Skip to main content
Log in

Mitochondrial dysregulation and protection in cisplatin nephrotoxicity

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Nephrotoxicity is a major side effect of cisplatin in chemotherapy. Pathologically, cisplatin nephrotoxicity is characterized by cell injury and death in renal tubules. The research in the past decade has gained significant understanding of the cellular and molecular mechanisms of tubular cell death, revealing a central role of mitochondrial dysregulation. The pathological changes in mitochondria in cisplatin nephrotoxicity are mainly triggered by DNA damage response, pro-apoptotic protein attack, disruption of mitochondrial dynamics, and oxidative stress. As such, inhibitory strategies targeting these cytotoxic events may provide renal protection. Nonetheless, ideal approaches for renoprotection should not only protect kidneys but also enhance the anticancer efficacy of cisplatin in chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arany I, Safirstein RL (2003) Cisplatin nephrotoxicity. Semin Nephrol 23(5):460–464

    Article  CAS  PubMed  Google Scholar 

  • Beyer J, Rick O, Weinknecht S, Kingreen D, Lenz K, Siegert W (1997) Nephrotoxicity after high-dose carboplatin, etoposide and ifosfamide in germ-cell tumors: incidence and implications for hematologic recovery and clinical outcome. Bone Marrow Transplant 20(10):813–819

    Article  CAS  PubMed  Google Scholar 

  • Boyce M, Yuan J (2006) Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 13(3):363–373

    Article  CAS  PubMed  Google Scholar 

  • Brooks C, Wei Q, Feng L, Dong G, Tao Y, Mei L, Xie Z, Dong Z (2007) Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with Mitofusins. Proc Natl Acad Sci USA 104:11649–11654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brooks C, Wei Q, Cho SG, Dong Z (2009) Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J Clin Invest 119(5):1275–1285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brooks C, Cho SG, Wang CY, Yang T, Dong Z (2011) Fragmented mitochondria are sensitized to Bax insertion and activation during apoptosis. Am J Physiol Cell Physiol 300(3):C447–C455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chan DC (2012) Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46:265–287

    Article  CAS  PubMed  Google Scholar 

  • Cho SG, Du Q, Huang S, Dong Z (2010) Drp1 dephosphorylation in ATP depletion-induced mitochondrial injury and tubular cell apoptosis. Am J Physiol Renal Physiol 299(1):F199–F206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dong G, Luo J, Kumar V, Dong Z (2010) Inhibitors of histone deacetylases suppress cisplatin-induced p53 activation and apoptosis in renal tubular cells. Am J Physiol Renal Physiol 298(2):F293–F300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Friedman JR, Nunnari J (2014) Mitochondrial form and function. Nature 505:335–343

    Article  CAS  PubMed  Google Scholar 

  • Gomez Campdera FJ, Gonzalez P, Carrillo A, Estelles MC, Rengel M (1986) Cisplatin nephrotoxicity: symptomatic hypomagnesemia and renal failure. Int J Pediatr Nephrol 7(3):151–152

    CAS  PubMed  Google Scholar 

  • Gonzales-Vitale JC, Hayes DM, Cvitkovic E, Sternberg SS (1977) The renal pathology in clinical trials of cis-platinum (II) diamminedichloride. Cancer 39(4):1362–1371

    Article  CAS  PubMed  Google Scholar 

  • Gordon JA, Gattone VH 2nd (1986) Mitochondrial alterations in cisplatin-induced acute renal failure. Am J Physiol 250(6 Pt 2):F991–F998

    CAS  PubMed  Google Scholar 

  • Hodeify R, Megyesi J, Tarcsafalvi A, Safirstein RL, Price PM (2010) Protection of cisplatin cytotoxicity by an inactive cyclin-dependent kinase. Am J Physiol Renal Physiol 299(1):F112–F120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang M, Dong Z (2008) Regulation and pathological role of p53 in cisplatin nephrotoxicity. J Pharmacol Exp Ther 327(2):300–307

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Wei Q, Wang J, Du Q, Yu J, Zhang L, Dong Z (2006) Regulation of PUMA-α by p53 in cisplatin-induced renal cell apoptosis. Oncogene 25(29):4056–4066

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Pabla N, Murphy RF, Yang T, Yin XM, Degenhardt K, White E, Dong Z (2007) Nutlin-3 protects kidney cells during cisplatin therapy by suppressing Bax/Bak activation. J Biol Chem 282(4):2636–2645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang M, Wei Q, Dong G, Komatsu M, Su Y, Dong Z (2012) Autophagy in proximal tubules protects against acute kidney injury. Kidney Int 82(12):1271–1283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kharbangar A, Khynriam D, Prasad SB (2000) Effect of cisplatin on mitochondrial protein, glutathione, and succinate dehydrogenase in Dalton lymphoma-bearing mice. Cell Biol Toxicol 16(6):363–373

    Article  CAS  PubMed  Google Scholar 

  • Kruidering M, Van de Water B, de Heer E, Mulder GJ, Nagelkerke JF (1997) Cisplatin-induced nephrotoxicity in porcine proximal tubular cells: mitochondrial dysfunction by inhibition of complexes I to IV of the respiratory chain. J Pharmacol Exp Ther 280(2):638–649

    CAS  PubMed  Google Scholar 

  • Lambat Z, Limson JL, Daya S (2002) Cimetidine: antioxidant and metal-binding properties. J Pharm Pharmacol 54(12):1681–1686

    Article  CAS  PubMed  Google Scholar 

  • Lee YM, Bae SY, Won NH, Pyo HJ, Kwon YJ (2009) Alpha-lipoic acid attenuates cisplatin-induced tubulointerstitial injuries through inhibition of mitochondrial bax translocation in rats. Nephron Exp Nephrol 113(4):e104–e112

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Baliga R (2005) Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis. J Am Soc Nephrol 16(7):1985–1992

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Lu X, Nguyen S, Olson JL, Webb HK, Kroetz DL (2013) Epoxyeicosatrienoic acids prevent cisplatin-induced renal apoptosis through a p38 mitogen-activated protein kinase-regulated mitochondrial pathway. Mol Pharmacol 84(6):925–934

    Article  CAS  PubMed  Google Scholar 

  • Livingston Man J, Dong Zheng (2014) Autophagy in acute kidney injury. Semin Nephrol 34(1):17–26

    Article  CAS  PubMed  Google Scholar 

  • Lokeshwar BL (2011) Chemically modified non-antimicrobial tetracyclines are multifunctional drugs against advanced cancers. Pharmacol Res 63(2):146–150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maimaitiyiming H, Li Y, Cui W, Tong X, Norman H, Qi X, Wang S (2013) Increasing cGMP-dependent protein kinase I activity attenuates cisplatin-induced kidney injury through protection of mitochondria function. Am J Physiol Renal Physiol 305(6):F881–F890

    Article  CAS  PubMed  Google Scholar 

  • Megyesi J, Udvarhelyi N, Safirstein RL, Price PM (1996) The p53-independent activation of transcription of p21 WAF1/CIP1/SDI1 after acute renal failure. Am J Physiol Renal Physiol 271(6 Pt 2):1211–1216

    Google Scholar 

  • Megyesi J, Safirstein RL, Price PM (1998) Induction of p21WAF1/CIP1/SDI1 in kidney tubule cells affects the course of cisplatin-induced acute renal failure. J Clin Invest 101(4):777–782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mukhopadhyay P, Horváth B, Zsengellér Z, Zielonka J, Tanchian G, Holovac E, Kechrid M, Patel V, Stillman IE, Parikh SM, Joseph J, Kalyanaraman B, Pacher P (2012) Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy. Free Radic Biol Med 52(2):497–506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagothu KK, Bhatt R, Kaushal GP, Portilla D (2005) Fibrate prevents cisplatin-induced proximal tubule cell death. Kidney Int 68(6):2680–2693

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa M, Nagatomi H, Chang BJ, Sato E, Inoue M (2001) Targeting superoxide dismutase to renal proximal tubule cells inhibits mitochondrial injury and renal dysfunction induced by cisplatin. Arch Biochem Biophys 387(1):78–84

    Article  CAS  PubMed  Google Scholar 

  • Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73(9):994–1007

    Article  CAS  PubMed  Google Scholar 

  • Pabla N, Huang S, Mi QS, Daniel R, Dong Z (2008) ATR-Chk2 signaling in p53 activation and DNA damage response during cisplatin-induced apoptosis. J Biol Chem 283(10):6572–6583

    Article  CAS  PubMed  Google Scholar 

  • Pabla N, Murphy RF, Liu K, Dong Z (2009) The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. Am J Physiol Renal Physiol 296(3):F505–F511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pabla N, Ma Z, McIlhatton MA, Fishel R, Dong Z (2011a) hMSH2 recruits ATR to DNA damage sites for activation during DNA damage-induced apoptosis. J Biol Chem 286(12):10411–10418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pabla N, Dong G, Jiang M, Huang S, Kumar MV, Messing RO, Dong Z (2011b) Inhibition of PKCδ reduces cisplatin-induced nephrotoxicity without blocking chemotherapeutic efficacy in mouse models of cancer. J Clin Invest 121(7):2709–2722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Periyasamy-Thandavan S, Jiang M, Wei Q, Smith R, Yin XM, Dong Z (2008) Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int 74(5):631–640

    Article  CAS  PubMed  Google Scholar 

  • Price PM, Yu F, Kaldis P, Aleem E, Nowak G, Safirstein RL, Megyesi J (2006) Dependence of cisplatin-induced cell death in vitro and in vivo on cyclin-dependent kinase 2. J Am Soc Nephrol 17(9):2434–2442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramesh G, Reeves WB (2002) TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest 110(6):835–842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Razzaque MS, Koji T, Kumatori A, Taguchi T (1999) Cisplatin-induced apoptosis in human proximal tubular epithelial cells is associated with the activation of the Fas/Fas ligand system. Histochem Cell Biol 111(5):359–365

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues MA, Rodrigues JL, Martins NM, Barbosa F, Curti C, Santos NA, Santos AC (2011) Carvedilol protects against cisplatin-induced oxidative stress, redox state unbalance and apoptosis in rat kidney mitochondria. Chem Biol Interact 189(1–2):45–51

    Article  CAS  PubMed  Google Scholar 

  • Seth R, Yang C, Kaushal V, Shah SV, Kaushal GP (2005) p53-dependent caspase-2 activation in mitochondrial release of apoptosis-inducing factor and its role in renal tubular epithelial cell injury. J Biol Chem 280:31230–31239

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama S, Hayakawa M, Kato T, Hanaki Y, Shimizu K, Ozawa T (1989) Adverse effects of anti-tumor drug, cisplatin, on rat kidney mitochondria: disturbances in glutathione peroxidase activity. Biochem Biophys Res Commun 159(3):1121–1127

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Kimura T, Takabatake Y, Namba T, Kaimori J, Kitamura H, Matsui I, Niimura F, Matsusaka T, Fujita N, Yoshimori T, Isaka Y, Rakugi H (2012) Autophagy guards against cisplatin-induced acute kidney injury. Am J Pathol 180(2):517–525

    Article  CAS  PubMed  Google Scholar 

  • Tanabe K, Tamura Y, Lanaspa MA, Miyazaki M, Suzuki N, Sato W, Maeshima Y, Schreiner GF, Villarreal FJ, Johnson RJ, Nakagawa T (2012a) Epicatechin limits renal injury by mitochondrial protection in cisplatin nephropathy. Am J Physiol Renal Physiol 303(9):F1264–F1274

    Article  CAS  PubMed  Google Scholar 

  • Tanabe K, Tamura Y, Lanaspa MA, Miyazaki M, Suzuki N, Sato W, Maeshima Y, Schreiner GF, Villarreal FJ, Johnson RJ, Nakagawa T (2012b) Epicatechin limits renal injury by mitochondrial protection in cisplatin nephropathy. Am J Physiol Renal Physiol 303(9):F1264–F1274

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wei Q, Wang CY, Hill WD, Hess DC, Dong Z (2004) Minocycline up-regulates Bcl-2 and protects against cell death in mitochondria. J Biol Chem 279(19):19948–19954

    Article  CAS  PubMed  Google Scholar 

  • Wangila GW, Nagothu KK, Steward R 3rd, Bhatt R, Iyere PA, Willingham WM, Sorenson JR, Shah SV, Portilla D (2006) Prevention of cisplatin-induced kidney epithelial cell apoptosis with a Cu superoxide dismutase-mimetic [copper2II(3,5-ditertiarybutylsalicylate)4(ethanol)4]. Toxicol In Vitro 20(8):1300–1312

    Article  CAS  PubMed  Google Scholar 

  • Waseem M, Kaushik P, Parvez S (2013) Mitochondria-mediated mitigatory role of curcumin in cisplatin-induced nephrotoxicity. Cell Biochem Funct 31(8):678–684

    Article  CAS  PubMed  Google Scholar 

  • Wei Q, Dong G, Franklin J, Dong Z (2007) The pathological role of Bax in cisplatin nephrotoxicity. Kidney Int 72(1):53–62

    Article  PubMed  Google Scholar 

  • Wei Q, Dong G, Chen J, Ramesh G, Dong Z (2013a) Role of Bax and Bak in ischemic acute kidney injury shown by global and proximal tubule-specific knockout mouse models. Kidney Int 84(1):138–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wei Q, Dong G, Chen J, Ramesh G, Dong Z (2013b) Role of Bax and Bak in ischemic acute kidney injury shown by global and proximal tubule-specific knockout mouse models. Kidney Int 84(1):138–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang C, Kaushal V, Shah SV, Kaushal GP (2008) Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. Am J Physiol Renal Physiol 294(4):F777–F787

    Article  CAS  PubMed  Google Scholar 

  • Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337(6098):1062–1065

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Zhang L (2005) The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 331(3):851–858

    Article  CAS  PubMed  Google Scholar 

  • Zauli G, Voltan R, Bosco R, Melloni E, Marmiroli S, Rigolin GM, Cuneo A, Secchiero P (2011) Dasatinib plus Nutlin-3 shows synergistic antileukemic activity in both p53 wild-type and p53 mutated B chronic lymphocytic leukemias by inhibiting the Akt pathway. Clin Cancer Res 17(4):762–770

    Article  CAS  PubMed  Google Scholar 

  • Zhan M, Brooks C, Liu F, Sun L, Dong Z (2013) Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int 83(4):568–581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou H, Fujigaki Y, Kato A, Miyaji T, Yasuda H, Tsuji T, Yamamoto T, Yonemura K, Hishida A (2006) Inhibition of p21 modifies the response of cortical proximal tubules to cisplatin in rats. Am J Physiol Renal Physiol 291(1):F225–F235

    Article  CAS  PubMed  Google Scholar 

  • Zsengellér ZK, Ellezian L, Brown D, Horváth B, Mukhopadhyay P, Kalyanaraman B, Parikh SM, Karumanchi SA, Stillman IE, Pacher P (2012) Cisplatin nephrotoxicity involves mitochondrial injury with impaired tubular mitochondrial enzyme activity. J Histochem Cytochem 60(7):521–529

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was sponsored by National Natural Science Foundation of China (81370791), the key project of the Hunan Province Natural Science Foundation, China (No. 2009TP-1066-2), and the National Institutes of Health and Department of Veterans Administration of USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Liu, H., Liu, F. et al. Mitochondrial dysregulation and protection in cisplatin nephrotoxicity. Arch Toxicol 88, 1249–1256 (2014). https://doi.org/10.1007/s00204-014-1239-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1239-1

Keywords

Navigation