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Emodin induces apoptosis of human cervical
cancer hela cells via intrinsic mitochondrial and
extrinsic death receptor pathway
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Abstract

Background: Emodin is a natural anthraquinone derivative isolated from the Rheum palmatum L. Aim: The aim of
the present study was to investigate the effect of emodin on the apoptosis of the human cervical cancer line HeLa
and to identify the mechanisms involved.

Methods: Relative cell viability was assessed by MTT assay after treatment with emodin. Cell apoptosis was
detected with TUNEL, Hoechst 33342 staining and quantified with flow cytometry using annexin FITC-PI staining.

Results: The percentage of apoptotic cells was 0.8, 8.2, 22.1, and 43.7%, respectively. The mRNA levels of Caspase-9, -8
and −3 detected by Real-time PCR after treatment with emodin were significantly increased. Emodin increased the
protein levels of Cytochome c, Apaf-1, Fas, FasL, and FADD but decreased the protein levels of Pro-caspase-9, Pro-
caspase-8 and Pro-caspase-3.

Conclusion: We conclude that the emodin inhibited HeLa proliferation by inducing apoptosis through the intrinsic
mitochondrial and extrinsic death receptor pathways.
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Introduction
Cervical cancer is the second female cancer worldwide
as the most common malignancy in both incidence and
mortality [1]. More than 80% of cases are found in de-
veloping countries [2]. There are several treatments used
for cervical cancer, but each of them has apparent draw-
backs. Surgical treatment is restricted only for patients
with early stage and the young patients who have lost
fertility [3]. Radiotherapy and chemotherapy are not spe-
cific to cancer cells and often bring severe adverse effect,
including bone marrow suppression, nerve injury,
gastrointestinal adverse reactions, renal impairment and
second cancer occurrence [3]. Although the technology
and method become more and more advanced, up to
35% patients will still develop persistent/recurrence/
metastatic disease when the treatment results are poor.
New therapeutic strategies must be evaluated to improve
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survival. Thus, finding a safer and more efficient treat-
ment remains an arduous task.
Recent studies have focused on the anti-tumor proper-

ties of natural products because these medicines have
fewer side-effects and are more suitable for long-term
use compared with chemically synthesized medicines.
Emodin (1, 3, 8-trihydroxy-6-methyl-anthraquinone), a
naturally occurring anthraquinone, present in the roots
and barks of numerous plants, is an active ingredient of
various Chinese herbs including Rheum officinale and
Polygonam cuspidatummedicine [4]. Pharmacological
studies have demonstrated that emodin possesses anti-
bacterial [5], anti-inflammatory [6], immuno-suppressive
[7], and anti-cancer effects [8]. In vitro and in vivo studies
have demonstrated its potential as an excellent cytotoxicity
against a variety of malignant human cancers such as lung
cancer [9], chronic myelocytic leukemia [10], liver cancer
[11], tongue squamous cancer [12], gastric cancer [13],
prostate cancer [14] and gallbladder cancer [15] but emo-
din have almost no toxic effect on normal cells [16,17].
However, the molecular mechanisms for the growth
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inhibition and cytotoxicity of emodin-treated HeLa cells
are poorly understood.
In recent years, apoptosis has emerged as the major

mechanism by which anticancer agents eliminate
preneoplastic or neoplastic cells. It has been proven
that emodin can induce apoptosis through increasing
nuclear condensation and DNA fragmentation [18,19],
activating caspase −9 and −3 [20], inducing cell-cycle
arrest [12,21], elevating level of ROS [22,23], decreasing
level of NF-κB [24,25], activating PI3K/AKT pathway
[26] and PKC pathway [20,27], However, there is no
available information to address how emodin affects
human cervical cancer cells in vitro. The aim of the
present study is to investigate the potential anticancer
effects of emodin on human cervical cancer cells and
the underlying molecular mechanisms.

Materials and methods
Chemicals and reagents
Emodin and MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-
diphenyltetrazolium bromide] were obtained from
Sigma Chemical Co. (USA). The primers of caspase-8, -
9 and −3 for Real-time PCR were purchased from
Genscript (China). Antibodies against Cytochrome c,
Apaf-1, Caspase-9, Fas, FasL, FADD, Caspase-8, Caspase-
3, Gapdh and β-actin were purchased from Cell Signaling
Technology (USA). Fluorescence-conjugated secondary
antibodies were purchased from Invitrogen (USA). Other
chemicals were obtained in their commercially available
highest purity grade.

Cell culture
The human cervical cancer HeLa cells were obtained
from American Type Culture Collection (ATCC). Cells
were cultured in Dulbecco’s modified Eagle’s medium
supplemented with 10% (v/v) fetal calf serum, 100 μg/mL
streptomycin, and 100U/mL penicillin. Cultures were
maintained at 37°C in a humidified incubator in an atmos-
phere of 5% CO2.

MTT assay for cell proliferation
Cell proliferation was determined by MTT assay. In
brief, the HeLa cells in logarithmic phase were seeded
into 96-well plate at 1×104cells/well followed by incuba-
tion at 37°C for 24 h for attachment and then treated
with emodin (0, 10, 20, 30, 40 and 50 μM) for 24, 48 or
72 h, respectively. Six wells were included in each group.
20 μL of 5 mg/mL MTT dye was added to each well and
incubated at 37°C for 4 h. Then the supernatant was
discarded and purple-colored precipitates of formazan
were dissolved by gently shaking for 10 min in 150 μL of
dimethyl sulfoxide (DMSO). After complete dissolution,
absorbance (A) was measured at 490 nm on a microplate
reader. The effect of emodin on growth inhibition was
assessed as the percentage of inhibition in cell growth.
Background absorbance of the medium in the absence
of cells was subtracted. Percent viability was calculated
as [value of drug-treated group (A)/control group (A)] ×
100%. Each assay was carried out three times, and the
results were expressed as the mean (± SEM). Similar
results were observed in at least three independent
experiments.
Detection of apoptotic cells by TUNEL and Hoechst 33342
staining
The apoptotic HeLa cells were detected using the TUNEL
assay that was performed using an in Situ Nick-End Label-
ing kit (Beyotime Institute of Biotechnology, China). Cells
were treated with emodin (0, 20, 40 and 80 μM) in 96-
well plates. After 48 h, the attached cells were washed
with PBS and then fixed in freshly prepared 4% parafor-
maldehyde for 30 min, then washed with PBS and incu-
bated with digoxigenin-conjugated dUTP in a terminal
deoxynucleotidyl transferase-catalyzed reaction for 1 h
at 37°C in a humidified atmosphere. After the cells
were immersed in stop/wash buffer for 10 min at room
temperature and washed with PBS, they were incubated
with an anti-digoxigenin antibody conjugating peroxid-
ase for 30 min. The nuclei fragments were stained using
3, 3’-diaminobenzidine (DAB) as a substrate of the per-
oxidase for 5 min. Apoptotic cells were stained brown.
The apoptosis of HeLa cells was also detected using

the Hoechst 33342 assay kit (Beyotime Institute of Bio-
technology, China). The HeLa cells were seeded on cov-
erslips on a 6-well plate and treated with emodin (0, 20,
40 and 80 μM). After 48 h, the attached cells were
washed with PBS and fixed in freshly prepared 4% para-
formaldehyde for 30 min, then washed with PBS and in-
cubated with Hoechst 33342 staining solution for 5 min.
After treatment, cells were washed with PBS and added
Antifade Mounting Medium, then detected the apoptosis
by fluorescence microscope. Apoptosis, with condensed
and fragmented nuclei, was observed under fluorescence
microscope.
Quantification of apoptosis by flow cytometry
The apoptotosis of HeLa cells was quantified using flow
cytometry. After incubation with emodin (0, 20, 40 and
80 μM) in six-well plates for 48 h, the cells were
harvested with trypsin treatment and centrifugation,
washed with PBS, stained with 10 μL annexin V-FITC
and 5 μL propidium iodide (PI) in the dark at room
temperature for 15 min according to the manufacturer’s
protocol (Biosea, China) and then analyzed with Becton
FACSC flow cytometer (Becton Dickinson Corporation,
USA). For each condition, 1×104 cells were studied in
each cytometry experiment.



