Skip to main content

Advertisement

Log in

Himalayan flora: targeting various molecular pathways in lung cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The fatal amplification of lung cancer across the globe and the limitations of current treatment strategies emphasize the necessity for substitute therapeutics. The incorporation of phyto-derived components in chemo treatment holds promise in addressing those challenges. Despite the significant progressions in lung cancer therapeutics, the complexities of molecular mechanism and pathways underlying this disease remain inadequately understood, necessitating novel biomarker targeting. The Himalayas, abundant in diverse plant varieties with established chemotherapeutic potential, presents a promising avenue for investigating potential cures for lung carcinoma. The vast diversity of phytocompounds herein can be explored for targeting the disease. This review delves into the multifaceted targets of lung cancer and explores the established phytochemicals with their specific molecular targets. It emphasizes comprehending the intricate pathways that govern effective therapeutic interventions for lung cancer. Through this exploration of Himalayan flora, this review seeks to illuminate potential breakthroughs in lung cancer management using natural compounds. The amalgamation of Himalayan plant-derived compounds with cautiously designed combined therapeutic approaches such as nanocarrier-mediated drug delivery and synergistic therapy offers an opportunity to redefine the boundaries of lung cancer treatment by reducing the drug resistance and side effects and enabling an effective targeted delivery of drugs. Furthermore, additional studies are obligatory to understand the possible derivation of natural compounds used in current lung cancer treatment from plant species within the Himalayan region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No data were used for the research described in the article.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2021;71(3):209–49.

    Article  Google Scholar 

  2. Kumar A, Sharipov M, Turaev A, Azizov S, Azizov I, Makhado E, Pandey S. Polymer-based hybrid nanoarchitectures for cancer therapy applications. Polymers. 2022;14(15):3027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  4. Rami-Porta R, Bolejack V, Giroux DJ, Chansky K, Crowley J, Asamura H, Goldstraw P. The IASLC lung cancer staging project: the new database to inform the eighth edition of the TNM classification of lung cancer. J Thorac Oncol. 2014;9(11):1618–24.

    Article  CAS  PubMed  Google Scholar 

  5. Chansky K, Detterbeck FC, Nicholson AG, Rusch VW, Vallières E, Groome P, Yokoi K. The IASLC lung cancer staging project: external validation of the revision of the TNM stage groupings in the eighth edition the TNM classification of lung cancer. J Thorac Oncol. 2017;12(7):1109–21.

    Article  PubMed  Google Scholar 

  6. Wahbah M, Boroumand N, Castro C, El-Zeky F, Eltorky M. Changing trends in the distribution of the histologic types of lung cancer: a review of 4,439 cases. Ann Diagn Pathol. 2007;11(2):89–96.

    Article  PubMed  Google Scholar 

  7. Travis WD, Brambilla E, Riely GJ. New pathologic classification of lung cancer: relevance for clinical practice and clinical trials. J Clin Oncol. 2013;31(8):992–1001.

    Article  CAS  PubMed  Google Scholar 

  8. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83:584–94.

    Article  PubMed  Google Scholar 

  9. Brambilla C, Laffaire J, Lantuejoul S, Moro-Sibilot D, Mignotte H, Arbib F, Brambilla E. Lung squamous cell carcinomas with basaloid histology represent a specific molecular entity. Clin Cancer Res. 2014;20(22):5777–86.

    Article  CAS  PubMed  Google Scholar 

  10. Mukhopadhyay S, Katzenstein ALA. Subclassification of non-small cell lung carcinomas lacking morphologic differentiation on biopsy specimens: utility of an immunohistochemical panel containing TTF-1, napsin A, p63, and CK5/6. Am J Surg Pathol. 2011;35(1):15–25.

    Article  PubMed  Google Scholar 

  11. Rekhtman N, Ang DC, Sima CS, Travis WD, Moreira AL. Immunohistochemical algorithm for differentiation of lung adenocarcinoma and squamous cell carcinoma based on large series of whole-tissue sections with validation in small specimens. Modern Pathol. 2011;24(10):1348–59.

    Article  Google Scholar 

  12. Tacha D, Yu C, Bremer R, Qi W, Haas T. A 6-antibody panel for the classification of lung adenocarcinoma versus squamous cell carcinoma. Appl Immunohistochem Mol Morphol. 2012;20(3):201–7.

    Article  CAS  PubMed  Google Scholar 

  13. Jain D, Roy-Chowdhuri S. Molecular pathology of lung cancer cytology specimens: a concise review. Archiv Pathol Lab Med. 2018;142(9):1127–33.

    Article  CAS  Google Scholar 

  14. Villalobos P, Wistuba II. Lung cancer biomarkers. Hematol Oncol Clin. 2017;31(1):13–29.

    Article  Google Scholar 

  15. Iams WT, Porter J, Horn L. Immunotherapeutic approaches for small-cell lung cancer. Nat Rev Clin Oncol. 2020;17(5):300–12.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–54.

    Article  CAS  PubMed  Google Scholar 

  17. Cragg GM, Newman DJ, Yang SS. Natural product extracts of plant and marine origin having antileukemia potential. The NCI experience. J Nat Prod. 2006;69(3):488–98.

    Article  CAS  PubMed  Google Scholar 

  18. Hanna N, Johnson D, Temin S, Baker S Jr, Brahmer J, Ellis PM, Masters G. Systemic therapy for stage IV non–small-cell lung cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2017;35(30):3484–515.

    Article  CAS  PubMed  Google Scholar 

  19. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168(4):707–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sharma S, Shukla MK, Sharma KC, Tirath K, L., Anal, J. M. H., … & Kumar, D. Revisiting the therapeutic potential of gingerols against different pharmacological activities. Naunyn-Schmiedeberg’s Arch Pharmacol. 2023;396(4):633–47.

    Article  CAS  Google Scholar 

  21. Sharma A, Nagraik R, Sharma S, Sharma G, Pandey S, Azizov S, Kumar D. Green synthesis of ZnO nanoparticles using Ficus palmata: antioxidant, antibacterial and antidiabetic studies. Results Chem. 2022;4:100509.

    Article  CAS  Google Scholar 

  22. Hara H, Williams LHJ, Whitmore TC, Sutton SY, Chater AO (1979) An enumeration of the flowering plants of Nepal; a joint project of the British Museum (Natural History) and the Univ. of Tokyo-v. 2:(Angiospermae (Dicotyledones)).

  23. Joshi RK, Satyal P, Setzer WN. Himalayan aromatic medicinal plants: a review of their ethnopharmacology, volatile phytochemistry, and biological activities. Medicines. 2016;3(1):6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Singh DK, Hajara PK. Changing perspectives of biodiversity status in the Himalaya. New Delhi: British Council Division; 1996. p. 23–38.

    Google Scholar 

  25. Verpoorte R. Pharmacognosy in the new millennium: leadfinding and biotechnology. J Pharm Pharmacol. 2000;52(3):253–62.

    Article  CAS  PubMed  Google Scholar 

  26. Alharbi KS, Almalki WH, Makeen HA, Albratty M, Meraya AM, Nagraik R, Gupta G. Role of Medicinal plant-derived Nutraceuticals as a potential target for the treatment of breast cancer. J Food Biochem. 2022;46(12):e14387.

    Article  CAS  PubMed  Google Scholar 

  27. Shukla MK, Thakur A, Verma R, Lalhlenmawia H, Bhattacharyya S, Bisht D, Kumar D. Unravelling the therapeutic potential of orchid plant against cancer. South Afr J Bot. 2022;150:69–79.

    Article  CAS  Google Scholar 

  28. Heo BG, Park YJ, Park YS, Bae JH, Cho JY, Park K, Gorinstein S. Anticancer and antioxidant effects of extracts from different parts of indigo plant. Ind Crops Prod. 2014;56:9–16.

    Article  CAS  Google Scholar 

  29. Wen L, Wu D, Jiang Y, Prasad KN, Lin S, Jiang G, Yang B. Identification of flavonoids in litchi (Litchi chinensis Sonn.) leaf and evaluation of anticancer activities. J Funct Foods. 2014;6:555–63.

    Article  CAS  Google Scholar 

  30. Wen T, Song L, Hua S. Perspectives and controversies regarding the use of natural products for the treatment of lung cancer. Cancer Med. 2021;10(7):2396–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hou JM, Krebs MG, Lancashire L, Sloane R, Backen A, Swain RK, Dive C. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J Clin Oncol. 2012;30(5):525–32.

    Article  PubMed  Google Scholar 

  32. Karam I, Jiang SY, Khaira M, Lee CW, Schellenberg D. Outcomes of small cell lung cancer patients treated with cisplatin-etoposide versus carboplatin-etoposide. Am J Clin Oncol. 2015;38(1):51–4.

    Article  CAS  PubMed  Google Scholar 

  33. Wakeam E, Acuna SA, Leighl NB, Giuliani ME, Finlayson SRG, Varghese TK, Darling GE. Surgery versus chemotherapy and radiotherapy for early and locally advanced small cell lung cancer: a propensity-matched analysis of survival. Lung Cancer. 2017;109:78–88.

    Article  CAS  PubMed  Google Scholar 

  34. Pignon JP, Auperin A, Borget I, Hill C. Role of meta-analyses and of large randomized trials in the study of cancer treatments. Lung Cancer. 2009;65(1):9–12.

    Article  PubMed  Google Scholar 

  35. Lawrence TS, Rosenberg SA, DePinho RA, R.A. Cancer: Principles & Practice of Oncology. Philadelphia: Lippincott Williams & Wilkins; 2011.

    Google Scholar 

  36. Paz-Ares L, Dvorkin M, Chen Y, Reinmuth N, Hotta K, Trukhin D, Wojtukiewicz M. Durvalumab plus platinum–etoposide versus platinum–etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. The Lancet. 2019;394(10212):1929–39.

    Article  CAS  Google Scholar 

  37. Rudin CM, Awad MM, Navarro A, Gottfried M, Peters S, Csőszi T. Pembrolizumab or placebo plus etoposide and platinum as first-line therapy for extensive-stage small-cell lung cancer: randomized, double-blind, phase III KEYNOTE-604 study. J Clin Oncol. 2020;38(21):2369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sauter ER. Cancer prevention and treatment using combination therapy with natural compounds. Expert Rev Clin Pharmacol. 2020;13(3):265–85.

    Article  CAS  PubMed  Google Scholar 

  39. Gupta GP, Massagué J. Cancer metastasis: building a framework. Cell. 2006;127(4):679–95.

    Article  CAS  PubMed  Google Scholar 

  40. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562–73.

    Article  CAS  PubMed  Google Scholar 

  41. Shay G, Lynch CC, Fingleton B. Moving targets: emerging roles for mmps in cancer progression and metastasis. Matrix Biol. 2015;44:200–6.

    Article  PubMed  Google Scholar 

  42. Stetler-Stevenson WG. The role of matrix metalloproteinases in tumor invasion, metastasis, and angiogenesis. Surg Oncol Clin North Am. 2001;10(2):383–92.

    Article  CAS  Google Scholar 

  43. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metast Rev. 2006;25:9–34.

    Article  CAS  Google Scholar 

  44. Hung WC, Tseng WL, Shiea J, Chang HC. Skp2 overexpression increases the expression of MMP-2 and MMP-9 and invasion of lung cancer cells. Cancer Lett. 2010;288(2):156–61.

    Article  CAS  PubMed  Google Scholar 

  45. Kodate M, Kasai T, Hashirnoto H, Yasumoto K, Iwata Y, Manabe H. Expression of matrix metalloproteinase (gelatinase) in T1 adenocarcinoma of the lung. Pathol Int. 1997;47(7):461–9.

    Article  CAS  PubMed  Google Scholar 

  46. Sinha S, Yang W. Cellular signaling for activation of Rho GTPase Cdc42. Cell Signal. 2008;20(11):1927–34.

    Article  CAS  PubMed  Google Scholar 

  47. Qadir MI, Parveen A, Ali M. Cdc42: role in cancer management. Chem Biol Drug Des. 2015;86(4):432–9.

    Article  CAS  PubMed  Google Scholar 

  48. Stengel K, Zheng Y. Cdc42 in oncogenic transformation, invasion, and tumorigenesis. Cell Signal. 2011;23(9):1415–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kodama A, Takaishi K, Nakano K, Nishioka H, Takai Y. Involvement of Cdc42 small G protein in cell-cell adhesion, migration and morphology of MDCK cells. Oncogene. 1999;18(27):3996–4006.

    Article  CAS  PubMed  Google Scholar 

  50. Nakahara H, Otani T, Sasaki T, Miura Y, Takai Y, Kogo M. Involvement of Cdc42 and Rac small G proteins in invadopodia formation of RPMI7951 cells. Genes Cells. 2003;8(12):1019–27.

    Article  CAS  PubMed  Google Scholar 

  51. Arias-Romero LE, Chernoff J. Targeting Cdc42 in cancer. Exp Opin Ther Targets. 2013;17(11):1263–73.

    Article  CAS  Google Scholar 

  52. Kamai T, Yamanishi T, Shirataki H, Takagi K, Asami H, Ito Y, Yoshida KI. Overexpression of RhoA, Rac1, and Cdc42 GTPases is associated with progression in testicular cancer. Clin Cancer res. 2004;10(14):4799–805.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang JY, Zhang D, Wang EH. Overexpression of small GTPases directly correlates with expression of δ-catenin and their coexpression predicts a poor clinical outcome in nonsmall cell lung cancer. Mol carcinogen. 2013;52(5):338–47.

    Article  CAS  Google Scholar 

  54. Chander H, Truesdell P, Meens J, Craig AW. Transducer of Cdc42-dependent actin assembly promotes breast cancer invasion and metastasis. Oncogene. 2013;32(25):3080–90.

    Article  CAS  PubMed  Google Scholar 

  55. Reymond N, Im JH, Garg R, Vega FM, Borda d’Agua B, Riou P, Ridley AJ. Cdc42 promotes transendothelial migration of cancer cells through β1 integrin. J Cell Biol. 2012;199(4):653–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.

    Article  CAS  PubMed  Google Scholar 

  57. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24.

    Article  CAS  PubMed  Google Scholar 

  58. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Golub TR. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.

    Article  CAS  PubMed  Google Scholar 

  59. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66.

    Article  CAS  PubMed  Google Scholar 

  60. Fortunato O, Boeri M, Verri C, Moro M, Sozzi G. Therapeutic use of microRNAs in lung cancer. BioMed Res Int. 2014;2014:756975.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Inamura K, Ishikawa Y. MicroRNA in lung cancer: novel biomarkers and potential tools for treatment. J Clin Med. 2016;5(3):36.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, Slack FJ. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 2007;67(16):7713–22.

    Article  CAS  PubMed  Google Scholar 

  63. Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, Slack FJ. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle. 2008;7(6):759–64.

    Article  CAS  PubMed  Google Scholar 

  64. Garofalo M, Jeon YJ, Nuovo GJ, Middleton J, Secchiero P, Joshi P, Croce CM. MiR-34a/c-dependent PDGFR-α/β downregulation inhibits tumorigenesis and enhances TRAIL-induced apoptosis in lung cancer. PLoS ONE. 2013;8(6):e67581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Croce CM. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci. 2007;104(40):15805–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Fearon ER. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 2007;17(15):1298–307.

    Article  CAS  PubMed  Google Scholar 

  67. Koerner A, Kratzsch J, Kiess W. Adipocytokines: leptin—the classical, resistin—the controversical, adiponectin—the promising, and more to come. Best Pract Res Clin Endocrinol Metab. 2005;19(4):525–46.

    Article  CAS  PubMed  Google Scholar 

  68. Dalamaga M, Diakopoulos KN, Mantzoros CS. The role of adiponectin in cancer: a review of current evidence. Endocr Rev. 2012;33(4):547–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Goktas S, Yilmaz MI, Caglar K, Sonmez A, Kilic S, Bedir S. Prostate cancer and adiponectin. Urology. 2005;65(6):1168–72.

    Article  PubMed  Google Scholar 

  70. Arisan ED, Arisan S, Atis G, Palavan-Unsal N, Ergenekon E. Serum adipocytokine levels in prostate cancer patients. Urol Int. 2009;82(2):203–8.

    Article  CAS  PubMed  Google Scholar 

  71. Ishikawa M, Kitayama J, Kazama S, Hiramatsu T, Hatano K, Nagawa H. Plasma adiponectin and gastric cancer. Clin Cancer Res. 2005;11(2):466–72.

    Article  CAS  PubMed  Google Scholar 

  72. Ntikoudi E, Kiagia M, Boura P, Syrigos KN. Hormones of adipose tissue and their biologic role in lung cancer. Cancer Treatm Rev. 2014;40(1):22–30.

    Article  CAS  Google Scholar 

  73. Tsai JR, Liu PL, Chen YH, Chou SH, Cheng YJ, Hwang JJ, Chong IW. Curcumin inhibits non-small cell lung cancer cells metastasis through the adiponectin/NF-κb/MMPs signaling pathway. PLoS ONE. 2015;10(12): e0144462.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature. 2004;432(7015):316–23.

    Article  CAS  PubMed  Google Scholar 

  75. Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411(6835):342–8.

    Article  CAS  PubMed  Google Scholar 

  76. S. Kumar, I. Ali, F. Abbas, A. Rana, S. Pandey, M. Garg, D. Kumar In-silico design, pharmacophore-based screening, and molecular docking studies reveal that benzimidazole-1,2,3-triazole hybrids as novel EGFR inhibitors targeting lung cancer, J. Biomol. Struct. Dyn. 2023. https://doi.org/10.1080/07391102.2023.2252496

    Article  CAS  Google Scholar 

  77. Panwar V, Mukherji K, Ghate M, Jindal DK, Kumar D. EGFR-Targeted quinazoline clubbed heterocycles as anticancer agents. Biomedical translational research drug design and discovery. Singapore: Springer; 2022. p. 387–99.

    Google Scholar 

  78. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–37.

    Article  CAS  PubMed  Google Scholar 

  79. Ye MX, Li Y, Yin H, Zhang J. Curcumin: updated molecular mechanisms and intervention targets in human lung cancer. Int J Mol Sci. 2012;13(3):3959–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Engelman JA, Jänne PA. Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non–small cell lung cancer. Clin Cancer Res. 2008;14(10):2895–9.

    Article  PubMed  Google Scholar 

  81. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Jänne PA. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316(5827):1039–43.

    Article  CAS  PubMed  Google Scholar 

  82. Yarden Y. The EGF receptor family Spearheading a merger of signaling and therapeutics Cytometry B Clinical Cytometry. Wiley, Hoboken. 2008;74:388.

    Google Scholar 

  83. Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene. 2000;19(56):6550–65.

    Article  CAS  PubMed  Google Scholar 

  84. Klinger B, Sieber A, Fritsche-Guenther R, Witzel F, Berry L, Schumacher D, Blüthgen N. Network quantification of EGFR signaling unveils potential for targeted combination therapy. Mol Syst Biol. 2013;9(1):673.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Shafiee M, Mohamadzade E, ShahidSales S, Khakpouri S, Maftouh M, Alireza Parizadeh S, Avan A. Current status and perspectives regarding the therapeutic potential of targeting EGFR pathway by curcumin in lung cancer. Curr Pharm Des. 2017;23(13):2002–8.

    Article  CAS  PubMed  Google Scholar 

  86. Kumar S, Sengupta S, Ali I, Gupta MK, Lalhlenmawia H, Azizov S, Kumar D. Identification and exploration of quinazoline-1,2,3-triazole inhibitors targeting EGFR in lung cancer. J. Biomol. Struct. Dyn. 2023. https://doi.org/10.1080/07391102.2023.2204360

  87. Veale D, Kerr N, Gibson GJ, Kelly PJ, Harris AL. The relationship of quantitative epidermal growth factor receptor expression in non-small cell lung cancer to long term survival. Br J Cancer. 1993;68(1):162–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wrana JL. Signaling by the TGFβ superfamily. Cold Spring Harbor Perspect Biol. 2013;5(10): a011197.

    Article  Google Scholar 

  89. Faler BJ, Macsata RA, Plummer D, Mishra L, Sidawy AN. Transforming growth factor-β and wound healing. Perspect Vasc Surg Endovasc Ther. 2006;18(1):55–62.

    Article  PubMed  Google Scholar 

  90. Taylor MA, Lee YH, Schiemann WP. Role of TGF-β and the tumor microenvironment during mammary tumorigenesis. Gene Exp J Liver Res. 2011;15(3):117–32.

    Google Scholar 

  91. Zheng Q, Ye J, Cao J. Translational regulator eIF2α in tumor. Tumor Biol. 2014;35:6255–64.

    Article  CAS  Google Scholar 

  92. Salehi Z, Mashayekhi F. Expression of the eukaryotic translation initiation factor 4E (eIF4E) and 4E-BP1 in esophageal cancer. Clin Biochem. 2006;39(4):404–9.

    Article  CAS  PubMed  Google Scholar 

  93. Rosenwald IB, Koifman L, Savas L, Chen JJ, Woda BA, Kadin ME. Expression of the translation initiation factors eIF-4E and eIF-2α is frequently increased in neoplastic cells of Hodgkin lymphoma. Human Pathol. 2008;39(6):910–6.

    Article  CAS  Google Scholar 

  94. Rosenwald IB, Wang S, Savas L, Woda B, Pullman J. Expression of translation initiation factor eIF-2α is increased in benign and malignant melanocytic and colonic epithelial neoplasms. Cancer. 2003;98(5):1080–8.

    Article  CAS  PubMed  Google Scholar 

  95. Rosenwald IB, Hutzler MJ, Wang S, Savas L, Fraire AE. Expression of eukaryotic translation initiation factors 4E and 2α is increased frequently in bronchioloalveolar but not in squamous cell carcinomas of the lung. Cancer. 2001;92(8):2164–71.

    Article  CAS  PubMed  Google Scholar 

  96. Lobo MV, Martín ME, Pérez MI, Alonso FJM, Redondo C, Álvarez MI, Salinas M. Levels, phosphorylation status and cellular localization of translational factor eIF2 in gastrointestinal carcinomas. Histochem J. 2000;32:139–50.

    Article  CAS  PubMed  Google Scholar 

  97. Monsalve M, Olmos Y. The complex biology of FOXO. Curr Drug Targets. 2011;12(9):1322–50.

    Article  CAS  PubMed  Google Scholar 

  98. Wang Y, Zhou Y, Graves DT. FOXO transcription factors: their clinical significance and regulation. BioMed Res Int. 2014;2014:925350.

    PubMed  PubMed Central  Google Scholar 

  99. Gomes AR, Zhao F, Lam EW. Role and regulation of the forkhead transcription factors FOXO3a and FOXM1 in carcinogenesis and drug resistance. Chin J Cancer. 2013;32(7):365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, DePinho RA. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell. 2007;128(2):309–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu H, Yin J, Wang C, Gu Y, Deng M, He Z. FOXO3a mediates the cytotoxic effects of cisplatin in lung cancer cells. Anticancer Drugs. 2014;25(8):898–907.

    Article  CAS  PubMed  Google Scholar 

  102. Levy DE, Lee CK. What does Stat3 do? J Clin Investig. 2002;109(9):1143–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhong Z, Wen Z, Darnell JE Jr. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science. 1994;264(5155):95–8.

    Article  CAS  PubMed  Google Scholar 

  104. Zimmer S, Kahl P, Buhl TM, Steiner S, Wardelmann E, Merkelbach-Bruse S, Heukamp LC. Epidermal growth factor receptor mutations in non-small cell lung cancer influence downstream Akt, MAPK and Stat3 signaling. J Cancer Res Clin Oncol. 2009;135:723–30.

    Article  CAS  PubMed  Google Scholar 

  105. Levy DE, Darnell JE Jr. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3(9):651–62.

    Article  CAS  PubMed  Google Scholar 

  106. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9(11):798–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C Jr, Darnell JE. Stat3 as an oncogene. Cell. 1999;98(3):295–303.

    Article  CAS  PubMed  Google Scholar 

  108. Zhao M, Jiang B, Gao FH. Small molecule inhibitors of STAT3 for cancer therapy. Curr Med Chem. 2011;18(26):4012–8.

    Article  CAS  PubMed  Google Scholar 

  109. Gao SP, Mark KG, Leslie K, Pao W, Motoi N, Gerald WL, Bromberg JF. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Investig. 2007;117(12):3846–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Haura EB, Zheng Z, Song L, Cantor A, Bepler G. Activated epidermal growth factor receptor–Stat-3 signaling promotes tumor survival in vivo in non–small cell lung cancer. Clin Cancer Res. 2005;11(23):8288–94.

    Article  CAS  PubMed  Google Scholar 

  111. Johnson FM, Saigal B, Talpaz M, Donato NJ. Dasatinib (BMS-354825) tyrosine kinase inhibitor suppresses invasion and induces cell cycle arrest and apoptosis of head and neck squamous cell carcinoma and non–small cell lung cancer cells. Clin Cancer Res. 2005;11(19):6924–32.

    Article  CAS  PubMed  Google Scholar 

  112. Pfeiffer M, Hartmann TN, Leick M, Catusse J, Schmitt-Graeff A, Burger M. Alternative implication of CXCR4 in JAK2/STAT3 activation in small cell lung cancer. Br J Cancer. 2009;100(12):1949–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dutta P, Sabri N, Li J, Li WX. Role of STAT3 in lung cancer. Jak-Stat. 2014;3(4): e999503.

    Article  PubMed  Google Scholar 

  114. Harada D, Takigawa N, Kiura K. The role of STAT3 in non-small cell lung cancer. Cancers. 2014;6(2):708–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhao M, Gao FH, Wang JY, Liu F, Yuan HH, Zhang WY, Jiang B. JAK2/STAT3 signaling pathway activation mediates tumor angiogenesis by upregulation of VEGF and bFGF in non-small-cell lung cancer. Lung Cancer. 2011;73(3):366–74.

    Article  PubMed  Google Scholar 

  116. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116(2):205–19.

    Article  CAS  PubMed  Google Scholar 

  117. Kumar D, Kumar R, Ramajayam R, Lee KW, Shin DS. Synthesis, antioxidant and molecular docking studies of (-)-catechin derivatives. J Kor Chem Soc. 2021;65(2):106–12.

    CAS  Google Scholar 

  118. Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Seminars in cell & developmental biology. London: Academic Press; 2018.

    Google Scholar 

  119. Panieri E, Santoro MM. ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis. 2016;7(6):e2253–e2253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chen Q, Wang Y, Xu K, Lu G, Ying Z, Wu L, Zhou J. Curcumin induces apoptosis in human lung adenocarcinoma A549 cells through a reactive oxygen species-dependent mitochondrial signaling pathway. Oncol Rep. 2010;23(2):397–403.

    CAS  PubMed  Google Scholar 

  121. Yang CL, Ma YG, Xue YX, Liu YY, Xie H, Qiu GR. Curcumin induces small cell lung cancer NCI-H446 cell apoptosis via the reactive oxygen species-mediated mitochondrial pathway and not the cell death receptor pathway. DNA Cell Biol. 2012;31(2):139–50.

    Article  CAS  PubMed  Google Scholar 

  122. Herschman HR. Prostaglandin synthase 2. Biochim Biophys Acta. 1996;1299(1):125–40.

    Article  PubMed  Google Scholar 

  123. Wolff H, Saukkonen K, Anttila S, Karjalainen A, Vainio H, Ristimäki A. Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res. 1998;58(22):4997–5001.

    CAS  PubMed  Google Scholar 

  124. Hosomi Y, Yokose T, Hirose Y, Nakajima R, Nagai K, Nishiwaki Y, Ochiai A. Increased cyclooxygenase 2 (COX-2) expression occurs frequently in precursor lesions of human adenocarcinoma of the lung. Lung Cancer. 2000;30(2):73–81.

    Article  CAS  PubMed  Google Scholar 

  125. Ismail NI, Othman I, Abas F, Lajis H, N., & Naidu, R. Mechanism of apoptosis induced by curcumin in colorectal cancer. Int J Mol Sci. 2019;20(10):2454.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Krysan K, Merchant FH, Zhu L, Dohadwala M, Luo J, Lin Y, Dubinett S. COX-2-dependent stabilization of survivin in non-small cell lung cancer. FASEB J. 2004;18(1):206–8.

    Article  CAS  PubMed  Google Scholar 

  127. RA, S. COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer. 2000;89:2637–45.

    Article  Google Scholar 

  128. Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, Kaidi A. The COX-2/PGE 2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009;30(3):377–86.

    Article  CAS  PubMed  Google Scholar 

  129. Sandler, A. B., & Dubinett, S. M. (2004). COX-2 inhibition and lung cancer. In Seminars in oncology (Vol. 31, pp. 45–52). WB Saunders.

  130. Sobolewski C, Cerella C, Dicato M, Ghibelli L, Diederich M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol. 2010;2010:215158.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Masferrer JL, Leahy KM, Koki AT, Zweifel BS, Settle SL, Woerner BM, Seibert K. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 2000;60(5):1306–11.

    CAS  PubMed  Google Scholar 

  132. Hida T, Yatabe Y, Achiwa H, Muramatsu H, Kozaki KI, Nakamura S, Takahashi T. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res. 1998;58(17):3761–4.

    CAS  PubMed  Google Scholar 

  133. Krysan K, Reckamp KL, Sharma S, Dubinett SM. The potential and rationale for COX-2 inhibitors in lung cancer. Anti-Cancer Agents Med Chem. 2006;6(3):209–20.

    Article  CAS  Google Scholar 

  134. Polivka J Jr, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142(2):164–75.

    Article  CAS  PubMed  Google Scholar 

  135. Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol. 2014;4:64.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Vara JÁF, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treatm Rev. 2004;30(2):193–204.

    Article  CAS  Google Scholar 

  137. Fumarola C, Bonelli MA, Petronini PG, Alfieri RR. Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer. Biochem Pharmacol. 2014;90(3):197–207.

    Article  CAS  PubMed  Google Scholar 

  138. Scrima M, De Marco C, Fabiani F, Franco R, Pirozzi G, Rocco G, Viglietto G. Signaling networks associated with AKT activation in non-small cell lung cancer (NSCLC): new insights on the role of phosphatydil-inositol-3 kinase. PLoS ONE. 2012;7(2):e30427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Papadimitrakopoulou V. Development of PI3K/AKT/mTOR pathway inhibitors and their application in personalized therapy for non–small-cell lung cancer. J Thorac Oncol. 2012;7(8):1315–26.

    Article  CAS  PubMed  Google Scholar 

  140. Nagata S, Golstein P. The Fas death factor. Science. 1995;267(5203):1449–56.

    Article  CAS  PubMed  Google Scholar 

  141. Müschen M, Warskulat U, Beckmann MW. Defining CD95 as a tumor suppressor gene. J Mol Med. 2000;78:312–25.

    Article  PubMed  Google Scholar 

  142. Ju ST, Panka DJ, Cui H, Ettinger R, Ei-Khatib M, Sherr DH, Marshak-Rothstein A. Fas (CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature. 1995;373(6513):444–8.

    Article  CAS  PubMed  Google Scholar 

  143. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science. 1995;270(5239):1189–92.

    Article  CAS  PubMed  Google Scholar 

  144. Lynch DH, Ramsdell F, Alderson MR. Fas and FasL in the homeostatic regulation of immune responses. Immunol Today. 1995;16(12):569–74.

    Article  CAS  PubMed  Google Scholar 

  145. Villa-Morales M, Fernández-Piqueras J. Targeting the Fas/FasL signaling pathway in cancer therapy. Exp Opin Ther Targets. 2012;16(1):85–101.

    Article  CAS  Google Scholar 

  146. Viard-Leveugle I, Veyrenc S, French LE, Brambilla C, Brambilla E. Frequent loss of Fas expression and function in human lung tumours with overexpression of FasL in small cell lung carcinoma. The J Pathol. 2003;201(2):268–77.

    Article  CAS  PubMed  Google Scholar 

  147. Zhang X, Miao X, Sun T, Tan W, Qu S, Xiong P, Lin D. Functional polymorphisms in cell death pathway genes FAS and FASL contribute to risk of lung cancer. J Med Genet. 2005;42(6):479–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. O’connell J, O’Sullivan GC, Collins JK, Shanahan F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med. 1996;184(3):1075–82.

    Article  CAS  PubMed  Google Scholar 

  149. Niehans GA, Brunner T, Frizelle SP, Liston JC, Salerno CT, Knapp DJ, Kratzke RA. Human lung carcinomas express Fas ligand. Cancer Res. 1997;57(6):1007–12.

    CAS  PubMed  Google Scholar 

  150. Bennett MW, O’Connell J, O’Sullivan GC, Brady C, Roche D, Collins JK, Shanahan F. The Fas counterattack in vivo: apoptotic depletion of tumor-infiltrating lymphocytes associated with Fas ligand expression by human esophageal carcinoma. J Immunol. 1998;160(11):5669–75.

    Article  CAS  PubMed  Google Scholar 

  151. Koyama S, Koike N, Adachi S. Fas receptor counterattack against tumor-infiltrating lymphocytes in vivo as a mechanism of immune escape in gastric carcinoma. J Cancer Res Clin Oncol. 2001;127:20–6.

    Article  CAS  PubMed  Google Scholar 

  152. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Wang X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 1997;275(5303):1129–32.

    Article  CAS  PubMed  Google Scholar 

  153. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998;281(5381):1322–6.

    Article  CAS  PubMed  Google Scholar 

  154. Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene. 2008;27(50):6398–406.

    Article  CAS  PubMed  Google Scholar 

  155. Ziegler A, Luedke GH, Stahel RA, Zangemeister-Wittke U, Fabbro D, Altmann KH. Induction of apoptosis in small-cell lung cancer cells by an antisense oligodeoxynucleotide targeting the Bcl-2 coding sequence. J Natl Cancer Inst. 1997;89(14):1027–36.

    Article  CAS  PubMed  Google Scholar 

  156. Kaiser U, Schilli M, Haag U, Neumann K, Kreipe H, Kogan E, Havemann K. Expression of bcl-2—protein in small cell lung cancer. Lung Cancer. 1996;15(1):31–40.

    Article  CAS  PubMed  Google Scholar 

  157. Zhang J, Wang S, Wang L, Wang R, Chen S, Pan B, Chen H. Prognostic value of Bcl-2 expression in patients with non-small-cell lung cancer: a meta-analysis and systemic review. Onco Targets Ther. 2015;2015:3361–9.

    Article  Google Scholar 

  158. Ohsaki Y, Toyoshima E, Fujiuchi S, Matsui H, Hirata S, Miyokawa N, Kikuchi K. bcl-2 and p53 protein expression in non-small cell lung cancers: correlation with survival time. Clin Cancer Res. 1996;2(5):915–20.

    CAS  PubMed  Google Scholar 

  159. Borner MM, Brousset P, Pfanner-Meyer B, Bacchi M, Vonlanthen S, Hotz MA, Betticher DC. Expression of apoptosis regulatory proteins of the Bcl-2 family and p53 in primary resected non-small-cell lung cancer. Br J Cancer. 1999;79(5):952–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tajuddin WM, W. N. B., Lajis, N. H., Abas, F., Othman, I., & Naidu, R. Mechanistic understanding of curcumin’s therapeutic effects in lung cancer. Nutrients. 2019;11(12):2989.

    Article  CAS  Google Scholar 

  161. Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front Pharmacol. 2020;10:1614.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Singh J, Luqman S, Meena A. Emerging role of phytochemicals in targeting predictive, prognostic, and diagnostic biomarkers of lung cancer. Food Chem Toxicol. 2020;144: 111592.

    Article  CAS  PubMed  Google Scholar 

  163. Khatoon E, Banik K, Harsha C, Sailo BL, Thakur KK, Khwairakpam AD, Kunnumakkara AB. Phytochemicals in cancer cell chemosensitization:current knowledge and future perspectives. Seminars in Cancer Biology. London: Academic Press; 2022.

    Google Scholar 

  164. Ma L, Li W, Wang R, Nan Y, Wang Q, Liu W, Jin F. Resveratrol enhanced anticancer effects of cisplatin on non-small cell lung cancer cell lines by inducing mitochondrial dysfunction and cell apoptosis. Int J Oncol. 2015;47(4):1460–8.

    Article  CAS  PubMed  Google Scholar 

  165. Wang R, Ma L, Weng D, Yao J, Liu X, Jin F. Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway. Oncol Rep. 2016;35(5):3075–83.

    Article  CAS  PubMed  Google Scholar 

  166. Kang JH, Kang HS, Kim IK, Lee HY, Ha JH, Yeo CD, Lee SH. Curcumin sensitizes human lung cancer cells to apoptosis and metastasis synergistically combined with carboplatin. Exp Biol Med. 2015;240(11):1416–25.

    Article  CAS  Google Scholar 

  167. Yu YL, Su KJ, Chen CJ, Wei CW, Lin CJ, Yiang GT, Chen YLS. Synergistic anti-tumor activity of isochaihulactone and paclitaxel on human lung cancer cells. J Cell Physiol. 2012;227(1):213–22.

    Article  CAS  PubMed  Google Scholar 

  168. Kim EH, Min HY, Chung HJ, Song J, Park HJ, Kim S, Lee SK. Anti-proliferative activity and suppression of P-glycoprotein by (−)-antofine, a natural phenanthroindolizidine alkaloid, in paclitaxel-resistant human lung cancer cells. Food Chem Toxicol. 2012;50(3–4):1060–5.

    Article  CAS  PubMed  Google Scholar 

  169. Regassa H, Sourirajan A, Kumar V, Pandey S, Kumar D, Dev K. A review of medicinal plants of the himalayas with anti-proliferative activity for the treatment of various cancers. Cancers. 2022;14(16):3898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gulia K, James A, Pandey S, Dev K, Kumar D, Sourirajan A. Bio-inspired smart nanoparticles in enhanced cancer theranostics and targeted drug delivery. J Funct Biomater. 2022;13(4):207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yang D, Denny SK, Greenside PG, Chaikovsky AC, Brady JJ, Ouadah Y, Winslow MM. Intertumoral heterogeneity in SCLC is influenced by the cell type of origin. Cancer Discov. 2018;8(10):1316–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629–61.

    Article  CAS  PubMed  Google Scholar 

  173. He M, Xia L, Li J. Potential mechanisms of plant-derived natural products in the treatment of cervical cancer. Biomolecules. 2021;11(10):1539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Mann J. Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer. 2002;2(2):143–8.

    Article  CAS  PubMed  Google Scholar 

  175. Aung TN, Qu Z, Kortschak RD, Adelson DL. Understanding the effectiveness of natural compound mixtures in cancer through their molecular mode of action. Int J Mol Sci. 2017;18(3):656.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Kala CP, Mathur VB. Patterns of plant species distribution in the Trans-Himalayan region of Ladakh India. J Veg Sci. 2002;13(6):751–4.

    Article  Google Scholar 

  177. Dangol DR. Economic uses of forest plant resources in western Chitwan Nepal. Banko Janakari. 2002;12(2):56.

    PubMed  PubMed Central  Google Scholar 

  178. Sheng-Ji P. Ethnobotanical approaches of traditional medicine studies: some experiences from Asia. Pharm Biol. 2001;39(sup1):74–9.

    Article  PubMed  Google Scholar 

  179. Badola HK, Aitken S. The Himalayas of India: A treasury of medicinal plants under siege. Biodiversity. 2003;4(3):3–13.

    Article  Google Scholar 

  180. Tariq A, Mussarat S, Adnan M. Review on ethnomedicinal, phytochemical and pharmacological evidence of Himalayan anticancer plants. J Ethnopharmacol. 2015;164:96–119.

    Article  CAS  PubMed  Google Scholar 

  181. Lee YM, Lee G, Oh TI, Kim BM, Shim DW, Lee KH, Lim JH. Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress. Int J Oncol. 2016;48(1):399–408.

    Article  CAS  PubMed  Google Scholar 

  182. Siddiqui FA, Prakasam G, Chattopadhyay S, Rehman AU, Padder RA, Ansari MA, Iqbal MA. Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition. Sci Rep. 2018;8(1):8323.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Jiao D, Wang J, Lu W, Tang X, Chen J, Mou H, Chen QY. Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer. Mol Ther Oncolyt. 2016;3:16018.

    Article  CAS  Google Scholar 

  184. Li W, Gao F, Ma X, Wang R, Dong X, Wang W. Deguelin inhibits non-small cell lung cancer via down-regulating Hexokinases II-mediated glycolysis. Oncotarget. 2017;8(20):32586.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Li X, Tang S, Wang QQ, Leung ELH, Jin H, Huang Y, Ding J. Identification of epigallocatechin-3-gallate as an inhibitor of phosphoglycerate mutase 1. Front Pharmacol. 2017;8:325.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Liu X, Jiang Q, Liu H, Luo S. Vitexin induces apoptosis through mitochondrial pathway and PI3K/Akt/mTOR signaling in human non-small cell lung cancer A549 cells. Biol Res. 2019;52:1–7.

    Article  Google Scholar 

  187. Zhang B, Chu W, Wei P, Liu Y, Wei T. Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I. Free Rad Biol Med. 2015;89:486–97.

    Article  CAS  PubMed  Google Scholar 

  188. Jeong SJ, Koh W, Kim B, Kim SH. Are there new therapeutic options for treating lung cancer based on herbal medicines and their metabolites? J Ethnopharmacol. 2011;138(3):652–61.

    Article  CAS  PubMed  Google Scholar 

  189. Liou SF, Hua KT, Hsu CY, Weng MS. Honokiol from Magnolia spp. induces G1 arrest via disruption of EGFR stability through repressing HDAC6 deacetylated Hsp90 function in lung cancer cells. J Funct Foods. 2015;15:84–96.

    Article  CAS  Google Scholar 

  190. Xuan LL, Shi J, Yao CS, Bai JY, Qu F, Zhang JL, Hou Q. Vam3, a resveratrol dimer, inhibits cigarette smoke-induced cell apoptosis in lungs by improving mitochondrial function. Acta Pharmacol Sin. 2014;35(6):779–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Monteillier A, Voisin A, Furrer P, Allémann E, Cuendet M. Intranasal administration of resveratrol successfully prevents lung cancer in A/J mice. Sci Rep. 2018;8(1):14257.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Zhang Y, Zhuang Z, Meng Q, Jiao Y, Xu J, Fan S. Polydatin inhibits growth of lung cancer cells by inducing apoptosis and causing cell cycle arrest. Oncol Lett. 2014;7(1):295–301.

    Article  CAS  PubMed  Google Scholar 

  193. Zou J, Yang Y, Yang Y, Liu X. Polydatin suppresses proliferation and metastasis of non-small cell lung cancer cells by inhibiting NLRP3 inflammasome activation via NF-κB pathway. Biomed Pharmacother. 2018;108:130–6.

    Article  CAS  PubMed  Google Scholar 

  194. Granchi C, Fortunato S, Meini S, Rizzolio F, Caligiuri I, Tuccinardi T, Minutolo F. Characterization of the saffron derivative crocetin as an inhibitor of human lactate dehydrogenase 5 in the antiglycolytic approach against cancer. J Agric Food Chem. 2017;65(28):5639–49.

    Article  CAS  PubMed  Google Scholar 

  195. Eskandani M, Abdolalizadeh J, Hamishehkar H, Nazemiyeh H, Barar J. Galbanic acid inhibits HIF-1α expression via EGFR/HIF-1α pathway in cancer cells. Fitoterapia. 2015;101:1–11.

    Article  CAS  PubMed  Google Scholar 

  196. Lu YY, Chen TS, Qu JL, Pan WL, Sun L, Wei XB. Dihydroartemisinin (DHA) induces caspase-3-dependent apoptosis in human lung adenocarcinoma ASTC-a-1 cells. J Biomed Sci. 2009;16(1):1–15.

    Article  Google Scholar 

  197. Mu D, Chen W, Yu B, Zhang C, Zhang Y, Qi H. Calcium and survivin are involved in the induction of apoptosis by dihydroartemisinin in human lung cancer SPC-A-1 cells. Methods Find Exp Clin Pharmacol. 2007;29(1):33–8.

    Article  CAS  PubMed  Google Scholar 

  198. Mu D, Zhang W, Chu D, Liu T, Xie Y, Fu E, Jin F. The role of calcium, P38 MAPK in dihydroartemisinin-induced apoptosis of lung cancer PC-14 cells. Cancer Chemother Pharmacol. 2008;61:639–45.

    Article  CAS  PubMed  Google Scholar 

  199. Bisht D, Kumar D, Kumar D, Dua K, Chellappan DK. Phytochemistry and pharmacological activity of the genus artemisia. Arch Pharmacal Res. 2021;44(5):439–74.

    Article  CAS  Google Scholar 

  200. Bergamin LS, Figueiro F, Dietrich F, de Mattos Manica F, Filippi-Chiela EC, Mendes FB, Battastini AMO. Interference of ursolic acid treatment with glioma growth: An in vitro and in vivo study. Eur J Pharmacol. 2017;811:268–75.

    Article  CAS  PubMed  Google Scholar 

  201. Chen CJ, Shih YL, Yeh MY, Liao NC, Chung HY, Liu KL, Chung JG. Ursolic acid induces apoptotic cell death through AIF and endo G release through a mitochondria-dependent pathway in NCI-H292 human lung cancer cells in vitro. In Vivo. 2019;33(2):383–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ahuja A, Kim JH, Kim JH, Yi YS, Cho JY. Functional role of ginseng-derived compounds in cancer. J Ginseng Res. 2018;42(3):248–54.

    Article  PubMed  Google Scholar 

  203. Chen Q, Peng W, Xu A. Apoptosis of a human non-small cell lung cancer (NSCLC) cell line, PLA-801, induced by acutiaporberine, a novel bisalkaloid derived from Thalictrum acutifolium (Hand.-Mazz.) Boivin. Biochem Pharmacol. 2002;63(8):1389–96.

    Article  CAS  PubMed  Google Scholar 

  204. Al Chami L, Méndez R, Chataing B, O’Callaghan J, Usubillaga A, LaCruz L. Toxicological effects of α-solamargine in experimental animals. Phytother Res. 2003;17(3):254–8.

    Article  CAS  PubMed  Google Scholar 

  205. Chen Y, Tang Q, Xiao Q, Yang L, Hann SS. Targeting EP 4 downstream c-Jun through ERK 1/2-mediated reduction of DNMT 1 reveals novel mechanism of solamargine-inhibited growth of lung cancer cells. J Cell Mol Med. 2017;21(2):222–33.

    Article  PubMed  Google Scholar 

  206. Abe A, Yamada H, Moriya S, Miyazawa K. The β-carboline alkaloid harmol induces cell death via autophagy but not apoptosis in human non-small cell lung cancer A549 cells. Biol Pharm Bull. 2011;34(8):1264–72.

    Article  CAS  PubMed  Google Scholar 

  207. Khan H, Patel S, Kamal A, M. Pharmacological and toxicological profile of harmane-β-carboline alkaloid: friend or foe. Curr Drug Metab. 2017;18(9):853–7.

    Article  CAS  PubMed  Google Scholar 

  208. Cao W, Liu Y, Zhang R, Zhang B, Wang T, Zhu X, Huang L. Homoharringtonine induces apoptosis and inhibits STAT3 via IL-6/JAK1/STAT3 signal pathway in Gefitinib-resistant lung cancer cells. Sci Rep. 2015;5(1):8477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Weng TY, Wu HF, Li CY, Hung YH, Chang YW, Chen YL, Lai MD. Homoharringtonine induced immune alteration for an efficient anti-tumor response in mouse models of non-small cell lung adenocarcinoma expressing Kras mutation. Sci Rep. 2018;8(1):8216.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Zhang Y, Yu H, Luo X, Zheng Y, Li W, Liu X, Yuan Y. Experimental studies on the toxicity of harringtonine and homoharringtonine. Chin Med J. 1979;92(03):175–80.

    Google Scholar 

  211. Lin Y, Xu J, Liao H, Li L, Pan L. Piperine induces apoptosis of lung cancer A549 cells via p53-dependent mitochondrial signaling pathway. Tumor Biol. 2014;35:3305–10.

    Article  CAS  Google Scholar 

  212. Sriwiriyajan S, Tedasen A, Lailerd N, Boonyaphiphat P, Nitiruangjarat A, Deng Y, Graidist P. Anticancer and cancer prevention effects of piperine-free Piper nigrum extract on N-nitrosomethylurea-induced mammary tumorigenesis in rats. Cancer Prev Res. 2016;9(1):74–82.

    Article  Google Scholar 

  213. Piyachaturawat P, Glinsukon T, Toskulkao C. Acute and subacute toxicity of piperine in mice, rats and hamsters. Toxicol Lett. 1983;16(3–4):351–9.

    Article  CAS  PubMed  Google Scholar 

  214. Zheng F, Tang Q, Wu J, Zhao S, Liang Z, Li L, Hann S. p38α MAPK-mediated induction and interaction of FOXO3a and p53 contribute to the inhibited-growth and induced-apoptosis of human lung adenocarcinoma cells by berberine. J Exp Clin Cancer Res. 2014;33:1–12.

    Article  Google Scholar 

  215. Peng J, Zheng TT, Li X, Liang Y, Wang LJ, Huang YC, Xiao HT. Plant-derived alkaloids: the promising disease-modifying agents for inflammatory bowel disease. Front Pharmacol. 2019;10:351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Hua P, Sun M, Zhang G, Zhang Y, Tian X, Li X, Zhang X. Cepharanthine induces apoptosis through reactive oxygen species and mitochondrial dysfunction in human non-small-cell lung cancer cells. Biochem Biophys Res Commun. 2015;460(2):136–42.

    Article  CAS  PubMed  Google Scholar 

  217. Uto T, Toyama M, Yoshinaga K, Baba M. Cepharanthine induces apoptosis through the mitochondria/caspase pathway in murine dendritic cells. Immunopharmacol Immunotoxicol. 2016;38(3):238–43.

    Article  CAS  PubMed  Google Scholar 

  218. Tsai MH, Liu JF, Chiang YC, Hu SCS, Hsu LF, Lin YC, Lee CW. Artocarpin, an isoprenyl flavonoid, induces p53-dependent or independent apoptosis via ROS-mediated MAPKs and Akt activation in non-small cell lung cancer cells. Oncotarget. 2017;8(17):28342.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Li H, Tan L, Zhang JW, Chen H, Liang B, Qiu T, Zhang QH. Quercetin is the active component of Yang-Yin-Qing-Fei-Tang to induce apoptosis in non-small cell lung cancer. Am J Chin Med. 2019;47(04):879–93.

    Article  CAS  PubMed  Google Scholar 

  220. Mukherjee A, Khuda-Bukhsh AR. Quercetin down-regulates IL-6/STAT-3 signals to induce mitochondrial-mediated apoptosis in a nonsmall-cell lung-cancer cell line, A549. J Pharmacopunct. 2015;18(1):19.

    Article  Google Scholar 

  221. Sullivan M, Follis RH Jr, Hilgartner M. Toxicology of podophyllin. Proc Soc Exp Biol Med. 1951;77(2):269–72.

    Article  CAS  PubMed  Google Scholar 

  222. Wang J, Huang S. Fisetin inhibits the growth and migration in the A549 human lung cancer cell line via the ERK1/2 pathway. Exp Ther Med. 2018;15(3):2667–73.

    CAS  PubMed  Google Scholar 

  223. Lall RK, Adhami VM, Mukhtar H. Dietary flavonoid fisetin for cancer prevention and treatment. Mol Nutr Food Res. 2016;60(6):1396–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. da Costa MP, Bozinis MCV, Andrade WM, Costa CR, da Silva AL, Alves de Oliveira CM, Silva MDRR. Antifungal and cytotoxicity activities of the fresh xylem sap of Hymenaea courbaril L. and its major constituent fisetin. BMC Complem Altern Med. 2014;14:1–7.

    Article  CAS  Google Scholar 

  225. Chien ST, Lin SS, Wang CK, Lee YB, Chen KS, Fong Y, Shih YW. Acacetin inhibits the invasion and migration of human non-small cell lung cancer A549 cells by suppressing the p38α MAPK signaling pathway. Mol Cell Biochem. 2011;350:135–48.

    Article  CAS  PubMed  Google Scholar 

  226. Ávila-Villarreal G, González-Trujano ME, Carballo-Villalobos AI, Aguilar-Guadarrama B, García-Jiménez S, Giles-Rivas DE, Estrada-Soto S. Anxiolytic-like effects and toxicological studies of Brickellia cavanillesii (Cass.) A. Gray in experimental mice models. J Ethnopharmacol. 2016;192:90–8.

    Article  PubMed  Google Scholar 

  227. Caboni P, Sherer TB, Zhang N, Taylor G, Na HM, Greenamyre JT, Casida JE. Rotenone, deguelin, their metabolites, and the rat model of Parkinson’s disease. Chem Res Toxicol. 2004;17(11):1540–8.

    Article  CAS  PubMed  Google Scholar 

  228. Li W, Yu X, Ma X, Xie L, Xia Z, Liu L, Liu H. Deguelin attenuates non-small cell lung cancer cell metastasis through inhibiting the CtsZ/FAK signaling pathway. Cell Signal. 2018;50:131–41.

    Article  CAS  PubMed  Google Scholar 

  229. Chahar MK, Sharma N, Dobhal MP, Joshi YC. Flavonoids: a versatile source of anticancer drugs. Pharmacogn Rev. 2011;5(9):1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Braicu C, Pilecki V, Balacescu O, Irimie A, Neagoe IB. The relationships between biological activities and structure of flavan-3-ols. Int J Mol Sci. 2011;12(12):9342–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Budisan L, Gulei D, Zanoaga OM, Irimie AI, Chira S, Braicu C, Berindan-Neagoe I. Dietary intervention by phytochemicals and their role in modulating coding and non-coding genes in cancer. Int J Mol Sci. 2017;18(6):1178.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Budisan L, Gulei D, Jurj A, Braicu C, Zanoaga O, Cojocneanu R, Berindan-Neagoe I. Inhibitory effect of CAPE and kaempferol in colon cancer cell lines—possible implications in new therapeutic strategies. Int J Mol Sci. 2019;20(5):1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Irimie AI, Braicu C, Pileczki V, Petrushev B, Soritau O, Campian RS, Berindan-Neagoe I. Knocking down of p53 triggers apoptosis and autophagy, concomitantly with inhibition of migration on SSC-4 oral squamous carcinoma cells. Mol Cell Biochem. 2016;419:75–82.

    Article  CAS  PubMed  Google Scholar 

  234. Irimie AI, Braicu C, Zanoaga O, Pileczki V, Gherman C, Berindan-Neagoe I, Campian RS. Epigallocatechin-3-gallate suppresses cell proliferation and promotes apoptosis and autophagy in oral cancer SSC-4 cells. OncoTargets and Ther. 2015;2015:461–70.

    Google Scholar 

  235. Vigneswaran J, Tan YHC, Murgu SD, Won BM, Patton KA, Villaflor VM, Salgia R. Comprehensive genetic testing identifies targetable genomic alterations in most patients with non-small cell lung cancer, specifically adenocarcinoma, single institute investigation. Oncotarget. 2016;7(14):18876.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Liu R, Ji P, Liu B, Qiao H, Wang X, Zhou L, Ba Y. Apigenin enhances the cisplatin cytotoxic effect through p53-modulated apoptosis. Oncol Lett. 2017;13(2):1024–30.

    Article  CAS  PubMed  Google Scholar 

  237. Park KI, Park HS, Kim MK, Hong GE, Nagappan A, Lee HJ, Kim GS. Flavonoids identified from Korean Citrus aurantium L. Inhibit non-small cell lung cancer growth in vivo and in vitro. J Funct Foods. 2014;7:287–97.

    Article  CAS  Google Scholar 

  238. Ravishankar D, Rajora AK, Greco F, Osborn HM. Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol. 2013;45(12):2821–31.

    Article  CAS  PubMed  Google Scholar 

  239. Li Y, Zhang J, Gao W, Zhang L, Pan Y, Zhang S, Wang Y. Insights on structural characteristics and ligand binding mechanisms of CDK2. Int J Mole Sci. 2015;16(5):9314–40.

    Article  CAS  Google Scholar 

  240. Narayan C, Kumar A. Antineoplastic and immunomodulatory effect of polyphenolic components of Achyranthes aspera (PCA) extract on urethane induced lung cancer in vivo. Mol Biol Rep. 2014;41:179–91.

    Article  CAS  PubMed  Google Scholar 

  241. Mondal P, Natesh J, Penta D, Meeran SM. Extract of Murraya koenigii selectively causes genomic instability by altering redox-status via targeting PI3K/AKT/Nrf2/caspase-3 signaling pathway in human non-small cell lung cancer. Phytomedicine. 2022;104: 154272.

    Article  CAS  PubMed  Google Scholar 

  242. Khan SG, Katiyar SK, Agarwal R, Mukhtar H. Enhancement of antioxidant and phase II enzymes by oral feeding of green tea polyphenols in drinking water to SKH-1 hairless mice: possible role in cancer chemoprevention. Cancer Res. 1992;52(14):4050–2.

    CAS  PubMed  Google Scholar 

  243. Bhavana J, Kalaivani MK, Sumathy A. Cytotoxic and pro-apoptotic activities of leaf extract of Croton bonplandianus Baill Against lung cancer cell line. Ind J Exp Biol. 2016;54(6):379–85.

    CAS  Google Scholar 

  244. Ghosh S, Dutta N, Banerjee P, Gajbhiye RL, Sareng HR, Kapse P, Pal M. Induction of monoamine oxidase A-mediated oxidative stress and impairment of NRF2-antioxidant defence response by polyphenol-rich fraction of Bergenia ligulata sensitizes prostate cancer cells in vitro and in vivo. Free Rad Biol Med. 2021;172:136–51.

    Article  CAS  PubMed  Google Scholar 

  245. Parveen, S., Gupta, V., Wazzan, M. A., Wazzan, H., Abduljabbar, A. H., Khan, W., Yudhanto, F. Biosynthesis and evaluation of metallic nanoparticles (ZnO-NPs) using polyphenol-containing Ajuga macrosperma (Ghonke ghas) leafextract, along with anticancer activity and antimicrobial activity. 2023. https://doi.org/10.21203/rs.3.rs-2562927/v1

  246. Maisetta G, Batoni G, Caboni P, Esin S, Rinaldi AC, Zucca P. Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC Complem Altern Med. 2019;19:1–11.

    Article  Google Scholar 

  247. Sivanantham A, Pattarayan D, Bethunaickan R, Kar A, Mahapatra SK, Thimmulappa RK, Rajasekaran S. Tannic acid protects against experimental acute lung injury through downregulation of TLR4 and MAPK. J Cell Physiol. 2019;234(5):6463–76.

    Article  CAS  PubMed  Google Scholar 

  248. Sivanantham A, Pattarayan D, Rajasekar N, Kannan A, Loganathan L, Bethunaickan R, Rajasekaran S. Tannic acid prevents macrophage-induced pro-fibrotic response in lung epithelial cells via suppressing TLR4-mediated macrophage polarization. Inflamm Res. 2019;68:1011–24.

    Article  CAS  PubMed  Google Scholar 

  249. Cornélio Favarin D, Martins Teixeira M, Lemos de Andrade E, de Freitas Alves C, Lazo Chica JE, Artério Sorgi C, Paula Rogerio A. Anti-inflammatory effects of ellagic acid on acute lung injury induced by acid in mice. Mediat Inflamm. 2013;2013(2013):164202.

    Google Scholar 

  250. Booth BW, Inskeep BD, Shah H, Park JP, Hay EJ, Burg KJ. Tannic acid preferentially targets estrogen receptor-positive breast cancer. Int J Breast Cancer. 2013. https://doi.org/10.1155/2013/369609.

    Article  PubMed  PubMed Central  Google Scholar 

  251. Sharma SD, Meeran SM, Katiyar SK. Proanthocyanidins inhibit in vitro and in vivo growth of human non-small cell lung cancer cells by inhibiting the prostaglandin E2 and prostaglandin E2 receptors. Mol Cancer Ther. 2010;9(3):569–80.

    Article  CAS  PubMed  Google Scholar 

  252. Wang J, Sun P, Wang Q, Zhang P, Wang Y, Zi C, Sheng J. (−)-Epigallocatechin-3-gallate derivatives combined with cisplatin exhibit synergistic inhibitory effects on non-small-cell lung cancer cells. Cancer Cell Int. 2019;19(1):1–16.

    Article  Google Scholar 

  253. Kuo PL, Hsu YL, Lin TC, Chang JK, Lin CC. Induction of cell cycle arrest and apoptosis in human non-small cell lung cancer A549 cells by casuarinin from the bark of Terminalia arjuna Linn. Anticancer Drugs. 2005;16(4):409–15.

    Article  CAS  PubMed  Google Scholar 

  254. Mao JT, Smoake J, Park HK, Lu QY, Xue B. Grape seed procyanidin extract mediates antineoplastic effects against lung cancer via modulations of prostacyclin and 15-HETE eicosanoid pathways. Cancer Prev Res. 2016;9(12):925–32.

    Article  CAS  Google Scholar 

  255. Sp N, Kang DY, Kim DH, Yoo JS, Jo ES, Rugamba A, Yang YM. Tannic acid inhibits non-small cell lung cancer (NSCLC) stemness by inducing G0/G1 cell cycle arrest and intrinsic apoptosis. Anticancer Res. 2020;40(6):3209–20.

    Article  CAS  PubMed  Google Scholar 

  256. Yu SM, Gweon EJ, Chung KW, Kim KH, Cho HS, Kim SJ. Gallotannin regulates apoptosis and COX-2 expression via Akt and p38kinase pathway in human lung cancer cell line, A549. Anim Cells Syst. 2012;16(5):366–75.

    Article  CAS  Google Scholar 

  257. Wu SJ, Zhao T, Qin YQ. Modern component chemistry of Chinese herbal medicine, China. Beijing: Medical Science and Technology Press; 2002.

    Google Scholar 

  258. Lu JJ, Bao JL, Wu GS, Xu WS, Huang MQ, Chen XP, Wang YT. Quinones derived from plant secondary metabolites as anti-cancer agents. Anti Cancer Agents Med Chem. 2013;13(3):456–63.

    CAS  Google Scholar 

  259. Ying HZ, Yu CH, Chen HK, Zhang HH, Fang J, Wu F, Yu WY. Quinonoids: therapeutic potential for lung cancer treatment. BioMed Res Int. 2020;2020:1–13.

    Article  Google Scholar 

  260. Li WY, Ng YF, Zhang H, Guo ZD, Guo DJ, Kwan YW, Chan SW. Emodin elicits cytotoxicity in human lung adenocarcinoma A549 cells through inducing apoptosis. Inflammopharmacology. 2014;22:127–34.

    Article  CAS  PubMed  Google Scholar 

  261. Li JN, Lv FZ, Xiao JL. Effects of emodin on proliferation cycle and apoptotic gene of human lung adenocarcinoma cell line Anip 973. Chin J Integr Tradit Western Med. 2006;26(11):1015–7.

    CAS  Google Scholar 

  262. Lai JM, Chang JT, Wen CL, Hsu SL. Emodin induces a reactive oxygen species-dependent and ATM-p53-Bax mediated cytotoxicity in lung cancer cells. Eur J Pharmacol. 2009;623(1–3):1–9.

    Article  CAS  PubMed  Google Scholar 

  263. Kausar F, Kim KH, Farooqi HMU, Farooqi MA, Kaleem M, Waqar R, Mumtaz AS. Evaluation of antimicrobial and anticancer activities of selected medicinal plants of Himalayas Pakistan. Plants. 2021;11(1):48.

    Article  PubMed  PubMed Central  Google Scholar 

  264. Ngoc TTB, Nga NTH, Trinh NTM, Thuoc TL, Thao DTP. Elephantopus mollis Kunth extracts induce antiproliferation and apoptosis in human lung cancer and myeloid leukemia cells. J Ethnopharmacol. 2020;263: 113222.

    Article  Google Scholar 

  265. Ul-Haq I, Ullah N, Bibi G, Kanwal S, Ahmad MS, Mirza B. Antioxidant and cytotoxic activities and phytochemical analysis of Euphorbia wallichii root extract and its fractions. Iran J Pharm Res. 2012;11(1):241.

    PubMed  PubMed Central  Google Scholar 

  266. Ghate NB, Chaudhuri D, Sarkar R, Sajem AL, Panja S, Rout J, Mandal N. An antioxidant extract of tropical lichen, Parmotrema reticulatum, induces cell cycle arrest and apoptosis in breast carcinoma cell line MCF-7. PLoS ONE. 2013;8(12): e82293.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to their respective institute for the support.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rupak Nagraik or Deepak Kumar.

Ethics declarations

Conflict of interest

None.

Ethical approval

Not applicable.

Informed consent

We agreed with the journal policy and provided our consent for the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

James, A., Akash, K., Sharma, A. et al. Himalayan flora: targeting various molecular pathways in lung cancer. Med Oncol 40, 314 (2023). https://doi.org/10.1007/s12032-023-02171-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02171-x

Keywords

Navigation