Skip to main content

Assessment of the Phytochemical Constituents and Metabolites in the Medicinal Plants and Herbal Medicine Used in the Treatment and Management of Respiratory Diseases

  • Living reference work entry
  • First Online:
Herbal Medicine Phytochemistry

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 39 Accesses

Abstract

Worldwide, chronic obstructive pulmonary disease, asthma, lung cancer, and cystic fibrosis are some of the top causes of death and morbidity. As a result, these illnesses place a significant burden on healthcare systems, economies, and societies in many nations. Chronic respiratory illnesses impact the respiratory airways, lung parenchyma, and pulmonary vasculature, among other parts of the respiratory system. Respiratory disorders are a fairly frequent diagnosis in children, adolescents, and adults in the era of air pollution. Both upper and lower respiratory system disorders can have a significant negative impact on overall health as well as economic and psychological burdens. Because they are eco-friendly and have few side effects, plant-based solutions are receiving a lot of attention as a means of treating and preventing health issues. It is believed that active plant contact and exposure to nature are good for both physical and mental health. The immunological and cardiovascular systems are the main targets of plant-based medications. The medicinal properties of both terrestrial and marine botanicals are an effective control of a variety of disorders. Biologically active compounds with distinct values may be isolated from both. Therefore, the main aim of this chapter is to know the potential of pulmonary diseases and to provide the knowledge of plant therapy or some medicinal herbs for curing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AYUSH:

Ayurveda, Yoga and Naturopathy, Unani, Siddha, and Homeopathy

ACE2 :

Angiotensin-converting enzyme

AKT :

Ak strain transforming

BAX:

Bcl-2-associated X protein

CD :

Cluster of differentiation

CDK:

Cyclin-dependent kinases

COPD:

Chronic obstructive pulmonary disease

COVID-19:

Corona virus disease – 2019

CXCR4:

C-X-C motif chemokine receptor 4

DMDS:

Dimethyl disulphide

ET:

Endotracheal Tube

FEV:

Forced expiratory volume

GSH:

Glutathione

HIV:

Human immunodeficiency virus

HUVEC:

Human umbilical vein endothelial cells

LOX:

Lipoxygenase

MCT:

Medium chain triglycerides

MDA :

Malondialdehyde

NOS :

Nitric oxide synthase

PAP:

Pulmonary artery pressure

PASMC :

Pulmonary artery smooth muscle cells

PDE:

Phosphodiesterase enzyme

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

RVH:

Right ventricular hypertrophy

RVSP:

Right Ventricular Systolic Pressure

SARS CoV-2:

Severe acute respiratory syndrome coronavirus 2

SOD:

Superoxide dismutases

TGF:

Transforming growth factor

TMS :

Transcranial magnetic stimulation

VEGF:

Vascular endothelial growth factor

WBC:

White blood cells

References

  1. Cheeke P (2009) Applications of saponins as feed additives in poultry production. In: Proceedings of the 20th Australian poultry science symposium, Sydney, Australia, p 50, December

    Google Scholar 

  2. Dagli N, Dagli R, Mahmoud RS, Baroudi K (2015) Essential oils, their therapeutic properties, and implication in dentistry: a review. J Int Soc Prev Community Dent 5(5):335

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kumar M, Changan S, Tomar M, Prajapati U, Saurabh V, Hasan M et al (2021) Custard apple (Annona squamosa L.) leaves: nutritional composition, phytochemical profile, and health-promoting biological activities. Biomol Ther 11(5):614

    CAS  Google Scholar 

  4. Jasemi SV, Khazaei H, Aneva IY, Farzaei MH, Echeverría J (2020) Medicinal plants and phytochemicals for the treatment of pulmonary hypertension. Front Pharmacol 11:145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee MS, Lee J, Park BJ, Miyazaki Y (2015) Interaction with indoor plants may reduce psychological and physiological stress by suppressing autonomic nervous system activity in young adults: a randomized crossover study. J Physiol Anthropol 34(1):1–6

    Article  CAS  Google Scholar 

  6. Bringslimark T, Hartig T, Patil GG (2009) The psychological benefits of indoor plants: a critical review of the experimental literature. J Environ Psychol 29(4):422–433

    Article  Google Scholar 

  7. Jiang B, Li D, Larsen L, Sullivan WC (2016) A dose-response curve describing the relationship between urban tree cover density and self-reported stress recovery. Environ Behav 48(4):607–629

    Article  Google Scholar 

  8. Jiang B, Larsen L, Deal B, Sullivan WC (2015) A dose–response curve describing the relationship between tree cover density and landscape preference. Landsc Urban Plan 139:16–25

    Article  Google Scholar 

  9. Dela Cruz M, Christensen JH, Thomsen JD, Müller R (2014) Can ornamental potted plants remove volatile organic compounds from indoor air? – a review. Environ Sci Pollut Res 21:13909–13928

    Article  Google Scholar 

  10. Kim KJ, Jeong MI, Lee DW, Song JS, Kim HD, Yoo EH et al (2010) Variation in formaldehyde removal efficiency among indoor plant species. HortScience 45(10):1489–1495

    Article  Google Scholar 

  11. Yang DS, Pennisi SV, Son KC, Kays SJ (2009) Screening indoor plants for volatile organic pollutant removal efficiency. HortScience 44(5):1377–1381

    Article  Google Scholar 

  12. Janhäll S (2015) Review on urban vegetation and particle air pollution–deposition and dispersion. Atmos Environ 105:130–137

    Article  Google Scholar 

  13. Shepherd D, Welch D, Dirks KN, McBride D (2013) Do quiet areas afford greater health-related quality of life than noisy areas? Int J Environ Res Public Health 10(4):1284–1303

    Article  PubMed  PubMed Central  Google Scholar 

  14. Van Renterghem T, Forssén J, Attenborough K, Jean P, Defrance J, Hornikx M, Kang J (2015) Using natural means to reduce surface transport noise during propagation outdoors. Appl Acoust 92:86–101

    Article  Google Scholar 

  15. Coccolo S, Pearlmutter D, Kaempf J, Scartezzini JL (2018) Thermal comfort maps to estimate the impact of urban greening on the outdoor human comfort. Urban For Urban Green 35:91–105

    Article  Google Scholar 

  16. Rawal G, Yadav S, Kumar R (2018) Acute respiratory distress syndrome: an update and review. J Transl Intern Med 6(2):74–77

    Article  Google Scholar 

  17. Confalonieri M, Salton F, Fabiano F (2017) Acute respiratory distress syndrome. Eur Respir Rev 26(144):160116

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chalmers JD (2017) Management of chronic airway diseases: what can we learn from real-life data? COPD: J Chron Obstruct Pulmon Dis 14(sup1):S1–S2

    Article  Google Scholar 

  19. Alsuhaibani S, Khan MA (2017) Immune-stimulatory and therapeutic activity of Tinospora cordifolia: double-edged sword against salmonellosis. J Immunol Res 2017:1787803

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bhalla G, Kaur S, Kaur J, Kaur R, Raina P (2017) Antileishmanial and immunomodulatory potential of Ocimum sanctum Linn. and Cocos nucifera Linn. in murine visceral leishmaniasis. J Parasit Dis 41:76–85

    Article  PubMed  Google Scholar 

  21. Patgiri B, Umretia BL, Vaishnav PU, Prajapati PK, Shukla VJ, Ravishankar B (2014) Anti-inflammatory activity of Guduchi Ghana (aqueous extract of Tinospora Cordifolia Miers.). Ayu 35(1):108

    Article  PubMed  PubMed Central  Google Scholar 

  22. More P, Pai K (2011) Immunomodulatory effects of Tinospora cordifolia (Guduchi) on macrophage activation. Biol Med 3(2):134–140

    CAS  Google Scholar 

  23. Kumar S, Kamboj J, Sharma S (2011) Overview for various aspects of the health benefits of Piper longum linn. fruit. J Acupunct Meridian Stud 4(2):134–140

    Article  PubMed  Google Scholar 

  24. Lampariello LR, Cortelazzo A, Guerranti R, Sticozzi C, Valacchi G (2012) The magic velvet bean of Mucuna pruriens. J Tradit Complement Med 2(4):331–339

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jiang ZY, Liu WF, Zhang XM, Luo J, Ma YB, Chen JJ (2013) Anti-HBV active constituents from Piper longum. Bioorg Med Chem Lett 23(7):2123–2127

    Article  CAS  PubMed  Google Scholar 

  26. Cohen MM (2014) Tulsi-Ocimum sanctum: a herb for all reasons. J Ayurveda Integr Med 5(4):251

    Article  PubMed  PubMed Central  Google Scholar 

  27. Patil GG, Mali PY, Bhadane VV (2008) Folk remedies used against respiratory disorders in Jalgaon district, Maharashtra. Indian J Nat Prod Resour 7(4):354–358

    Google Scholar 

  28. Kyokong O, Charuluxananan S, Muangmingsuk V, Rodanant O, Subornsug K, Punyasang W (2002) Efficacy of chamomile-extract spray for prevention of post-operative sore throat. J Med Assoc Thai 85:S180–S185

    PubMed  Google Scholar 

  29. Roy P, Abdulsalam FI, Pandey DK, Bhattacharjee A, Eruvaram NR, Malik T (2015) Evaluation of antioxidant, antibacterial, and antidiabetic potential of two traditional medicinal plants of India: Swertia cordata and Swertia chirayita. Pharm Res 7(5s):S57–S62

    Google Scholar 

  30. Singh KP, Upadhyay B, Pra R, Kumar A (2010) Screening of Adhatoda vasica Nees as a putative HIV-protease inhibitor. J Phytology 2(4):78–82

    Google Scholar 

  31. Balkrishna A, Pokhrel S, Singh J, Varshney A (2020) Withanone from Withania somnifera may inhibit novel coronavirus (COVID-19) entry by disrupting interactions between viral S-protein receptor binding domain and host ACE2 receptor. https://doi.org/10.21203/rs.3.rs-17806/v1

  32. Horníčková J, Kubec R, Cejpek K, Velíšek J, Ovesná J, Stavělíková H (2010) Profiles of S-alk (en) ylcysteine sulfoxides in various garlic genotypes. Czech J Food Sci 28(4):298–308

    Article  Google Scholar 

  33. Lanzotti V, Scala F, Bonanomi G (2014) Compounds from allium species with cytotoxic and antimicrobial activity. Phytochem Rev 13:769–791

    Article  CAS  Google Scholar 

  34. Bhuiyan FR, Howlader S, Raihan T, Hasan M (2020) Plants metabolites: possibility of natural therapeutics against the COVID-19 pandemic. Front Med 7:444

    Article  Google Scholar 

  35. Chu CC, Wu WS, Shieh JP, Chu HL, Lee CP, Duh PD (2017) The anti-inflammatory and vasodilating effects of three selected dietary organic sulfur compounds from allium species. J Funct Biomater 8(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sobolewska D, Podolak I, Makowska-Wąs J (2015) Allium ursinum: botanical, phytochemical and pharmacological overview. Phytochem Rev 14:81–97

    Article  CAS  PubMed  Google Scholar 

  37. Oszmianski J, Kolniak-Ostek J, Wojdyło A (2013) Characterization and content of flavonol derivatives of Allium ursinum L. plant. J Agric Food Chem 61(1):176–184

    Article  CAS  PubMed  Google Scholar 

  38. Lines TC, Ono M (2006) FRS 1000, an extract of red onion peel, strongly inhibits phosphodiesterase 5A (PDE 5A). Phytomedicine 13(4):236–239

    Article  CAS  PubMed  Google Scholar 

  39. Kass DA, Champion HC, Beavo JA (2007) Phosphodiesterase type 5: expanding roles in cardiovascular regulation. Circ Res 101(11):1084–1095

    Article  CAS  PubMed  Google Scholar 

  40. Bombicz M, Priksz D, Varga B, Kurucz A, Kertész A, Takacs A et al (2017) A novel therapeutic approach in the treatment of pulmonary arterial hypertension: Allium ursinum liophylisate alleviates symptoms comparably to sildenafil. Int J Mol Sci 18(7):1436

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rosado-Vallado M, Brito-Loeza W, Mena-Rejon GJ, Quintero-Marmol E, Flores-Guido JS (2000) Antimicrobial activity of Fabaceae species used in Yucatan traditional medicine. Fitoterapia 71(5):570–573

    Article  CAS  PubMed  Google Scholar 

  42. Welsh D, Mortimer H, Kirk A, Peacock A (2005) The role of p38 mitogen-activated protein kinase in hypoxia-induced vascular cell proliferation: an interspecies comparison. Chest 128(6):573S–574S

    Article  PubMed  Google Scholar 

  43. Bouea SM, Wiese TE, Nehls S, Burow ME, Elliott S, Carter-Wientjes CH, Shih BY, Mclachlan JA, Cleveland TE (2003) Evaluation of the estrogenic effects of legume extracts containing phytoestrogens. J Agric Food Chem 51:2193–2199

    Article  Google Scholar 

  44. Wang LD, Qiu XQ, Tian ZF, Zhang YF, Li HF (2008) Inhibitory effects of genistein and resveratrol on Guinea pig gallbladder contractility in vitro. World J Gastroenterol: WJG 14(31):4955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tan X, Chai J, Bi SC, Li JJ, Li WW, Zhou JY (2012) Involvement of matrix metalloproteinase-2 in medial hypertrophy of pulmonary arterioles in broiler chickens with pulmonary arterial hypertension. Vet J 193(2):420–425

    Article  CAS  PubMed  Google Scholar 

  46. Simoncini T, Fornari L, Mannella P, Caruso A, Garibaldi S, Baldacci C, Genazzani AR (2005) Activation of nitric oxide synthesis in human endothelial cells by red clover extracts. Menopause 12(1):69–77

    Article  PubMed  Google Scholar 

  47. Gruenwald J, Graubaum HJ, Busch R (2005) Efficacy and tolerability of a fixed combination of thyme and primrose root in patients with acute bronchitis. Arzneimittelforschung 55(11):669–676

    CAS  PubMed  Google Scholar 

  48. Guo R, Pittler MH, Ernst E (2006) Herbal medicines for the treatment of COPD: a systematic review. Eur Respir J 28(2):330–338

    Article  CAS  PubMed  Google Scholar 

  49. Wienkötter N, Höpner D, Schütte U, Bauer K, Begrow F, El-Dakhakhny M, Verspohl EJ (2008) The effect of nigellone and thymoquinone on inhibiting trachea contraction and mucociliary clearance. Planta Med 74(02):105–108

    Article  PubMed  Google Scholar 

  50. Singh RP, Banerjee S, Rao AR (2001) Modulatory influence of Andrographis paniculata on mouse hepatic and extrahepatic carcinogen metabolizing enzymes and antioxidant status. Phytother Res 15(5):382–390

    Article  CAS  PubMed  Google Scholar 

  51. Huang ST, Yang RC, Lee PN, Yang SH, Liao SK, Chen TY, Pang JHS (2006) Anti-tumor and anti-angiogenic effects of Phyllanthus urinaria in mice bearing Lewis lung carcinoma. Int Immunopharmacol 6(6):870–879

    Article  CAS  PubMed  Google Scholar 

  52. Garodia P, Ichikawa H, Malani N, Sethi G, Aggarwal BB (2007) From ancient medicine to modern medicine: ayurvedic concepts of health and their role in inflammation and cancer. J Soc Integr Oncol 5(1):25–37

    Article  PubMed  Google Scholar 

  53. Prakash PAGN, Gupta N (2005) Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: a short review. Indian J Physiol Pharmacol 49(2):125

    CAS  PubMed  Google Scholar 

  54. Kurashima K, Takaku Y, Ohta C, Takayanagi N, Yanagisawa T, Kanauchi T, Takahashi O (2017) Smoking history and emphysema in asthma–COPD overlap. Int J Chron Obstruct Pulmon Dis 12:3523–3532

    Article  PubMed  PubMed Central  Google Scholar 

  55. Temkitthawon P, Changwichit K, Khorana N, Viyoch J, Suwanborirux K, Ingkaninan K (2017) Phenanthrenes from Eulophia macrobulbon as novel phosphodiesterase-5 inhibitors. Nat Prod Commun 12(1):1934578X1701200121

    CAS  Google Scholar 

  56. Wisutthathum S, Demougeot C, Totoson P, Adthapanyawanich K, Ingkaninan K, Temkitthawon P, Chootip K (2018) Eulophia macrobulbon extract relaxes rat isolated pulmonary artery and protects against monocrotaline-induced pulmonary arterial hypertension. Phytomedicine 50:157–165

    Article  CAS  PubMed  Google Scholar 

  57. Espley RV, Butts CA, Laing WA, Martell S, Smith H, McGhie TK et al (2014) Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice. J Nutr 144(2):146–154

    Article  CAS  PubMed  Google Scholar 

  58. Hua C, Zhao J, Wang H, Chen F, Meng H, Chen L et al (2018) Apple polyphenol relieves hypoxia-induced pulmonary arterial hypertension via pulmonary endothelium protection and smooth muscle relaxation: in vivo and in vitro studies. Biomed Pharmacother 107:937–944

    Article  CAS  PubMed  Google Scholar 

  59. Dong MS, Jung SH, Kim HJ, Kim JR, Zhao LX, Lee ES et al (2004) Structure-related cytotoxicity and anti-hepatofibric effect of asiatic acid derivatives in rat hepatic stellate cell-line, HSC-T6. Arch Pharm Res 27:512–517

    Article  CAS  PubMed  Google Scholar 

  60. Wang X, Cai X, Wang W, Jin Y, Chen M, Huang X et al (2018) Effect of asiaticoside on endothelial cells in hypoxia-induced pulmonary hypertension. Mol Med Rep 17(2):2893–2900

    CAS  PubMed  Google Scholar 

  61. Wang XB, Wang W, Zhu XC, Ye WJ, Cai H, Wu PL et al (2015) The potential of asiaticoside for TGF-β1/Smad signaling inhibition in prevention and progression of hypoxia-induced pulmonary hypertension. Life Sci 137:56–64

    Article  CAS  PubMed  Google Scholar 

  62. Auyeung KK, Han QB, Ko JK (2016) Astragalus membranaceus: a review of its protection against inflammation and gastrointestinal cancers. Am J Chin Med 44(01):1–22

    Article  PubMed  Google Scholar 

  63. Li G, Gai X, Li Z, Chang R, Qi Y, Zhaxi D et al (2016) Preliminary study of active component and mechanism of Rhodiola algida var. tangutica on inducing rat pulmonary artery vasorelaxation. J Qin Med Coll 1:40–45

    Google Scholar 

  64. Li HX, Sze SCW, Tong Y, Ng TB (2009) Production of Th1-and Th2-dependent cytokines induced by the Chinese medicine herb, Rhodiola algida, on human peripheral blood monocytes. J Ethnopharmacol 123(2):257–266

    Article  CAS  PubMed  Google Scholar 

  65. Nan X, Su S, Ma K, Ma X, Wang X, Zhaxi D et al (2018) Bioactive fraction of Rhodiola algida against chronic hypoxia-induced pulmonary arterial hypertension and its anti-proliferation mechanism in rats. J Ethnopharmacol 216:175–183

    Article  CAS  PubMed  Google Scholar 

  66. Mohanty IR, Arya DS, Gupta SK (2008) Withania somnifera provides cardioprotection and attenuates ischemia–reperfusion induced apoptosis. Clin Nutr 27(4):635–642

    Article  PubMed  Google Scholar 

  67. Ojha SK, Arya DS (2009) Withania somnifera Dunal (Ashwagandha): a promising remedy for cardiovascular diseases. World J Med Sci 4(2):156–158

    Google Scholar 

  68. Ichikawa H, Takada Y, Shishodia S, Jayaprakasam B, Nair MG, Aggarwal BB (2006) Withanolides potentiate apoptosis, inhibit invasion, and abolish osteoclastogenesis through suppression of nuclear factor-κB (NF-κB) activation and NF-κB–regulated gene expression. Mol Cancer Ther 5(6):1434–1445

    Article  CAS  PubMed  Google Scholar 

  69. Occhiuto F, Limardi F (1994) Comparative effects of the flavonoids luteolin, apiin and rhoifolin on experimental pulmonary hypertension in the dog. Phytother Res 8(3):153–156

    Article  CAS  Google Scholar 

  70. Yeung AWK, Tzvetkov NT, Balacheva AA, Georgieva MG, Gan RY, Jozwik A et al (2020) Lignans: quantitative analysis of the research literature. Front Pharmacol 11:37

    Article  PubMed  PubMed Central  Google Scholar 

  71. Testa JR, Bellacosa A (2001) AKT plays a central role in tumorigenesis. Proc Natl Acad Sci 98(20):10983–10985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Guan Z, Shen L, Liang H, Yu H, Hei B, Meng X, Yang L (2017) Resveratrol inhibits hypoxia-induced proliferation and migration of pulmonary artery vascular smooth muscle cells by inhibiting the phosphoinositide 3-kinase/protein kinase B signaling pathway. Mol Med Rep 16(2):1653–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shivakrupa R, Bernstein A, Watring N, Linnekin D (2003) Phosphatidylinositol 3′-kinase is required for growth of mast cells expressing the kit catalytic domain mutant. Cancer Res 63(15):4412–4419

    CAS  PubMed  Google Scholar 

  74. Paffett ML, Lucas SN, Campen MJ (2012) Resveratrol reverses monocrotaline-induced pulmonary vascular and cardiac dysfunction: a potential role for atrogin-1 in smooth muscle. Vasc Pharmacol 56(1–2):64–73

    Article  CAS  Google Scholar 

  75. Prabhakar NR, Semenza GL (2012) Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev 92(3):967–1003

    Article  CAS  PubMed  Google Scholar 

  76. Kooti W, Servatyari K, Behzadifar M, Asadi-Samani M, Sadeghi F, Nouri B, Zare Marzouni H (2017) Effective medicinal plant in cancer treatment, part 2: review study. J Evid Based Complementary Altern Med 22(4):982–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Clarke R, Lundy FT, McGarvey L (2015) Herbal treatment in asthma and COPD–current evidence. Clin Phytoscience 1(1):1–7

    Article  Google Scholar 

  78. Cesca TG, Faqueti LG, Rocha LW, Meira NA, Meyre-Silva C, De Souza MM et al (2012) Antinociceptive, anti-inflammatory and wound healing features in animal models treated with a semisolid herbal medicine based on Aleurites moluccana L. Willd. Euforbiaceae standardized leaf extract: semisolid herbal. J Ethnopharmacol 143(1):355–362

    Article  CAS  PubMed  Google Scholar 

  79. Gholamnezhad Z, Shakeri F, Saadat S, Ghorani V, Boskabady MH (2019) Clinical and experimental effects of Nigella sativa and its constituents on respiratory and allergic disorders. Avicenna J Phytomed 9(3):195

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kumar D, Prasad DN, Parkash J, Bhatnagar SP, Kumar D (2009) Antiasthmatic activity of ethanolic extract of Aerva lanata Linn. Pharmacologyonline 2:1075–1081

    Google Scholar 

  81. Ram A, Balachandar S, Vijayananth P, Singh VP (2011) Medicinal plants useful for treating chronic obstructive pulmonary disease (COPD): current status and future perspectives. Fitoterapia 82(2):141–151

    Article  PubMed  Google Scholar 

  82. Sharma PK, Johri S, Mehra BL (2010) Efficacy of Vasadi syrup and Shwasaghna Dhuma in the patients of COPD (Shwasa Roga). Ayu 31(1):48

    Article  PubMed  PubMed Central  Google Scholar 

  83. Desai AG, Qazi GN, Ganju RK, El-Tamer M, Singh J, Saxena AK et al (2008) Medicinal plants and cancer chemoprevention. Curr Drug Metab 9(7):581–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gupta VK, Kaushik A, Chauhan DS, Ahirwar RK, Sharma S, Bisht D (2018) Anti-mycobacterial activity of some medicinal plants used traditionally by tribes from Madhya Pradesh, India for treating tuberculosis related symptoms. J Ethnopharmacol 227:113–120

    Article  PubMed  Google Scholar 

  85. Hussain Z, Mohammad P, Sadozai SK, Khan KM, Nawaz Y, Perveen S (2011) Extraction of anti-pneumonia fractions from the leaves of sugar beets Beta vulgaris. J Pharm Res 4(12):4783–4785

    Google Scholar 

  86. Asadbeigi M, Mohammadi T, Rafieian-Kopaei M, Saki K, Bahmani M, Delfan M (2014) Traditional effects of medicinal plants in the treatment of respiratory diseases and disorders: an ethnobotanical study in the Urmia. Asian Pac J Trop Med 7:S364–S368

    Article  Google Scholar 

  87. Girija PLT, Sivan N (2022) Ayurvedic treatment of COVID-19: a case report. J Ayurveda Integr Med 13(1):100329

    Article  CAS  PubMed  Google Scholar 

  88. Kasote DM, Katyare SS, Hegde MV, Bae H (2015) Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci 11(8):982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pan SY, Zhou SF, Gao SH, Yu ZL, Zhang SF, Tang MK et al (2013) New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid Based Complementary Altern Med 2013:627375

    Article  Google Scholar 

  90. Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG (2017) Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci 114(22):5601–5606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mann J (2002) Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer 2(2):143–148

    Article  CAS  PubMed  Google Scholar 

  92. Kebaili Z, Hameurlaine S, Fellah O, Djermane M, Gherraf N (2019) Assessment of alkaloid content and antibacterial activity of Hyoscyamus albus and Hyoscyamus muticus collected in two different climatic regions in Algeria. J Biochem Technol 10(1):1

    CAS  Google Scholar 

  93. Hanif A, Juahir H, Lananan F, Kamarudin MKA, Adiana G, Azemin A, Yusra AI (2018) Spatial variation of Melaleuca cajuputi powell essential oils. J Fundam Appl Sci 10(1S):139–155

    CAS  Google Scholar 

  94. Fellah O, Hameurlaine S, Gherraf N, Zellagui A, Ali T, Abidi A et al (2018) Anti-proliferative activity of ethyl acetate extracts of grown at different climatic conditions in Algeria. Acta Sci Nat 5(2):23–31

    CAS  Google Scholar 

  95. Sharrock S, Jones M (2009) Conserving Europe’s threatened plants: progress towards target 8 of the global strategy for plant conservation. BGCI, Richmond

    Google Scholar 

  96. Maridass M, De Britto AJ (2008) Origins of plant derived medicines. Ethnobot Leafl 2008(1):44

    Google Scholar 

Download references

Acknowledgment

We would like to extend our sincere appreciation and gratitude to the Department of Agronomy at the School of Agriculture at Lovely Professional University, Punjab, 144411, India.

Conflicts of Interest

A conflict of interest has not been identified.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kumar, P., Saini, L., Sharma, M. (2023). Assessment of the Phytochemical Constituents and Metabolites in the Medicinal Plants and Herbal Medicine Used in the Treatment and Management of Respiratory Diseases. In: Izah, S.C., Ogwu, M.C., Akram, M. (eds) Herbal Medicine Phytochemistry. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-21973-3_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21973-3_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21973-3

  • Online ISBN: 978-3-031-21973-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics