in mouse models of scleroderma. Nat. Commun. 10, 1128 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  348. Blumenschein, G. R. Jr. et al. A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC). Ann. Oncol. 26, 894–901 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  349. Johnson, G. L., Stuhlmiller, T. J., Angus, S. P., Zawistowski, J. S. & Graves, L. M. Molecular pathways: adaptive kinome reprogramming in response to targeted inhibition of the BRAF-MEK-ERK pathway in cancer. Clin. Cancer Res. 20, 2516–2522 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Meng, J. et al. Apoptosis induction by MEK inhibition in human lung cancer cells is mediated by Bim. PLoS One 5, e13026 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  351. Corcoran, R. B. et al. Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models. Cancer Cell 23, 121–128 (2013).

    Article  CAS  PubMed  Google Scholar 

  352. Iavarone, C. et al. Combined MEK and BCL-2/XL inhibition is effective in high-grade serous ovarian cancer patient-derived xenograft models and BIM levels are predictive of responsiveness. Mol. Cancer Ther. 18, 642–655 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Canon, J. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).

    Article  CAS  PubMed  Google Scholar 

  354. Fakih, M. et al. Phase 1 study evaluating the safety, tolerability, pharmacokinetics (PK), and efficacy of AMG 510, a novel small molecule KRASG12C inhibitor, in advanced solid tumors [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 3003 (2019).

    Article  Google Scholar 

  355. Hallin, J. et al. The KRASG12C inhibitor, MRTX849, provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov. 10, 54–71 (2020).

    Article  PubMed  Google Scholar 

  356. Baud, V. & Karin, M. Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nat. Rev. Drug. Discov. 8, 33–40 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Guo, Y., Xu, F., Lu, T., Duan, Z. & Zhang, Z. Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat. Rev. 38, 904–910 (2012).

    Article  CAS  PubMed  Google Scholar 

  358. Johnson, D. E., O’Keefe, R. A. & Grandis, J. R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 15, 234–248 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Tolcher, A. et al. A first-in-human phase I study of OPB-111077, a small-molecule STAT3 and oxidative phosphorylation inhibitor, in patients with advanced cancers. Oncologist 23, 658–e72 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Yoo, C. et al. Phase I dose-finding study of OPB-111077, a novel STAT3 inhibitor, in patients with advanced hepatocellular carcinoma. Cancer Res. Treat. 51, 510–518 (2019).

    Article  CAS  PubMed  Google Scholar 

  361. Hong, D. et al. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci. Transl Med. 7, 314ra185 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  362. Crawford, L. J., Walker, B. & Irvine, A. E. Proteasome inhibitors in cancer therapy. J. Cell Commun. Signal. 5, 101–110 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  363. Rotow, J. & Bivona, T. G. Understanding and targeting resistance mechanisms in NSCLC. Nat. Rev. Cancer 17, 637–658 (2017).

    Article  CAS  PubMed  Google Scholar 

  364. Shi, P. et al. Overcoming acquired resistance to AZD9291, a third-generation EGFR inhibitor, through modulation of MEK/ERK-dependent Bim and Mcl-1 degradation. Clin. Cancer Res. 23, 6567–6579 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Fuse, M. A. et al. Combination therapy with c-Met and Src inhibitors induces caspase-dependent apoptosis of merlin-deficient Schwann cells and suppresses growth of schwannoma cells. Mol. Cancer Ther. 16, 2387–2398 (2017).

    Article  CAS  PubMed  Google Scholar 

  366. Hamedani, F. S. et al. Crizotinib (PF-2341066) induces apoptosis due to downregulation of pSTAT3 and BCL-2 family proteins in NPM-ALK(+) anaplastic large cell lymphoma. Leuk. Res. 38, 503–508 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Pinski, J. et al. Trk receptor inhibition induces apoptosis of proliferating but not quiescent human osteoblasts. Cancer Res. 62, 986–989 (2002).

    CAS  PubMed  Google Scholar 

  368. Lavoie, J. F. et al. TrkA induces apoptosis of neuroblastoma cells and does so via a p53-dependent mechanism. J. Biol. Chem. 280, 29199–29207 (2005).

    Article  CAS  PubMed  Google Scholar 

  369. Amin, A. et al. Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds. Semin. Cancer Biol. 35, S55–S77 (2015).

    Article  PubMed  CAS  Google Scholar 

  370. Bykov, V. J. N., Eriksson, S. E., Bianchi, J. & Wiman, K. G. Targeting mutant p53 for efficient cancer therapy. Nat. Rev. Cancer 18, 89–102 (2018).

    Article  CAS  PubMed  Google Scholar 

  371. Blandino, G. & Di Agostino, S. New therapeutic strategies to treat human cancers expressing mutant p53 proteins. J. Exp. Clin. Cancer Res. 37, 30 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  372. Levine, A. J. Targeting therapies for the p53 protein in cancer treatments. Annu. Rev. Cancer Biol. 3, 21–34 (2019).

    Article  Google Scholar 

  373. Wang, S., Zhao, Y., Aguilar, A., Bernard, D. & Yang, C. Y. Targeting the MDM2-p53 protein-protein interaction for new cancer therapy: progress and challenges. Cold Spring Harb. Perspect. Med. 7, a026245 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  374. Andreeff, M. et al. Results of the phase I trial of RG7112, a small-molecule MDM2 antagonist in leukemia. Clin. Cancer Res. 22, 868–876 (2016).

    Article  CAS  PubMed  Google Scholar 

  375. Kocik, J. et al. Helping the released guardian: drug combinations for supporting the anticancer activity of HDM2 (MDM2) antagonists. Cancers 11, 1014 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  376. Ding, Q. et al. Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J. Med. Chem. 56, 5979–5983 (2013).

    Article  CAS  PubMed  Google Scholar 

  377. Reis, B. et al. Acute myeloid leukemia patients’ clinical response to idasanutlin (RG7388) is associated with pre-treatment MDM2 protein expression in leukemic blasts. Haematologica 101, e185–e188 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Blotner, S., Chen, L. C., Ferlini, C. & Zhi, J. Phase 1 summary of plasma concentration-QTc analysis for idasanutlin, an MDM2 antagonist, in patients with advanced solid tumors and AML. Cancer Chemother. Pharmacol. 81, 597–607 (2018).

    Article  CAS  PubMed  Google Scholar 

  379. Liao, G. et al. The development of piperidinones as potent MDM2-P53 protein-protein interaction inhibitors for cancer therapy. Eur. J. Med. Chem. 159, 1–9 (2018).

    Article  CAS  PubMed  Google Scholar 

  380. Erba, H. P. et al. Phase 1b study of the MDM2 inhibitor AMG 232 with or without trametinib in relapsed/refractory acute myeloid leukemia. Blood Adv. 3, 1939–1949 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  381. Furet, P. et al. Discovery of a novel class of highly potent inhibitors of the p53-MDM2 interaction by structure-based design starting from a conformational argument. Bioorg. Med. Chem. Lett. 26, 4837–4841 (2016).

    Article  CAS  PubMed  Google Scholar 

  382. Tolcher, A. W. et al. A phase Ib/II study of APG-115 in combination with pembrolizumab in patients with unresectable or metastatic melanomas or advanced solid tumors [abstract]. Ann. Oncol. 30 (Suppl. 1), i2 (2019).

    Article  Google Scholar 

  383. Arnhold, V. et al. Reactivating TP53 signaling by the novel MDM2 inhibitor DS-3032b as a therapeutic option for high-risk neuroblastoma. Oncotarget 9, 2304–2319 (2018).

    Article  PubMed  Google Scholar 

  384. Cornillie, J. et al. Anti-tumor activity of the MDM2-TP53 inhibitor BI-907828 in dedifferentiated liposarcoma patient-derived xenograft models harboring MDM2 amplification. Clin. Transl Oncol. https://doi.org/10.1007/s12094-019-02158-z (2019).

    Article  PubMed  Google Scholar 

  385. Laroche, A. et al. MDM2 antagonists synergize with PI3K/mTOR inhibition in well-differentiated/dedifferentiated liposarcomas. Oncotarget 8, 53968–53977 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  386. Jung, J. et al. TP53 mutations emerge with HDM2 inhibitor SAR405838 treatment in de-differentiated liposarcoma. Nat. Commun. 7, 12609 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. de Jonge, M. et al. A phase I study of SAR405838, a novel human double minute 2 (HDM2) antagonist, in patients with solid tumours. Eur. J. Cancer 76, 144–151 (2017).

    Article  PubMed  CAS  Google Scholar 

  388. Skalniak, L. et al. Prolonged idasanutlin (RG7388) treatment leads to the generation of p53-mutated cells. Cancers 10, 396 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  389. Aziz, M. H., Shen, H. & Maki, C. G. Acquisition of p53 mutations in response to the non-genotoxic p53 activator nutlin-3. Oncogene 30, 4678–4686 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  390. Bassett, E. A., Wang, W., Rastinejad, F. & El-Deiry, W. S. Structural and functional basis for therapeutic modulation of p53 signaling. Clin. Cancer Res. 14, 6376–6386 (2008).

    Article  CAS  PubMed  Google Scholar 

  391. Chen, F., Wang, W. & El-Deiry, W. S. Current strategies to target p53 in cancer. Biochem. Pharmacol. 80, 724–730 (2010).

    Article  CAS  PubMed  Google Scholar 

  392. Zhang, Q., Bykov, V. J. N., Wiman, K. G. & Zawacka-Pankau, J. APR-246 reactivates mutant p53 by targeting cysteines 124 and 277. Cell Death Dis. 9, 439 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  393. Sallman, D. A. et al. Phase Ib/II combination study of APR-246 and azacitidine (AZA) in patients with TP53 mutant myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) [abstract]. Cancer Res. 78 (Suppl. 13), CT068 (2018).

    Google Scholar 

  394. Zhang, J., Zhou, L., Zhao, S., Dicker, D. T. & El-Deiry, W. S. The CDK4/6 inhibitor palbociclib synergizes with irinotecan to promote colorectal cancer cell death under hypoxia. Cell Cycle 16, 1193–1200 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  395. Hashizume, R. et al. Inhibition of DNA damage repair by the CDK4/6 inhibitor palbociclib delays irradiated intracranial atypical teratoid rhabdoid tumor and glioblastoma xenograft regrowth. Neuro Oncol. 18, 1519–1528 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  396. Zhang, G. et al. Palbociclib triggers apoptosis in bladder cancer cells by Cdk2-induced Rad9-mediated reorganization of the Bak.Bcl-xl complex. Biochem. Pharmacol. 163, 133–141 (2019).

    Article  CAS  PubMed  Google Scholar 

  397. Michaud, K. et al. Pharmacologic inhibition of cyclin-dependent kinases 4 and 6 arrests the growth of glioblastoma multiforme intracranial xenografts. Cancer Res. 70, 3228–3238 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  398. Baughn, L. B. et al. A novel orally active small molecule potently induces G1 arrest in primary myeloma cells and prevents tumor growth by specific inhibition of cyclin-dependent kinase 4/6. Cancer Res. 66, 7661–7667 (2006).

    Article  CAS  PubMed  Google Scholar 

  399. Tao, Z. et al. Coadministration of trametinib and palbociclib radiosensitizes KRAS-mutant non-small cell lung cancers in vitro and in vivo. Clin. Cancer Res. 22, 122–133 (2016).

    Article  CAS  PubMed  Google Scholar 

  400. Lulla, A. R. et al. miR-6883 family miRNAs target CDK4/6 to induce G1 phase cell-cycle arrest in colon cancer cells. Cancer Res. 77, 6902–6913 (2017).

    Article  CAS  PubMed  Google Scholar 

  401. Li, N. et al. BET bromodomain inhibitor JQ1 preferentially suppresses EBV-positive nasopharyngeal carcinoma cells partially through repressing c-Myc. Cell Death Dis. 9, 761 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  402. Fiskus, W. et al. Superior efficacy of cotreatment with BET protein inhibitor and BCL2 or MCL1 inhibitor against AML blast progenitor cells. Blood Cancer J. 9, 4 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  403. Kim, S. R. et al. BET inhibition in advanced cutaneous T cell lymphoma is synergistically potentiated by BCL2 inhibition or HDAC inhibition. Oncotarget 9, 29193–29207 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  404. Zhao, Y. et al. Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim. Proc. Natl Acad. Sci. USA 102, 16090–16095 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  405. Zhang, Y., Adachi, M., Kawamura, R. & Imai, K. Bmf is a possible mediator in histone deacetylase inhibitors FK228 and CBHA-induced apoptosis. Cell Death Differ. 13, 129–140 (2006).

    Article  CAS  PubMed  Google Scholar 

  406. Heinicke, U., Haydn, T., Kehr, S., Vogler, M. & Fulda, S. BCL-2 selective inhibitor ABT-199 primes rhabdomyosarcoma cells to histone deacetylase inhibitor-induced apoptosis. Oncogene 37, 5325–5339 (2018).

    Article  CAS  PubMed  Google Scholar 

  407. Liu, Y. et al. NOXA genetic amplification or pharmacologic induction primes lymphoma cells to BCL2 inhibitor-induced cell death. Proc. Natl Acad. Sci. USA 115, 12034–12039 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  408. Ramakrishnan, V. G. et al. Histone deacetylase inhibition in combination with MEK or BCL-2 inhibition in multiple myeloma. Haematologica 104, 2061–2074 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  409. Sun, K. et al. The combination of venetoclax and CUDC-907 exhibits synergistic activity in venetoclax-refractory DLBCL [abstract]. Blood 128, 4184 (2016).

    Article  Google Scholar 

  410. Centenera, M. M. et al. Evidence for efficacy of new Hsp90 inhibitors revealed by ex vivo culture of human prostate tumors. Clin. Cancer Res. 18, 3562–3570 (2012).

    Article  CAS  PubMed  Google Scholar 

  411. Shah, S. et al. Results from phase II trial of HSP90 inhibitor, STA-9090 (ganetespib), in metastatic uveal melanoma. Melanoma Res. 28, 605–610 (2018).

    Article  CAS  PubMed  Google Scholar 

  412. Shapiro, G. I. et al. First-in-human phase I dose escalation study of a second-generation non-ansamycin HSP90 inhibitor, AT13387, in patients with advanced solid tumors. Clin. Cancer Res. 21, 87–97 (2015).

    Article  CAS  PubMed  Google Scholar 

  413. Bussenius, J. et al. Discovery of XL888: a novel tropane-derived small molecule inhibitor of HSP90. Bioorg. Med. Chem. Lett. 22, 5396–5404 (2012).

    Article  CAS  PubMed  Google Scholar 

  414. Park, M. A. et al. Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation. Cancer Biol. Ther. 7, 1648–1662 (2008).

    Article  CAS  PubMed  Google Scholar 

  415. Burikhanov, R. et al. The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis. Cell 138, 377–388 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  416. Hart, L. S. & El-Deiry, W. S. Cell death: a new Par-4 the TRAIL. Cell 138, 220–222 (2009).

    Article  CAS  PubMed  Google Scholar 

  417. Lee, Y. S., Lee, D. H., Choudry, H. A., Bartlett, D. L. & Lee, Y. J. Ferroptosis-induced endoplasmic reticulum stress: cross-talk between ferroptosis and apoptosis. Mol. Cancer Res. 16, 1073–1076 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Luhr, M. et al. The kinase PERK and the transcription factor ATF4 play distinct and essential roles in autophagy resulting from tunicamycin-induced ER stress. J. Biol. Chem. 294, 8197–8217 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  419. Chern, Y. J. et al. The interaction between SPARC and GRP78 interferes with ER stress signaling and potentiates apoptosis via PERK/eIF2α and IRE1α/XBP-1 in colorectal cancer. Cell Death Dis. 10, 504 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  420. Dauer, P. et al. ER stress sensor, glucose regulatory protein 78 (GRP78) regulates redox status in pancreatic cancer thereby maintaining “stemness”. Cell Death Dis. 10, 132 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  421. Tait, S. W., Ichim, G. & Green, D. R. Die another way–non-apoptotic mechanisms of cell death. J. Cell Sci. 127, 2135–2144 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  422. Lartigue, L. et al. Caspase-independent mitochondrial cell death results from loss of respiration, not cytotoxic protein release. Mol. Biol. Cell 20, 4871–4884 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  423. Giampazolias, E. et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat. Cell Biol. 19, 1116–1129 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  424. White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  425. Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  426. McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, eaao6047 (2018).

    Article  PubMed  CAS  Google Scholar 

  427. Rogers, C. et al. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat. Commun. 10, 1689 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  428. Orning, P. et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 362, 1064–1069 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  429. Sarhan, J. et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc. Natl Acad. Sci. USA 115, E10888–E10897 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  430. Chen, K. W. et al. Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly. EMBO J. 38, e101638 (2019).

    PubMed  PubMed Central  Google Scholar 

  431. Snyder, A. G. et al. Intratumoral activation of the necroptotic pathway components RIPK1 and RIPK3 potentiates antitumor immunity. Sci. Immunol. 4, eaaw2004 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  432. Sarosiek, K. A. et al. Developmental regulation of mitochondrial apoptosis by c-Myc governs age- and tissue-specific sensitivity to cancer therapeutics. Cancer Cell 31, 142–156 (2017).

    Article  CAS  PubMed  Google Scholar 

  433. Madden, S. D., Donovan, M. & Cotter, T. G. Key apoptosis regulating proteins are down-regulated during postnatal tissue development. Int. J. Dev. Biol. 51, 415–423 (2007).

    Article  CAS  PubMed  Google Scholar 

  434. Nakaya, K. et al. Sensitivity to radiation-induced apoptosis and neuron loss declines rapidly in the postnatal mouse neocortex. Int. J. Radiat. Biol. 81, 545–554 (2005).

    Article  CAS  PubMed  Google Scholar 

  435. Singh, R., Letai, A. & Sarosiek, K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 20, 175–193 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  436. Chonghaile, T. N. et al. Maturation stage of T-cell acute lymphoblastic leukemia determines BCL-2 versus BCL-XL dependence and sensitivity to ABT-199. Cancer Discov. 4, 1074–1087 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  437. Vo, T. T. et al. Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Cell 151, 344–355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  438. Ryan, J. A., Brunelle, J. K. & Letai, A. Heightened mitochondrial priming is the basis for apoptotic hypersensitivity of CD4+ CD8+ thymocytes. Proc. Natl Acad. Sci. USA 107, 12895–12900 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  439. Gupta, P. B. et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138, 645–659 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  440. Ryan, J. & Letai, A. BH3 profiling in whole cells by fluorimeter or FACS. Methods 61, 156–164 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  441. Lessene, G. et al. Structure-guided design of a selective BCL-X(L) inhibitor. Nat. Chem. Biol. 9, 390–397 (2013).

    Article  CAS  PubMed  Google Scholar 

  442. Leverson, J. D. et al. Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. Sci. Transl Med. 7, 279ra240 (2015).

    Article  CAS  Google Scholar 

  443. Halilovic, E. et al. MIK665/S64315, a novel Mcl-1 inhibitor, in combination with Bcl-2 inhibitors exhibits strong synergistic antitumor activity in a range of hematologic malignancies [abstract]. Cancer Res. 79 (Suppl. 13), 4477 (2019).

    Google Scholar 

  444. Maragno, A. L. et al. S64315 (MIK665) is a potent and selective Mcl1 inhibitor with strong antitumor activity across a diverse range of hematologic tumor models [abstract]. Cancer Res. 79 (Suppl. 13), 4482 (2019).

    Google Scholar 

  445. Kotschy, A. et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 538, 477–482 (2016).

    Article  PubMed  CAS  Google Scholar 

  446. Leverson, J. D. et al. Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). Cell Death Dis. 6, e1590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  447. Bardia, A. et al. Paclitaxel with inhibitor of apoptosis antagonist, LCL161, for localized triple-negative breast cancer, prospectively stratified by gene signature in a biomarker-driven neoadjuvant trial. J. Clin. Oncol. 36, 3126–3133 (2018).

    Article  CAS  Google Scholar 

  448. Noonan, A. M. et al. Pharmacodynamic markers and clinical results from the phase 2 study of the SMAC mimetic birinapant in women with relapsed platinum-resistant or -refractory epithelial ovarian cancer. Cancer 122, 588–597 (2016).

    Article  CAS  PubMed  Google Scholar 

  449. Morgan-Lappe, S. E. ABBV-621: a best-in-class TRAIL-receptor agonist fusion protein that enhances optimal clustering for the treatment of solid and hematologic tumors [abstract]. Cancer Res. 77 (Suppl. 13), DDT01-03 (2017).

    Google Scholar 

  450. Aguilar, A. et al. Discovery of 4-((3′R,4′S,5′R)-6″-chloro-4′-(3-chloro-2-fluorophenyl)-1′-ethyl-2″-oxodispiro[cyclohexane-1,2′-pyrrolidine-3′,3″-indoline]-5′-carboxamido)bicyclo[2.2.2]octane-1-carboxylic acid (AA-115/APG-115): a potent and orally active murine double minute 2 (MDM2) inhibitor in clinical development. J. Med. Chem. 60, 2819–2839 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Owing to the vast literature available for this topic, in several cases key reviews are cited to point readers to original articles. The authors apologize to colleagues for not including all possible high-impact original references and reviews. W.S.E-D. is an American Cancer Society Research Professor and the Mencoff Family University Professor at Brown University. The work of W.S.E-D. is supported by NCI grants CA173453 and CA176289.

Author information

Authors and Affiliations

Authors

Contributions

Both authors made a substantial contribution to all aspects of the preparation of the manuscript.

Corresponding author

Correspondence to Wafik S. El-Deiry.

Ethics declarations

Competing interests

B.A.C. has received funding for clinical trials from AbbVie, Actuate Therapeutics, Astellas, AstraZeneca, Bayer and MedImmune. W.S.E-D. is the scientific founder and a shareholder of Oncoceutics and p53-Therapeutics, and has received support for clinical trials from Bayer, BMS and Genentech.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks J. Montero, S. Tait and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

COSMIC: https://cancer.sanger.ac.uk/cosmic

gnomAD: https://gnomad.broadinstitute.org

US NIH ClinicalTrials.gov database: https://www.clinicaltrials.gov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carneiro, B.A., El-Deiry, W.S. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 17, 395–417 (2020). https://doi.org/10.1038/s41571-020-0341-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-020-0341-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing