Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pancreatic cancer: understanding and overcoming chemoresistance

Abstract

Pancreatic cancer is a highly aggressive malignancy. This feature is believed to be partly attributable to the chemotherapy-resistant characteristics of specific subgroups of pancreatic cancer cells, namely those with an epithelial–mesenchymal transition (EMT) phenotype and cancer stem cells. Accumulating evidence suggests that several new and emerging concepts might be important in the drug-resistant phenotype of these cell types. An understanding of the molecular mechanisms underlying drug resistance in patients with pancreatic cancer might help researchers to devise novel strategies to overcome such resistance. In particular, microRNAs (miRNAs) seem to be critical regulators of drug resistance in pancreatic cancer cells. Selective and targeted elimination of cells with an EMT phenotype and cancer stem cells could be achieved by regulating the expression of specific miRNAs.

Key Points

  • Cells with an epithelial–mesenchymal transition (EMT) phenotype, cancer stem cells and specific microRNAs (miRNAs) are critical mediators of drug resistance in patients with pancreatic cancer

  • Understanding the mechanisms underlying drug resistance should help researchers to devise novel treatment strategies for patients with pancreatic cancer

  • Selective, targeted elimination of cells with an EMT phenotype and cancer stem cells could potentially increase drug sensitivity and thus improve patients' responses to treatment

  • Natural agents could potentially be included in combination therapies to regulate miRNAs, reverse the EMT phenotype and eliminate cancer stem cells that are resistant to drugs

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the EMT.
Figure 2: Production of miRNA and its effect on gene expression.
Figure 3: The links between cells that have an EMT phenotype, cancer stem cells, miRNAs and drug resistance.

Similar content being viewed by others

References

  1. Jemal, A., Siegel, R., Xu, J. & Ward, E. Cancer statistics, 2010. CA Cancer J. Clin. 60, 277–300 (2010).

    Article  PubMed  Google Scholar 

  2. Szakács, G., Paterson, J. K., Ludwig, J. A., Booth-Genthe, C. & Gottesman, M. M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 5, 219–234 (2006).

    Article  PubMed  Google Scholar 

  3. Gottesman, M. M. Mechanisms of cancer drug resistance. Annu. Rev. Med. 53, 615–627 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Damiano, J. S. Integrins as novel drug targets for overcoming innate drug resistance. Curr. Cancer Drug Targets 2, 37–43 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Jiang, B. H. & Liu, L. Z. Role of mTOR in anticancer drug resistance: perspectives for improved drug treatment. Drug Resist. Updat. 11, 63–76 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lopez-Chavez, A., Carter, C. A. & Giaccone, G. The role of KRAS mutations in resistance to EGFR inhibition in the treatment of cancer. Curr. Opin. Investig. Drugs 10, 1305–1314 (2009).

    CAS  PubMed  Google Scholar 

  7. LoPiccolo, J., Blumenthal, G. M., Bernstein, W. B. & Dennis, P. A. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist. Updat. 11, 32–50 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, Z. et al. Emerging roles of PDGF-D signaling pathway in tumor development and progression. Biochim. Biophys. Acta 1806, 122–130 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, Z. et al. Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochim. Biophys. Acta doi: 10.1016/j.bbcan.2010.06.001.

    Article  CAS  Google Scholar 

  10. Singh, A. & Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741–4751 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hermann, P. C. et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1, 313–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Voulgari, A. & Pintzas, A. Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim. Biophys. Acta 1796, 75–90 (2009).

    CAS  PubMed  Google Scholar 

  13. Sarkar, F. H., Li, Y., Wang, Z., Kong, D. & Ali, S. Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resist. Updat. 13, 57–66 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, Z. et al. Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res. 69, 2400–2407 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shah, A. N. et al. Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann. Surg. Oncol. 14, 3629–3637 (2007).

    Article  PubMed  Google Scholar 

  17. Arumugam, T. et al. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res. 69, 5820–5828 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, Y. et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 69, 6704–6712 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rückert, F., Joensson, P., Saeger, H. D., Grützmann, R. & Pilarsky, C. Functional analysis of LOXL2 in pancreatic carcinoma. Int. J. Colorectal Dis. 25, 303–311 (2010).

    Article  PubMed  Google Scholar 

  20. Frank, N. Y., Schatton, T. & Frank, M. H. The therapeutic promise of the cancer stem cell concept. J. Clin. Invest. 120, 41–50 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Clarke, M. F. et al. Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66, 9339–9344 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, C. J., Dosch, J. & Simeone, D. M. Pancreatic cancer stem cells. J. Clin. Oncol. 26, 2806–2812 (2008).

    Article  PubMed  Google Scholar 

  23. Li, C. et al. Identification of pancreatic cancer stem cells. Cancer Res. 67, 1030–1037 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Rasheed, Z. A. et al. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J. Natl Cancer Inst. 102, 340–351 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jimeno, A. et al. A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Mol. Cancer Ther. 8, 310–314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mimeault, M. et al. MUC4 down-regulation reverses chemoresistance of pancreatic cancer stem/progenitor cells and their progenies. Cancer Lett. 295, 69–84 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yao, J. et al. Side population in the pancreatic cancer cell lines SW1990 and CFPAC-1 is enriched with cancer stem-like cells. Oncol. Rep. 23, 1375–1382 (2010).

    CAS  PubMed  Google Scholar 

  28. Hong, S. P., Wen, J., Bang, S., Park, S. & Song, S. Y. CD44-positive cells are responsible for gemcitabine resistance in pancreatic cancer cells. Int. J. Cancer 125, 2323–2331 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, Y. H. et al. A side population of cells from a human pancreatic carcinoma cell line harbors cancer stem cell characteristics. Neoplasma 56, 371–378 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kong, D. et al. Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS ONE 5, e12445 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dembinski, J. L. & Krauss, S. Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin. Exp. Metastasis 26, 611–623 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kabashima, A. et al. Side population of pancreatic cancer cells predominates in TGF-β-mediated epithelial to mesenchymal transition and invasion. Int. J. Cancer 124, 2771–2779 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Du, Z. et al. Pancreatic cancer cells resistant to chemoradiotherapy rich in “stem-cell-like” tumor cells. Dig. Dis. Sci. doi: 10.1007/s10620-010-1340-0.

    Article  PubMed  Google Scholar 

  35. Garzon, R., Marcucci, G. & Croce, C. M. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat. Rev. Drug Discov. 9, 775–789 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brown, B. D. & Naldini, L. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat. Rev. Genet. 10, 578–585 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Ryan, B. M., Robles, A. I. & Harris, C. C. Genetic variation in microRNA networks: the implications for cancer research. Nat. Rev. Cancer 10, 389–402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xia, Q. S., Ishigaki, Y., Sun, L., Chen, R. & Motoo, Y. Effect of anti-cancer drugs on the expression of BIC/miR-155 in human pancreatic cancer PANC-1 cells [Chinese]. Zhonghua Yi Xue Za Zhi 90, 123–127 (2010).

    CAS  PubMed  Google Scholar 

  39. Hwang, J. H. et al. Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS ONE 5, e10630 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Giovannetti, E. et al. MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res. 70, 4528–4538 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, F. et al. hsa-miR-520h downregulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations. Br. J. Cancer 103, 567–574 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ji, Q. et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE 4, e6816 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gregory, P. A., Bracken, C. P., Bert, A. G. & Goodall, G. J. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 7, 3112–3118 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Wellner, U. et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat. Cell Biol. 11, 1487–1495 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Li, Y. et al. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 70, 1486–1495 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, Y., Kong, D., Wang, Z. & Sarkar, F. H. Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm. Res. 27, 1027–1041 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Melkamu, T., Zhang, X., Tan, J., Zeng, Y. & Kassie, F. Alteration of microRNA expression in vinyl carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol. Carcinogenesis 31, 252–258 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Sun, M. et al. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol. Cancer Ther. 7, 464–473 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Park, J. K., Lee, E. J., Esau, C. & Schmittgen, T. D. Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas 38, e190–e199 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Ali, S. et al. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res. 70, 3606–3617 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Moriyama, T. et al. MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol. Cancer Ther. 8, 1067–1074 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 7, 131–142 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Gupta, P. B. et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138, 645–659 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hirsch, H. A., Iliopoulos, D., Tsichlis, P. N. & Struhl, K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 69, 7507–7511 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rausch, V. et al. Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics. Cancer Res. 70, 5004–5013 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Kallifatidis, G. et al. Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate. Mol. Ther. doi: 10.1038/mt.2010.216.

    Article  CAS  PubMed  Google Scholar 

  57. Zhou, W. et al. Dietary polyphenol quercetin targets pancreatic cancer stem cells. Int. J. Oncol. 37, 551–561 (2010).

    CAS  PubMed  Google Scholar 

  58. Thomson, S. et al. Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res. 65, 9455–9462 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Buck, E. et al. Loss of homotypic cell adhesion by epithelial-mesenchymal transition or mutation limits sensitivity to epidermal growth factor receptor inhibition. Mol. Cancer Ther. 6, 532–541 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F. H. Sarkar, Z. Wang and Y. Li researched data for the article. F. H. Sarkar, Z. Wang, A. Ahmad, S. Banerjee and D. Kong contributed to discussion of the content. F. H. Sarkar, Z. Wang, Y. Li, A. S. Azmi and D. Kong wrote the article. F. H. Sarkar, Z. Wang, Y. Li, A. Ahmad, S. Banerjee and A. S. Azmi reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Fazlul H. Sarkar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Li, Y., Ahmad, A. et al. Pancreatic cancer: understanding and overcoming chemoresistance. Nat Rev Gastroenterol Hepatol 8, 27–33 (2011). https://doi.org/10.1038/nrgastro.2010.188

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2010.188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing