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Abstract

Background: Countries worldwide recommend women planning pregnancy to use daily 400 mg of synthetic folic acid in the
periconceptional period to prevent birth defects in children. The underlying mechanisms of this preventive effect are not
clear, however, epigenetic modulation of growth processes by folic acid is hypothesized. Here, we investigated whether
periconceptional maternal folic acid use and markers of global DNA methylation potential (S-adenosylmethionine and S-
adenosylhomocysteine blood levels) in mothers and children affect methylation of the insulin-like growth factor 2 gene
differentially methylation region (IGF2 DMR) in the child. Moreover, we tested whether the methylation of the IGF2 DMR was
independently associated with birth weight.

Methodology/Principal Findings: IGF2 DMR methylation in 120 children aged 17 months (SD 0.3) of whom 86 mothers had
used and 34 had not used folic acid periconceptionally were studied. Methylation was measured of 5 CpG dinucleotides
covering the DMR using a mass spectrometry-based method. Children of mother who used folic acid had a 4.5% higher
methylation of the IGF2 DMR than children who were not exposed to folic acid (49.5% vs. 47.4%; p = 0.014). IGF2 DMR
methylation of the children also was associated with the S-adenosylmethionine blood level of the mother but not of the
child (+1.7% methylation per SD S-adenosylmethionine; p = 0.037). Finally, we observed an inverse independent association
between IGF2 DMR methylation and birth weight (21.7% methylation per SD birthweight; p = 0.034).

Conclusions: Periconceptional folic acid use is associated with epigenetic changes in IGF2 in the child that may affect
intrauterine programming of growth and development with consequences for health and disease throughout life. These
results indicate plasticity of IGF2 methylation by periconceptional folic acid use.
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Introduction

Every year around 8 million children are born with a serious

birth defect worldwide. Folate deficiency during conception up to

the third month of gestation, i.e., periconceptional period, is an

etiological factor in several birth defects. Randomized controlled

trials have shown that periconceptional synthetic folic acid use

prevents neural tube defects [1]. For that reason periconceptional

folic acid in a dose of 400 mg per day has been promoted to all

women planning pregnancy [2].

Over the last decade, several campaigns were started to improve

the awareness of the importance of periconceptional use of

synthetic folic acid in tablets. Furthermore, folic acid fortification

of food has been introduced in the US, Canada and Chile [3].

Since the implementation of these measures, a significant decrease

in birth rates of neural tube defects, orofacial clefts, congenital

heart defects and diaphragmatic hernia has been reported

[4,5,6,7]. However, periconceptional folic acid use has also been

reported to have adverse effects including an elevated risk of

pyloric stenosis, obstructive urinary tract defects, obesity, insulin

resistance and colon cancer [7,8,9].

The mechanisms underlying the beneficial and adverse effects of

periconceptional folic acid use are largely unclear. Following

current thinking about the developmental origins of health and

disease, an altered epigenetic regulation of growth processes

induced by periconceptional folic acid may contribute to both the

immediate effects and chronic disease associations in later life

[10,11]. Epigenetic regulation determines the potential of a

genomic region to become transcribed [12]. The best understood

epigenetic mechanism is the methylation of cytosine-guanine

PLoS ONE | www.plosone.org 1 November 2009 | Volume 4 | Issue 11 | e7845



(CpG) dinucleotides in the DNA of mammals. Methyl donors,

including folic acid, are required to establish and maintain DNA

methylation. Methyl groups for DNA methylation reactions are

supplied by demethylating the activated form of methionine into

S-adenosylmethionine (SAM), to form S-adenosylhomocysteine

(SAH) and homocysteine. In agreement with their crucial role in

methylation reactions, in human SAM and SAH plasma levels and

the SAM/SAH ratio are frequently used markers of global DNA

methylation potential [13,14].

Direct evidence that the availability of methyl donors during

gestation is required to establish and maintain DNA methylation

patterns comes from experiments in the yellow Avy agouti mice [15].

Supplementing the diet of pregnant dams with methyl donors,

including folic acid, results in silencing of the agouti gene due to

DNA methylation resulting in offspring with a mainly brown coat

colour and a lower tendency for obesity, cancer and diabetes. We

recently observed that similar mechanisms may play a role in

humans. Periconceptional exposure to famine during the Dutch

Famine at the end of WWII was associated with a persistently

lower methylation of the maternally imprinted insulin-like growth

factor 2 (IGF2) gene [16]. IGF2 is an embryonic growth factor that

is expressed in most tissues and regulated in rats by periconcep-

tional nutrient intake [17]. Complete loss of methylation at the

IGF2 differentially methylated region (DMR) results in biallelic

expression of IGF2 and is associated with an increased risk of

colorectal adenoma [18]. IGF2 imprinting defects also underlie

Beckwith-Wiedemann syndrome which is characterized by

overgrowth [19]. Here, we hypothesize that periconceptional folic

acid use by the mother may have consequences for IGF2 DMR

methylation of the child with a subsequent effect on intrauterine

growth as reflected in birth weight.

Results

The quantitative traits, including birth weight and the

biochemical markers of global DNA methylation and folate, were

similar according to periconceptional folic acid use for both

mothers and children (table 1). The relative methylation of the

IGF2 DMR was 4.5% higher in folic acid exposed children as

compared with non exposed children (absolute methylation 0.495

(SE 0.004) vs. 0.474 (0.007); p = 0.014, table 2. In the linear mixed

model analysis additionally adjustment for maternal education

level revealed an adjusted p-value of 0.009, table 3. Higher levels

of methylation were also observed for individual CpG dinucleo-

tides comprising the IGF2 DMR, particularly for CpG #4,

although not always significantly.

Next, we tested the association of other variables in mother and

child with IGF2 DMR methylation in children (table 3). In

addition to periconceptional maternal folic acid use, a higher

maternal SAM concentration, but not that of the child, was

associated with a higher IGF2 methylation in the child (p = 0.037).

This association remained significant after additional adjustment

for maternal education and the SAM concentration of the child

(padjusted = 0.047).

To test for a possible phenotypic consequence of changes in

IGF2 methylation, we analyzed the relationship with birth weight.

A 1.7% higher IGF2 methylation in the child was associated with

one SD decrease in birth weight of 584 grams (p = 0.034), which

was independent of periconceptional exposure to folic acid and

gestational age at delivery (padjusted = 0.041).

Discussion

The key finding of our study is that periconceptional folic acid

use of the mother is related to an increased methylation of the

IGF2 DMR of the child. The reported stability of IGF2 DMR

methylation up to middle age [20,21] supports the interpretation

that the IGF2 methylation changes we observed are explained by

periconceptional folic acid exposure. The difference in DNA

methylation associated with folic acid exposure is remarkably

similar to our previous observation of a 5.2% reduced IGF2

methylation after periconceptional exposure to famine [18]. The

opposite direction of the associations suggests that the availability

of methyl donors during the periconceptional period may affect

IGF2 DMR methylation. We further hypothesized that changes in

IGF2 DMR methylation would influence intrauterine growth. Our

Table 1. Quantitative traits according to maternal periconceptional folic acid use.

Mothers Children

No Folic Acid
(n = 34)

Yes Folic Acid
(n = 86) P-value

No Folic Acid
(n = 34)

Yes Folic Acid
(n = 86) P-value

Male, n (%) - - 20 (59%) 50 (58%) 0.945

Age, years 32.6 (0.8) 32.2 (0.4) 0.624 - - -

Age, months - - - 17.1 (0.5) 17.3 (0.2) 0.709

Birth weight, grams - - - 3363 (98) 3490 (64) 0.287

Gestational age, weeks - - - 39.4 (0.3) 39.7 (0.2) 0.496

Biochemistry

SAM, mmol/L 79.9 (2.5) 80.2 (1.3) 0.897 102.7(3.3) 106.4 (2.1) 0.363

SAH, mmol/L 15.0 (0.6) 14.5 (0.3) 0.438 18.5 (1.0) 17.3 (0.5) 0.278

SAM/SAH 5.5 (0.2) 5.7 (0.1) 0.357 6.1 (0.4) 6.6 (0.2) 0.267

Folate, nmol/L

serum 15.3 (0.9) 17.8 (1.2) 0.189 31.5 (2.5) 32.1 (1.6) 0.748

red blood 687 (70) 720 (30) 0.589 973 (72) 1064 (41) 0.245

Data are presented in numbers (percentages) and mean (standard error).
Abbreviations: SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine.
doi:10.1371/journal.pone.0007845.t001

Folate and IGF2-Methylation
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study indeed indicated an association between IGF2 DMR

methylation and birth weight as surrogate for intrauterine growth,

but not between periconceptional folic acid use and birth weight.

Compared to our findings in humans, the size of the effects on

DNA methylation of prenatal exposures have found to be

comparable in sheep but are larger in rodents [22,23,24]. In this

comparison we have to emphasize that human populations are

inevitably more heterogeneous than the inbred rodents kept at the

same, well-controlled environmental conditions. The different

effects in animal studies can also be due to the common use of a

combined intervention consisting of multiple methyl donors and/

or protein deficiency instead of folic acid only. Lastly, the larger

effects in rodents are shown in other tissues than in blood, which

are not readily accessible from human study subjects.

In addition, our study indicated an association between higher

IGF2 methylation and lower birth weight. This inverse association

is compatible with a relative intrauterine silencing of the

embryonic growth factor IGF2 resulting in reduced growth

[25,26]. This links our data to the finding that IGF2 loss of

imprinting leads to somatic overgrowth (Beckwith-Wiedemann

syndrome) [27] and possibly colorectal cancer [20] although we

cannot exclude the explanation that the change in IGF2

methylation marks possible greater changes elsewhere in the

genome that underlie the association observed. Periconceptional

folic acid use may contribute to the restoration of a loss of

imprinting. It remains to be established whether DNA methylation

changes contribute to the adverse effects reported for periconcep-

tional folic acid use [7,8,9,28]. Studies are required to establish

optimal timing, dose and type (natural folate or synthetic folic acid)

to prevent birth defects and at the same time minimize adverse

effects later in life.

From this study reveals that periconceptional folic acid use is

associated with epigenetic changes in IGF2. However, in contrast

with large mother-child cohorts, we did not find a positive

association between periconceptional folic acid use and higher

birth weight [29,30]. It is known that women using periconcep-

tional folic acid supplements are generally more health conscious

and higher educated. Furthermore, the women exposed to the

Dutch famine were not only deprived of folate, but also of other

essential macro- and micronutrients that serve as methyldonors,

e.g., methionine. Thus, it should be emphasized that many factors

together including other genes besides periconceptional folic acid

contribute to birth weight. This may explain the absent association

between periconceptional folic acid use and birth weight in our

study.

Periconceptional use of folic acid did not affect average levels of

the biomarkers SAM, SAH or SAM/SAH measured at 17 months

in the mother and in the child. However, we found a significant

correlation between the maternal SAM concentration at the study

moment and IGF2 methylation of the child. The developmental

hypothesis of health and disease states that periconceptional

exposures may affect metabolic imprinting of the child. This is in

line with our finding that periconceptional folic acid use can affect

the metabolic imprinting of the methylation pathway of the child.

Of note, this association was not influenced by fortification of food

with folic acid which is absent in The Netherlands, UK and other

European countries, which may have strengthened the observed

associations.

Although we did not measure levels of biomarkers of methylation

in the periconception period, their levels will have been compar-

able to those we measured 17 months after delivery. This is

substantiated by Nurk et al. showing that the biomarkers of

methylation show a limited variability in the periconception period

and over a subsequent period of 1–2 years [31]. Furthermore, there

are no substantial differences in preconceptional maternal dietary

habits and lifestyles and those 1 to 1.5 year post partum which affect

these biomarkers [32].

A limitation of both our study and others is that they relied on

genomic DNA extracted from whole blood so that heterogeneity in

cell populations may have contributed to the outcomes [18]. Our

study likely is less sensitive to such heterogeneity because the

epigenetic state of imprinted loci is less dependent on cell

differentiation and, importantly, a previous study showed that

when demethylation of IGF2 DMR was observed in peripheral

blood lymphocytes of an individual, this was also found in colon

tissue [20], which has a distinct embryologic origin (endoderm and

mesoderm, respectively). The finding that the common epigenetic

variation in IGF2 DMR might influence birth weight is intriguing

but should be interpreted with care because the sample size was

relatively small and other (non)genetic factors are also involved. It

is currently unknown whether modestly increased IGF2 DMR

methylation upregulates IGF2 expression. Furthermore, it has not

been established whether such quantitative differences measured

in lymphocytes mark a soma-wide phenomenon as was suggested

Table 2. IGF2 DMR methylation in the child according to
maternal periconceptional folic acid use of 400 mg per day.

No Folic Acid
(n = 34)

Yes Folic Acid
(n = 86) P-value

Complete DMR 0.474 (0.007) 0.495 (0.004) 0.014

CpG #1 0.473 (0.009) 0.484 (0.005) 0.292

CpG #2&3 0.334 (0.006) 0.348 (0.004) 0.059

CpG #4 0.590 (0.016) 0.632 (0.010) 0.023

CpG #5 0.511 (0.011) 0.516 (0.080) 0.602

Linear Mixed Model analysis. Independent absolute methylation of the CpG
dinucleotides without adjustments is presented in mean and (standard error).
doi:10.1371/journal.pone.0007845.t002

Table 3. IGF2 DMR methylation in the child and independent
factors of the mother and the child.

Factors Mother P-value Child P-value

Folic acid use +4.5% (1.8) 0.014 - -

Female sex - - +2.0% (1.6) 0.232

Age 20.4% (0.8) 0.585 20.7% (1.0) 0.478

Birth weight - - 21.7% (0.8) 0.034

Gestational age - - 20.9% (0.8) 0.276

Biochemistry

SAM, mmol/L +1.7% (0.8) 0.037 +1.2% (0.8) 0.129

SAH, mmol/L +0.8% (0.8) 0.331 +0.1% (0.8) 0.882

SAM/SAH +0.0% (0.8) 0.985 +0.3% (0.8) 0.717

Linear Mixed Model analysis. Data are presented in percentage (standard error)
of mean change in relative methylation. For independent quantitative
parameters the change in relative methylation is given per SD-change in that
parameter. The p-value of the significant association of periconceptional folic
acid use and IGF2 DMR methylation was additionally adjusted for maternal
education. The p-value for the significant association between maternal SAM
and IGF2 DMR methylation was also adjusted for maternal education and the
SAM concentration of the child. The p-value for the significant association
between IGF2 DMR methylation and birth weight was additionally adjusted for
periconceptional folic acid use and gestational age at delivery.
doi:10.1371/journal.pone.0007845.t003

Folate and IGF2-Methylation
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for loss-of-imprinting of the IGF2 DMR [20]. Therefore, in future

human studies the sampling of different tissues should be

performed.

Our study provides the first evidence that periconceptional folic

acid use may be related to DNA methylation in the child.

Moreover, such DNA methylation changes may have phenotypic

consequences as illustrated by the association between higher IGF2

methylation and decreased birth weight. A simple preventive

strategy as periconceptional folic acid use may affect epigenetic

control and as such may link the prevention of intrauterine

development, i.e., birth defects such as neural tube defects, and

growth due to a loss of imprinting with the risk of chronic diseases

in these children throughout life. It has to be established how folic

acid intake affects the epigenetic regulation of sets of relevant

genes and whether adverse effects are to be expected from an

altered methylation at such loci. Given the ongoing exposure it is

timely to monitor the (long term) effect on DNA methylation also

of other lifestyles and environmental influences, such as overnu-

trition, fortification of food, smoking, stress and the use of assisted

reproductive techniques.

Methods

Ethics statements
The study protocol was approved by the Central Committee for

Human Research (CCMO) in The Hague, The Netherlands, and

the Medical Ethical and Institutional Review Board of the

Erasmus MC, University Medical Center in Rotterdam, The

Netherlands. All mothers gave their written informed consent and

mothers and their partner on behalf of their participating child.

Study design and population
In a cross-sectional study mothers and children between 12 and

18 months of age were enrolled via public health centers in

Rotterdam, the Netherlands between October 2003 and January

2007. The Dutch health care system includes a standardized and

regular check up of all newborns for health, growth and

development by physicians trained in child health care. Children

were eligible as controls if they did not have a major congenital

malformation or chromosomal defect according to the medical

records from the regular check up at the child health center. These

mothers and their healthy nonmalformed child served as controls

in the previously described HAVEN-study [33,34]. Mothers and

children were studied at the standardized study moment of around

17 months after delivery of the index child, at which both blood

samples for DNA methylation and folate in serum and red blood

cells of the child and questionnaire data via the mother on

periconceptional exposures, such as folic acid use, were obtained.

For 186 mother-child pairs biomarkers of global methylation and

blood samples for DNA methylation and folate in serum and red

blood cells were available. Because we aimed to show an effect of

periconceptional folic acid use, in particular an extreme effect, the

48 mothers who used partially folic acid during this period were

excluded. 40 Mothers had completely refrained from periconcep-

tion folic acid use and 98 reported the use of folic acid according to

the Dutch recommendation of a daily intake of a folic acid

containing preparation of 400 mg from at least 4 weeks before until

8 weeks after conception. Six mother-child pairs of whom the

mother had not used folic acid were excluded because insufficient

genomic DNA was available of the child for bisulfite treatment

resulting in 34 unexposed mother-children pairs eligible for the

current epigenetic study. For technical reasons 86 mother-child

pairs were randomly selected from the exposed group, so that the

total number of mothers and children studies was 120.

The questionnaires providing information on general traits, folic

acid use and birth weight filled out by the mother at home were

checked for completeness and consistency at the hospital visit

during the standardized study moment by the researcher. We

extracted data on maternal age and folic acid use, and age, gender,

birth weight and gestational age at delivery of the child.

The standardization of the blood sampling, plasma handling,

extraction of genomic DNA and measurement of SAM, SAH and

folate were described previously and are reported as control data

in the comparison of cases with a congenital heart defect [33,34].

DNA Methylation
DNA methylation measurements were performed on genomic

DNA extracted from whole blood samples obtained from the

children. Bisulphite treatment was carried out on 0.5 mg genomic

DNA using the EZ 96-DNA methylation kit (Zymo Research).

The 120 samples were blinded as to exposure status and split into

two equal groups with a similar distribution in exposure status thus

preventing possible batch effects. Subsequently, to assess IGF2

DMR methylation 5 CpG dinucleotides of the IGF2 DMR

(chr11:2,126,035-2,126,372 in NCBI build 36.1) was measured in

triplicate using a mass spectrometry-based method (Epityper,

Sequenom)[20]. The quantitative accuracy and concordance with

clonal polymerase chain reaction bisulphite sequencing is well-

established [21]. Two CpG dinucleotides confounded by SNPs

were discarded so that the current study reports on CpG

dinucleotides located at positions 41 (CpG #1),57 and 60

(#2&3; adjacent CpGs that could not be resolved individually,

202 (#4) and 251 (#5) bp in the amplicon targeting the IGF2

DMR.

Statistical analyses
Differences in quantitative traits in mothers and in children

according to maternal periconception folic acid use were tested

using an independent t-test. Differences in gender distribution

were tested using a chi-square test. IGF2 DMR methylation was

assessed by measuring multiple CpG sites that are correlated [21].

Raw methylation data can still be used (instead of for example

averaging over the various CpG dinucleotides that differ in DNA

methylation level) by applying linear mixed models. Linear mixed

models may be viewed as an extension of a t-test that accounts for

the correlation between methylation of CpG dinucleotides and

methylation data missing at random [16,18]. When applied to the

analysis of single CpG dinucleotides without adjustment for

covariates, a linear mixed model and a t-test yield identical results.

For the analysis of the complete IGF2 DMR, methylation data all

CpG dinucleotides were entered in the model with the study

subject identifier as a random effect to account for the correlation

between CpG dinucleotides. The CpG dinucleotide identifier, the

exposure status and other traits (e.g., SAM concentration or birth

weight) or covariates (e.g., bisulfite plate) were entered as fixed

effects. When testing single CpG dinucleotides, the study subject

and CpG nucleotide identifiers were removed from the linear

mixed model. Before testing independent associations of quanti-

tative traits with IGF2 DMR methylation, Z-scores were calculated

so that the resulting estimated effect size indicates the methylation

change per standard deviation (SD) change in the parameter

tested. Z-score does not affect a variable otherwise than

standardising the mean to 0 and the SD to 1 and assists in

interpreting the results.

The p-value of the significant association of periconceptional

folic acid use and IGF2 DMR methylation was additionally

adjusted for maternal education. The p-value for the significant

association between maternal SAM and IGF2 DMR methylation

Folate and IGF2-Methylation
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was also adjusted for maternal education and the SAM

concentration of the child. The p-value for the significant

association between IGF2 DMR methylation and birth weight

was additionally adjusted for periconceptional folic acid use and

gestational age at delivery. All p-vales were two-sided and all

statistical analyses were performed using SPSS 16.0.
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