Figure 1 Emodin-induced anti-proliferation of HeLa cells. HeLa
cells were treated with emodin at doses of 0, 10, 20, 30, 40, and 50
μM for 24, 48, and 72 h. Cell viability was evaluated with the MTT
assay and results are reported as relative cell viability (%). All data
were normalized to the control group which was considered to be
100%. The result showed that emodin inhibited proliferation of HeLa
cells in a dose- and time-dependent manner. *P<0.05 versus control
group (0 μM) (two-way ANOVA followed by the Tukey post hoc test).
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RNA isolation and real-time PCR analysis
Total RNA was extracted by a Trizol reagent kit
(Invitrogen, USA) after the HeLa cells treated with emo-
din (0, 20, 40 and 80 μM) for 48 h. The quality of each
RNA sample (including its concentration and purity)
was checked by measuring the absorbance. One micro-
gram RNA from each sample was used to generate
cDNA using M-MLV reverse transcriptase as per
manufacturer's specifications (Promega Corporation,
USA). After an initial denaturation step at 95°C for
10 min using SYBR Green PCR Master Mix (Applied
Biosystems, USA), Real-time PCR was cycled 40 times
between 95°C /15 s and 60°C /1 min. Amplification was
performed using 7500 Fast Real-Time PCR Systems (Ap-
plied Biosystems, USA) and the products were routinely
checked using dissociation curve software. Transcript
quantities were compared by the relative Ct method and
the amount of Caspase-9, -8 and −3 were normalized to
the endogenous control (GAPDH). The value in relation
to the control sample was given by 2-ΔΔCT. Real-time
PCR primer sequences for caspases measurements were
as following:

Caspase 9: sense: 5′-CGAACTAACAGGCAAGCAG
C-3′ anti-sense: 5′-ACCTCACCAAATCCTCCAGAAC-3′;
Caspase 8: sense: 5′-GCCTCCCTCAAGTTCCT-3′

anti-sense: 5′-CCTGGAGTCTCTGGAATAACA-3′;
Caspase 3: sense: 5′-TGGTTCATCCAGTCGCTTTG-

3′ anti-sense: 5′-CATTCTGTTGCCACCTTTCG-3′.

Western blot analysis
Following treated with emodin (0, 20, 40 and 80 μM) for
48 h, HeLa cells were washed with ice-cold PBS and col-
lected in lysis buffer including 50 mM Tris, pH 7.4,
150 mM NaCl, 1% NP-40, 0.25% sodium deoxycholate,
0.1% SDS, 1 mM Na3VO4, 1 mM NaF, 1 mM EDTA,
1 mM PMSF and 1μg/mL leupeptin. The supernatant
was obtained by centrifuging at 13,500 rpm for 20 min.
Total protein was extracted and protein concentration
was determined by Bradford assay. For immunoblotting,
120 μg proteins from each sample were subjected to elec-
trophoresis on 12% SDS-PAGE and separated proteins
were transferred onto a PVDF membrane. The PVDF
membrane was blocked with 5% non-fat milk powder
(w/v) at room temperature for 2 h, then incubated with
the primary antibodies against Cytochrome c (1:500),
Apaf-1 (1:500), Caspase-9 (1:500), Fas (1:500), FasL
(1:500), FADD (1:500), Caspase-8 (1:500), Caspase-3
(1:500), Gapdh (1:1000), and β-actin (1:500), respectively,
at 4°C overnight. After washing, the membrane was incu-
bated with fluorescence-conjugated secondary antibody
(anti-rabbit or anti-mouse, 1:10000; Invitrogen, USA) at
room temperature for 50 min. Gapdh or β-actin was used
as an internal control to monitor equal protein loading
and transfer of proteins from the gel to the membranes
after stripping them with the Gapdh and β-actin anti-
bodies. Western blot bands were quantified using the
Odyssey infrared imaging system (LI-COR, USA). All
results represent of three independent experiments.

Statistical analysis
Data were reported as means ± SEM of at least three in-
dependent experiments. For statistical analysis, one-way
ANOVA was used for comparison of one variance
among groups and two-way ANOVA was used for com-
parison of two independent variances among groups
followed by the Tukey post hoc test. A P value less than
0.05 was considered to be significant.

Results
Emodin-induced morphological changes and anti-
proliferation of HeLa cells
The morphology of the HeLa cells was examined using a
phase contrast microscope. In the presence of emodin,
HeLa cells showed round morphology with small shrink-
age and nuclear condensation, a proportion of the cells
revealed swelling, cell membrane lysis and disintegration
of organelles, suggesting emodin-induced toxicity to HeLa
cells (pictures not shown). HeLa cells were incubated with
emodin (0, 10, 20, 30, 40 and 50 μM) and cell viability was
evaluated by the MTT assay at 24, 48 and 72 h. Treatment
with 10, 20, 30, 40 and 50 μM emodin significantly
reduced cell viability compared to the control group
(Figure 1), indicating a dose-dependent effect of emodin
on cell viability. Among all the tests, cells incubated
with 50 μM emodin for 72 h showed the maximum



Figure 3 Cell apoptosis observed using Hoechst 33342
staining. HeLa cells were treated with Emodin (0, 20, 40, and
80 μM) for 48 h. Apoptotic cells exhibited Morphological changes in
the nuclei typical of apoptosis. Photographs were taken under a
fluorescence microscope (200×, original magnification). Arrows
represent apoptotic cells.
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anti-proliferation effect, with cell viability decreased to
16% of the control cells. These results suggest that
emodin inhibits proliferation of HeLa cells in a dose- and
time-dependent manner.

Emodin-induced apoptosis of HeLa cells
The TUNEL and Hoechst 33342 apoptosis detection kit
were used after cells were treated with emodin (0, 20, 40
and 80 μM) for 48 h. Representative images of TUNEL
and Hoechst 33342 staining were shown in Figures 2
and 3. The number of apoptotic HeLa cells (white ar-
rows) increased with the dose of emodin. Apoptotic
HeLa cells displayed a round and shrunken cell body,
suggesting that emodin-induced apoptosis of HeLa cells
might contribute to reduced cell viability.
To further quantify emodin-induced apoptosis of

HeLa cells, cells were stained with annexin V-FITC and
PI, followed by flow cytometry. A representative result
of flow cytometry was presented in Figure 4a. The lower
right quadrant (Q4) depicts the percentage of early
apoptotic cells (annexin V-FITC-stained cells) and the
upper right quadrant (Q2) represents the percentage of
late apoptotic cells (annexin V-FITC and PI-stained
cells). The fully apoptotic cells are those in the lower
right and upper right quadrants. As shown in the quan-
titative result in Figure 4b, only a small number of apop-
totic cells was detected in the control group. However,
48 h after treatment with 0, 20, 40 and 80 μM emodin,
cell apoptosis was 0.8, 8.2, 22.1, and 43.7%, respectively.
These results suggest that emodin induced significant
apoptosis of HeLa cells in a dose-dependent manner.
Figure 2 Cell apoptosis observed using TUNEL staining. HeLa
cells were treated with Emodin (0, 20, 40, and 80 μM) for 48 h.
Apoptotic cells exhibited Morphological changes in the nuclei
typical of apoptosis. Photographs were taken under an inverted
microscope (200×, original magnification). Arrows represent
apoptotic cells.
Emodin increased mRNA expression of caspase-8, -9 and 3
Real-time quantitative PCR was used to detect the
mRNA expression of Caspase-9, -8 and −3 at 48 h after
emodin treatment with emodin (0, 20, 40 and 80 μM).
The change of mRNA expression was normalized by
GAPDH expression. The result showed that the mRNA
expression of Caspase-9, -8 and −3 increased signifi-
cantly after treatment with emodin for 48 h and the up-
regulation exhibited an emodin dose-dependent pattern
(Figure 5).
Emodin increased Cytochome c, Apaf-1 but decreased

Pro-caspase-9 in intrinsic mitochondrial pathway and
increased Fas, FasL, FADD but decreased Pro-caspase-8
in extrinsic death receptor pathway in HeLa cells.
To further elucidate the molecular mechanism under-

lying the emodin-induced apoptosis in HeLa cells, we
examined the related protein expressions of the intrinsic
mitochondrial pathway and the extrinsic death receptor
pathway about apoptosis by Western blot.
Western blot analysis was used to further detected

protein expressions of Cytochomec, Apaf-1, Caspase-9,
Fas, FasL, FADD, Caspase-8, and Caspase-3 in HeLa
cells after emodin (0, 20, 40 and 80 μM) treatment for
48 h. The GAPDH or β-actin was used as an internal
loading control. On one hand, in the present study,
emodin treatment increased Cytochromec and Apaf-1
protein expression while it decreased Pro-caspase-9 and
Pro-caspase-3 protein expression in treated HeLa cells.
The quantitative results showed emodin increased the
protein levels of Cytochrome c and Apaf-1 but decreased
the protein levels of Pro-caspase-9 and Pro-caspase-3 in
a dose-dependent manner and the results were 3.23,



Figure 4 Emodin-induced apoptosis in HeLa cells was determined by flow cytometry using annexin FITC-PI staining method. The cells
were treated with Emodin (0, 20, 40, and 80 μM) for 48 h (a, b). (a) Emodin-induced apoptosis analyzed by flow cytometry. The lower right
quadrant (Q4) indicates the percentage of early apoptotic cells (FITC-stained cells) and the upper right quadrant (Q2) indicates the percentage of
late apoptotic cells (FITC+PI-stained cells). (b) Emodin-induced apoptosis rate shown by bar graph. The experiment was repeated three times and
the percentage of apoptotic cells (means± SEM) for each treatment group is shown in b. *P<0.05 versus control group (0 μM) (one-way ANOVA
followed by the Tukey post hoc test).
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3.42 and 0.36, 0.22 folds of the control level at 80 μM
(Figure 6a and 6c). On another hand, emodin treatment
increased Fas, FasL, FADD protein expression while it
decreased Pro-caspase-8 and Pro-caspase-3 protein
expression in treated HeLa cells. The quantitative results
showed emodin increased the protein levels of Fas, FasL,
FADD but decreased the protein levels of Pro-caspase-8
and Pro-caspase-3 in a dose-dependent manner and the
Figure 5 Emodin increased gene expression of caspase-9, -8,
and −3 in HeLa cells in a dose-dependent manner. HeLa cells
were treated with Emodin (0, 20, 40 and 80 μM) for 48 h. The
expression of mRNAs was analyzed by Real-time quantitative PCR
and normalized by GAPDH expression. *P<0.05 versus control group
(0 μM) (two-way ANOVA followed by the Tukey post hoc test).
results were 3.76, 4.21, 4.65 and 0.31, 0.22 folds of the
control level at 80 μM (Figure 6b and 6c). The effect of
emodin on regulating the expression of apoptosis-related
proteins further supported the observation of emodin-
induced apoptosis in HeLa cells.

Discussion
In this study, we have examined the effect of emodin on
human cervical cancer cell line HeLa. We observed a
dose- and time-dependent anti-proliferation effect of emo-
din on these cells. The emodin-induced apoptosis might
be mediated by the activation of intrinsic mitochondrial
pathway and extrinsic death receptor pathway through
regulation the expression of related apoptotic factors.
The effect of emodin-induced apoptosis has been pre-

viously reported in other cell types [18-27]. It is well
known that cell death can be divided into necrosis and
apoptosis [28]. Apoptosis is a highly regulated, organized
and programmed cell death process controlling the
development and homeostasis of multicellular organisms
[29], it could kill cancer cells without causing damage to
normal cells or surrounding tissues [30]. Thus, induction
of apoptosis in cancer cells is a key mechanism by which
anticancer therapy works [31]. In this study, we also
observed an anti-proliferation effect of emodin on HeLa
cells by the induction of apoptosis and this effect
exhibited a dose- and time-dependent pattern.
There are two major pathways that could induce apop-

tosis: the intrinsic mitochondria pathway and extrinsic



Figure 6 Emodin increased the expression of Apaf-1, Cytochrome c, Fas, FasL, and FADD but decreased the expression of Pro-caspase-9,
Pro-caspase-8, and Pro-caspase-3 in HeLa cells. HeLa cells were treated with Emodin (0, 20, 40 and 80 μM) for 48 h and the expression of
proteins in treated cells was determined by Western blot analysis. (a), Emodin increased the expression of Apaf-1, Cytochrome c. (b), Emodin
increased the expression of Fas, FasL, and FADD. (c), Emodin decreased the expression of Pro-caspase-8, Pro-caspase-9, and Pro-caspase-3. Data
are reported as the means±SEM of at least three experiments. *P<0.05 versus control group (0 μM) (two-way ANOVA followed by the Tukey post
hoc test).
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death receptor pathway [32,33]. In the intrinsic pathway,
many factors such as environmental changes, stimuli
and drugs could induce mitochondria dysfunction. Cyto-
chrome c is released from dysfunctional mitochondria
and accumulated in the cytoplasm where it binds to the
protein Apaf-1, meanwhile, binding of Pro-caspase-9 to
Apaf-1 oligomers results in the formation of apoptosome,
eventually leading to the activation of caspase-3, DNA
damage and cell apoptosis [34-39]. Many previous studies
have shown that emodin inhibits proliferation and induces
apoptosis in many carcinoma cells via intrinsic mitochon-
dria pathway [18-20,22,23,40,41]. Our data also showed
that emodin induced up-regulation of Cytochome c and
Apaf-1 but down-regulation Pro-caspase-9 and Pro-
caspase-3 in HeLa cells, suggesting the involvement of the
intrinsic mitochondria pathway in emodin-induced apop-
tosis also happened in HeLa cells.
The extrinsic death receptor pathway involves Fas,

TNFR1, DR3, DR4 and DR5. In these factors, Fas and
FasL have been regarded as very important effectors of
apoptosis in various biological conditions and its
disregulated expression in a variety of carcinomas such
as breast [42], hepatocellular [43], colorectal [44], and
nasopharyngeal [45] carcinoma. Fas (CD95 or APO-1)
[46], is a 36-kDa cell surface protein that belongs to the
death receptor (DR) family. Activation of Fas with its
natural ligand FasL, induces apoptosis in sensitive cells
[46]. The Fas-mediated cell death pathway includes cell
death transactivation adaptor molecular (FADD) with a
death domain and a FADD-associated Pro-caspase-8 that
forms death inducing signaling complex (DISC) resulting
in apoptotic cell death [47]. Meanwhile, Pro-caspase-8
binds to Fas-bound FADD leading to the activation of
Caspase-8 [46], and then leads to the activation of
Caspase-3 [48]. This caspase cascade leads DNA degrad-
ation, and ultimately cell death [49-52]. Our data
showed that emodin induced up-regulation of Fas, FasL,
FADD but down-regulation Pro-caspase-8 and Pro-
caspase-3 in HeLa cells, these results further support the
apoptotic effect of emodin on HeLa cells also via extrin-
sic death receptor pathway.
In this study, we could conclude that intrinsic mito-

chondrial pathway and extrinsic death receptor pathway
were involved in anti-tumor effect of emodin in HeLa
cells. Emodin has been long used by Chinese people as
an oral medicine and has been proven to be an effective
medicine possesses anti-bacterial, anti-inflammatory,
immuno-suppressive, and anti-cancer effects. The anti-
tumor effect of emodin on cervical cancer in vivo and
the possible underlying molecular mechanism require
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further study, while emodin has the potential to be de-
veloped as a chemotherapeutic or adjuvant agent for
human cervical cancers.

Conclusion
In short, we concluded that the emodin inhibited HeLa
proliferation by inducing apoptosis through the intrinsic
mitochondrial and extrinsic death receptor pathways.
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