Skip to main content

Advertisement

Log in

Phytoconstituents for Boosting the Stem Cells Used in Regenerative Medicine

  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Stem cells are the group of undifferentiated or partially differentiated cells which have the potential to distinguish in various forms of cells. These cells are found in both embryonic and adult stages, but their properties are slightly different in their functions. Tissue regeneration and homeostasis are dependent on the activity and viability of adult stem cells. Stem cells respond to the dietary signals. So phytochemicals and vitamins, having antioxidant, chemo preventive, and anti-inflammatory properties, can alter the functions and renewal activities of stem cells. In this review, we have focused on how different phytochemicals and vitamins can change the microenvironment of different stem cells to control their activities.

Recent Findings

Recent findings have reported that phenols, flavonoids, sterols, alkaloids, etc., including different vitamins, are critical for stem cell growth and regeneration. These biomolecules can stimulate major signalling pathways and key transcription factors to regulate self-renewal and differentiation of stem cell sub-populations.

Summary

In this review, we have summarised different stem cell types with their diet-induced signals responding to specific plant metabolites. It has also been discussed about the possibility to target the biomolecules for therapeutic dietary interventions or mimetics for stem cell regeneration physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References  

  1. Kolios G, Moodley Y. Introduction to stem cellsand regenerative medicine. Respiration. 2013;85:3–10.

    PubMed  Google Scholar 

  2. Denham M, Conley B, Olsson F, Cole TJ, Mollard R. Stem cells: an overview. CurrProtoc Cell Biol. 2005;23:23.1.

    Google Scholar 

  3. Vats A, Bielby RC, Tolley NS, Nerem R, Polak JM. Stem cells. Lancet. 2005;366:592–602.

    CAS  PubMed  Google Scholar 

  4. Lajtha LG. Stem cells and their properties. Proc Can Cancer Conf. 1967;7:31–9.

    CAS  PubMed  Google Scholar 

  5. He S, Nakada D, Morrison SJ. Mechanisms of stem cell self-renewal. Annu Rev Cell DevBiol. 2009;25:377–406.

    CAS  Google Scholar 

  6. Falanga V. Stem cells in tissue repair and regeneration. J Invest Dermatol. 2012;132:1538–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lane S, Rippon HJ, Bishop AE. Stem cells in lung repair and regeneration. Regen Med. 2007;2:407–15.

    CAS  PubMed  Google Scholar 

  8. Fausto N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology. 2004;39:1477–87.

    PubMed  Google Scholar 

  9. Shaker A, Rubin DC. Stem cells: one step closer to gut repair. Nature. 2012;485:181–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Han W, Yu Y, Liu XY. Local signals in stem cell-based bone marrow regeneration. Cell Res. 2006;16:189–95.

    PubMed  Google Scholar 

  11. Angelini A, Castellani C, Vescovo G, Thiene G. Pathological evidence of stem cell regeneration in the heart. Int J Cardiol. 2004;96:499–504.

    PubMed  Google Scholar 

  12. Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ. Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol. 2011;50:280–9.

    CAS  PubMed  Google Scholar 

  13. Mansergh FC, Wride MA, Rancourt DE. Neurons from stem cells: implications for understanding nervous system development and repair. Biochem Cell Biol. 2000;78:613–28.

    CAS  PubMed  Google Scholar 

  14. Bouwens L. Transdifferentiation versus stem cell hypothesis for the regeneration of islet beta-cells in the pancreas. Microsc Res Tech. 1998;43:332–6.

    CAS  PubMed  Google Scholar 

  15. Lodi D, Iannitti T, Palmieri B. Stem cells in clinical practice: applications and warnings. J ExpClin Cancer Res. 2011;30:9.

    Google Scholar 

  16. De la Morena MT, Gatti RA. A history of bone marrow transplantation. Immunol Allergy Clin North Am. 2010;30:1–15.

    PubMed  Google Scholar 

  17. Dameshek W. Bone marrow transplantation; a present-day challenge. Blood. 1957;12:321–3.

    CAS  PubMed  Google Scholar 

  18. Chien KR. Regenerative medicine and human models of human disease. Nature. 2008;453:302–5.

    CAS  PubMed  Google Scholar 

  19. Rossant J. Stem cells from the mammalian blastocyst. Stem Cells. 2001;19:477–82.

    CAS  PubMed  Google Scholar 

  20. De Miguel MP, Fuentes-Julian S, Alcaina Y. Pluripotent stem cells: origin, maintenance and induction. Stem Cell Rev. 2010;6:633–49.

    Google Scholar 

  21. Augello A, Kurth TB, De BC. Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches. Eur Cell Mater. 2010;20:121–33.

    CAS  PubMed  Google Scholar 

  22. Majo F, Rochat A, Nicolas M, Jaoude GA, Barrandon Y. Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature. 2008;456:250–4.

    CAS  PubMed  Google Scholar 

  23. Overturf K, al-Dhalimy M, Ou CN, Finegold M, Grompe M. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am J Pathol. 1997;151:1273–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yao S, Chen S, Clark J, Hao E, Beattie GM, Hayek A, Ding S. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci USA. 2006;103:6907–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Heydarkhan-Hagvall S, Gluck JM, Delman C, Jung M, Ehsani N, Full S, Shemin RJ. The effect of vitronectin on the differentiation of embryonic stem cells in a 3D culture system. Biomaterials. 2012;33:2032–40.

    CAS  PubMed  Google Scholar 

  26. Smart N, Riley PR. The stem cell movement. Circ Res. 2008;102:1155–68.

    CAS  PubMed  Google Scholar 

  27. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    CAS  PubMed  Google Scholar 

  28. Gratwohl A. Heim D Current role of stem cell transplantation in chronic myeloid leukaemia. Best Pract Res Clin Haematol. 2009;22:431–43.

    PubMed  Google Scholar 

  29. Ilic D, Polak JM. Stem cells in regenerative medicine: introduction. Br Med Bull. 2011;98:117–26.

    PubMed  Google Scholar 

  30. Kit CW, Choe CF, Haslinda AAN, Chandralega KN, Salwati S, Yee KT, Chin Tk, Ping WY. A review of placenta and umbilical cord-derived stem cells and the immunomodulatory basis of their therapeutic potential in bronchopulmonary dysplasia. Front Pediatr. 2021;9. https://doi.org/10.3389/fped.2021.615508.

  31. Bajada S, Mazakova I, Ashton BA, Richardson JB, Ashammakhi N. Stem cells in regenerative medicine. Topics in Tissue Engineering. 2008;(4).

  32. Kadiyala S, Young RG, Thiede MA, et al. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant. 1997;6:125–34.

    CAS  PubMed  Google Scholar 

  33. Horwitz EM, Prockop DJ, Fitzpatrick LA, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nature Med. 1999;5:309–13.

    CAS  PubMed  Google Scholar 

  34. Murphy JM, Dixon K, Beck S, Fabian DG, Feldman A, Barry FP. Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum. 2002;46:704–13.

    PubMed  Google Scholar 

  35. Janssens S, Dubois C. Bogaert J et al Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. The Lancet. 2006;367:113–21.

    Google Scholar 

  36. Nuininga JE, van Moerkerk H, Hanssen A, Hulsbergen CA, Oosterwijk-Wakka J, Oosterwijk E, de Gier RP, Schalken JA, van Kuppevelt TH, Feitz WF. A rabbit model to tissue engineer the bladder. Biomaterials. 2004;25(9):1657–61.

    CAS  PubMed  Google Scholar 

  37. Kanematsu A, Yamamoto S, Iwai-Kanai E, Kanatani I, Imamura M, Adam RM, Tabata Y, Ogawa O. Induction of smooth muscle cell-like phenotype in marrow-derived cells among regenerating urinary bladder smooth muscle cells. Am J Pathol. 2005;166(2):565–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Park HC, Shim YS, Ha Y, Yoon SH, Park SR, Choi BH, Park HS. Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng. 2005;11(6):913–22.

    CAS  PubMed  Google Scholar 

  39. Luo S, Chen Y, Zhao L, Qi X, Miao X, Zhou H, Jia L. Effect of nutritional supplement on bone marrow-derived mesenchymalstemcells from aplastic anaemia. British J Nutr. 2018;119:748–58.

    CAS  Google Scholar 

  40. Godoy-Parejo C, Deng C, Zhang Y, Liu W, Chen G. Roles of vitamins in stem cells. Cell Mol Life Sci. 2020;77(9):1771–91. https://doi.org/10.1007/s00018-019-03352-6.

    Article  CAS  PubMed  Google Scholar 

  41. Chen L. Khillan JS A novel signaling by vitamin A/retinolpromotesself renewal of mouse embryonic stem cells by activat-ing PI3K/Aktsignaling pathway via insulin-like growth factor-1 receptor. Stem Cells. 2010;28:57–63.

    CAS  PubMed  Google Scholar 

  42. Wang W, Yang J. Liu H et al Rapid and efficient repro-gramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proc Natl Acad Sci. 2011;108:18283–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang J, Wang W. Ooi J et al Signalling through retinoic acid receptors is required for reprogramming of both mouse embryonic fibroblast cells and epiblast stem cells to induced pluripotent stem cells. Stem Cells. 2015;33:1390–404.

    CAS  PubMed  Google Scholar 

  44. De Angelis MT, Parrotta EI, Santamaria G. Cuda G Short-term retinoic acid treatment sustains pluripotency and suppresses differentiation of human induced pluripotent stem cells. Cell Death Dis. 2018;9:1–13.

    Google Scholar 

  45. Avalos JL, Bever KM. Wolberger C Mechanism of sir-tuin inhibition by nicotinamide: altering the NAD+ cosubstratespecificity of a Sir2 enzyme. Mol Cell. 2005;17:855–68.

    CAS  PubMed  Google Scholar 

  46. Frei B, England L. Ames BN Ascorbate is an outstand-ing antioxidant in human blood plasma. Proc Natl Acad Sci USA. 1989;86:6377–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang P, Li J, Qi Y, Zou Y, Liu L, Tang X, Duan J, Liu H, Zeng G. Vitamin C promotes the proliferation of human adipose-derived stem cells via p53–p21 pathway. Organogenesis. 2016;12(3):143–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hall AC, Juckett MB. The role of vitamin D in hematologic disease and stem cell transplantation. Nutrients. 2013;5(6):2206–21. https://doi.org/10.3390/nu5062206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ito Y, Honda A. Kurokawa M Impact of vitamin D level at diagnosis and transplantation on the prognosis of hematological malignancy: a meta-analysis. Blood Adv. 2022;6(5):1499–511. https://doi.org/10.1182/bloodadvances.2021004958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rahman F, Bordignon B, Culerrier R, et al. Ascorbic acid drives the differentiation of mesoderm-derived embryonic stem cells: involvement of p38 MAPK/CREB and SVCT2 transporter. MolNutr Food Res. 2017;61(5). https://doi.org/10.1002/mnfr.201600506.

  51. Lee Chong T, Ahearn EL. Cimmino L Reprogramming the epigenome with vitamin C. Front Cell DevBiol. 2019;7:1–13.

    Google Scholar 

  52. Torquato P, Ripa O. Giusepponi D et al Analytical strategies to assess the functional metabolome of vitamin E. J Pharm Biomed Anal. 2016;124:399–412.

    CAS  PubMed  Google Scholar 

  53. Bhatti FUR, Kim SJ. Yi A-K et al Cytoprotective role of vitamin E in porcine adipose-tissue-derived mesenchymal stem cells against hydrogen-peroxide-induced oxidative stress. Cell Tissue Res. 2018;374:111–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Malakoutikhah M, Satarian L, Kiani S. Javan M Alphatocopherol increases the proliferation of induced pluripotent stem cell derived neural progenitor cells. Physiol Pharmacol. 2015;19:90–8.

    Google Scholar 

  55. Wu Y, Viana M, Thirumangalathu S. Loeken MR AMP activated protein kinase mediates effects of oxidative stress on embryo gene expression in a mouse model of diabetic embryopathy. Diabetologia. 2012;55:245–54.

    CAS  PubMed  Google Scholar 

  56. Santander N, Lizama C. Parga MJ et al Deficient vitamin E uptake during development impairs neural tube closure in mice lacking lipoprotein receptor SR-BI. Sci Rep. 2017;7:5182.

    PubMed  PubMed Central  Google Scholar 

  57. Na L, Wartenberg M. Nau H et al Anticonvulsant valproic acid inhibits cardiomyocyte differentiation of embryonic stem cells by increasing intracellular levels of reactive oxygen species. Birth Defects Res Part A Clin Mol Teratol. 2003;67:174–80.

    CAS  Google Scholar 

  58. Sauer H, Neukirchen W. Rahimi G et al Involvement of reactive oxygen species in cardiotrophin-1-induced proliferation of cardiomyocytes differentiated from murine embryonic stem cells. Exp Cell Res. 2004;294:313.

    CAS  PubMed  Google Scholar 

  59. Zhang R, Zhang Q, Zou Z, et al. Curcumin supplementation enhances bone marrow mesenchymal stem cells to promote the anabolism of articular chondrocytes and cartilage repair. Cell Transplant. 2021;30:963689721993776.2021.

  60. Narouiepour A, Ebrahimzadeh-bideskan A, Rajabzadeh G, et al. Neural stem cell therapy in conjunction with curcumin loaded in niosomal nanoparticles enhanced recovery from traumatic brain injury. Sci Rep. 2022;12:3572.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Okay E, et al. Cross effects of resveratrol and mesenchymal stem cells on liver regeneration and homing in partially hepatectomized rats. Stem Cell Rev. 2015;11:322–31.

    CAS  Google Scholar 

  62. Shakibaei M, et al. Resveratrol mediated modulation of Sirt-1/Runx2 promotes osteogenic differentiation of mesenchymal stem cells: potential role of Runx2 deacetylation. PLoS ONE. 2012;7:e35712.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Tseng PC, et al. Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. J Bone Miner Res. 2011;26:2552–63.

    CAS  PubMed  Google Scholar 

  64. Wang YJ, Zhao P, Sui BD, et al. Resveratrol enhances the functionality and improves the regeneration of mesenchymal stem cell aggregates. Exp Mol Med. 2018;50:1–15.

    PubMed  PubMed Central  Google Scholar 

  65. Park SJ, et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell. 2012;148:421–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rodgers JT, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434:113–8.

    CAS  PubMed  Google Scholar 

  67. Yoon DS, Choi Y, Choi SM, Park KH, Lee JW. Different effects of resveratrol on early and late passage mesenchymal stem cells through beta-catenin regulation. Biochem Biophys Res Commun. 2015;467:1026–32.

    CAS  PubMed  Google Scholar 

  68. Ren Z, et al. Resveratrol inhibits NF-kB signaling through suppression of p65 and IkappaB kinase activities. Pharmazie. 2013;68:689–94.

    CAS  PubMed  Google Scholar 

  69. Manna SK, Mukhopadhyay A, Aggarwal BB. Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J Immunol. 2000;164:6509–19.

    CAS  PubMed  Google Scholar 

  70. Songsaad A, Gonmanee T, Ruangsawasdi N, et al. Potential of resveratrol in enrichment of neural progenitor-like cell induction of human stem cells from apical papilla. Stem Cell Res Ther. 2020;11:542.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bhaskara VK, Mittal B, Mysorekar VV, Amaresh N, Simal-Gandara J. Resveratrol, cancer and cancer stem cells: A review on past to future. Curr Res Food Sci. 2020;3:284–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Tao Q, Liang C, Ying X, Weikun Q, Jie L, Zheng W, Zheng W, Qinhong X, Wanxing D, Lucas W, Erxi W, Qingyong M, Jiguang M. NAF-1 inhibition by resveratrol suppresses cancer stem cell-like properties and the invasion of pancreatic cancer. Front Oncol 2020;10. https://doi.org/10.3389/fonc.2020.01038.

  73. Pezzolla D, Lopez-Beas J, Lachaud CC, Dominguez-Rodriguez A, Smani T, Hmadcha A, Soria B. Resveratrol ameliorates the maturation process of beta-cell-like cells obtained from an optimized differentiation protocol of human embryonic stem cells. PLoS ONE. 2015;10:e0119904.

    PubMed  PubMed Central  Google Scholar 

  74. Xu S, Sun F, Ren L, Yang H, Tian N, Peng S. Resveratrol controlled the fate of porcine pancreatic stem cells through the Wnt/beta-catenin signaling pathway mediated by Sirt1. PLoS ONE. 2017;12:e0187159.

    PubMed  PubMed Central  Google Scholar 

  75. Rimmele P, Lofek-Czubek S, Ghaffari S. Resveratrol increases the bone marrow hematopoietic stem and progenitor cell capacity. Am J Hematol. 2014;89:E235–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bachstetter AD, Jernberg J, Schlunk A, Vila JL, Hudson C, Cole MJ, Shytle RD, Tan J, Sanberg PR, Sanberg CD, Borlongan C, Kaneko Y, Tajiri N, Gemma C, Bickford PC. Spirulina promotes stem cell genesis and protects against LPS induced declines in neural stem cell proliferation. PLoS ONE. 2010;5(5):e10496.

    PubMed  PubMed Central  Google Scholar 

  77. Gemma C, Mesches MH, Sepesi B, Choo K, Holmes DB, et al. Diets enriched in foods with high antioxidant activity reverse age-induced decreases in cerebellar beta-adrenergic function and increases in proinflammatory cytokines. J Neurosci. 2002;22:6114–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Pugh N, Ross SA, ElSohly HN, ElSohly MA, Pasco DS. Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulinaplatensis, aphanizomenonflos-aquae and Chlorella pyrenoidosa. Planta Med. 2001;67:737–42.

    CAS  PubMed  Google Scholar 

  79. Balachandran P, Pugh ND, Ma G, Pasco DS. Toll-like receptor 2-dependent activation of monocytes by Spirulina polysaccharide and its immune enhancing action in mice. Int Immunopharmacol. 2006;6:1808–14.

    CAS  PubMed  Google Scholar 

  80. Skibola CF, Smith MT. Potential health impacts of excessive flavonoid intake. Free Radical Biol Med. 2000;29(3–4):375–83.

    CAS  Google Scholar 

  81. Hollman PCH, Katan MB. Dietary flavonoids: intake, health effects and bioavailability. Food Chem Toxicol. 1999;37(9–10):937–42.

    CAS  PubMed  Google Scholar 

  82. Kelly GS. Quercetin Monograph Alternative medicine review. A J Clin Ther. 2011;16(2):172–94.

    Google Scholar 

  83. Refat MS, Hamza RZ, Adam AMA, Saad HA, Gobouri AA, Al-Harbi FS, et al. Quercetin/Zinc complex and stem cells: a new drug therapy to ameliorate glycometabolic control and pulmonary dysfunction in diabetes mellitus: structural characterization and genetic studies. PLoSONE. 2021;16(3):e0246265.

    CAS  Google Scholar 

  84. Chen W, Li YM, Yu MH. Astragalus polysaccharides inhibited diabetic cardiomyopathy in hamsters depending on suppression of heart chymase activation. J Diabetes Complications. 2010;24:199–208.

    CAS  PubMed  Google Scholar 

  85. Liu P, Zhao H, Luo Y. Anti-aging implications of Astragalusmembranaceus (Huangqi): A well-known Chinese tonic. Aging Dis. 2017;8:868–86.

    PubMed  PubMed Central  Google Scholar 

  86. Li Y, Jin D, Xie W, Wen L, Chen W, Xu J, et al. PPAR-γ and Wnt regulate the differentiation of MSCs into adipocytes and osteoblasts respectively. Curr Stem Cell Res Ther. 2018;13:185–92.

    CAS  PubMed  Google Scholar 

  87. Weivoda MM, Ruan M, Hachfeld CM, Pederson L, Howe A, Davey RA, et al. Wnt signaling inhibits osteoclast differentiation by activating canonical and noncanonical cAMP/PKA pathways. J Bone Miner Res. 2016;31:65–75.

    CAS  PubMed  Google Scholar 

  88. Lerner UH, Ohlsson C. The WNT system: background and its role in bone. J Intern Med. 2015;277:630–49.

    CAS  PubMed  Google Scholar 

  89. Pan J, Fan Z, Wang Z, Dai Q, Xiang Z, Yuan F, et al. CD36 mediates palmitate acid-induced metastasis of gastric cancer via AKT/GSK-3β/β-catenin pathway. J Exp Clin Cancer Res. 2019;38:52.

    PubMed  PubMed Central  Google Scholar 

  90. Yao C, Gao F, Chen Y, et al. Experimental research of Astragalus polysaccharides collagen sponge in enhancing angiogenesis and collagen synthesis. ZhongguoXiu Fu Chong JianWaiKeZaZhi. 2011;25:1481–5.

    Google Scholar 

  91. Lu J, Chen X, Zhang Y, et al. Astragalus polysaccharide induces anti-inflammatory effects dependent on AMPK activity in palmitate-treated RAW264.7 cells. Int J Mol Med. 2013;31:1463–70.

    CAS  PubMed  Google Scholar 

  92. Auyeung K, Han Q, Ko J. Astragalusmembranaceus: a review of its protection against inflammation and gastrointestinal cancers. Am J Chin Med. 2016;44:1–22.

    PubMed  Google Scholar 

  93. Zhang L, Luo Y, Lu Z, et al. Astragalus polysaccharide inhibits ionizing radiation-induced bystander effects by regulating MAPK/NF-κBsignaling pathway in bone mesenchymal stem cells (BMSCs). Med Sci Monit. 2018;24:4649–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Aslanipour B, Gülcemal D, Nalbantsoy A, Yusufoglu H, Bedir E. Secondary metabolites from Astragaluskarjaginii BORISS and the evaluation of their effects on cytokine release and hemolysis. Fitoterapia. 2017;122:26–33.

    CAS  PubMed  Google Scholar 

  95. Lin T, Liu Y, Shi M, Liu X, Li L, Liu Y, Zhao G. Promotive effect of ginsenoside Rd on proliferation of neural stem cells in vivo and in vitro. J Ethnopharmacol. 2012;142(3):754–61.

    CAS  PubMed  Google Scholar 

  96. Wang Y, Liu X, Hu T, Li X, Chen Y, Xiao G, Huang J, Chang Y, Zhu Y, Zhang H, Wang Y. Astragalus saponins improves stroke by promoting the proliferation of neural stem cells through phosphorylation of Akt. J Ethnopharmacol. 2021;15(277):114224.

    Google Scholar 

  97. Wang Y, Li M, Xu X, Song M, Tao H, Bai Y. Green tea epigallocatechin-3- gallate (EGCG) promotes neural progenitor cell proliferation and sonic hedgehog pathway activation during adult hippocampal neurogenesis. Mol Nutr Food Res. 2012;56:1292–303.

    CAS  PubMed  Google Scholar 

  98. Lin SY, Kang L, Wang CZ, Huang HH, Cheng TL, Huang HT, Lee MJ, Lin YS, Ho ML, Wang GJ, Chen CH. (−)-Epigallocatechin-3-gallate (EGCG) enhances osteogenic differentiation of human bone marrow mesenchymal stem cells. Molecules. 2018;23(12):3221.

    PubMed  PubMed Central  Google Scholar 

  99. Jin P, Li M, Xu G, Zhang K, Zheng L, Zhao J. Role of (-)-epigallocatechin-3-gallate in the osteogenic differentiation of human bone marrow mesenchymal stem cells: an enhancer oran inducer? Corrigendum in /10.3892/etm.2021.9725. Exp Ther Med. 2015;10(2):828–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Shin J, Jeon H, Park J, Chang M. Epigallocatechin-3-gallate prevents oxidative stress-induced cellular senescence in human mesenchymal stem cells via Nrf2". Int J Mol Med. 2016;38(4):1075–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang X, Zhou C, Zha X, Xu Z, Li L, Liu Y, Xu L, Cui L, Xu D, Zhu B. Apigenin promotes osteogenic differentiation of human mesenchymal stem cells through JNK and p38 MAPK pathways. Mol Cell Biochem. 2015;407:41–50.

    CAS  PubMed  Google Scholar 

  102. Samet I, Villareal MO, Motojima H, Han J, Sayadi S, Isoda H. Olive leaf components apigenin 7-glucoside and luteolin 7-glucoside direct human hematopoietic stem cell differentiation towards erythroid lineage. Differentiation. 2015;89(5):146–55.

    CAS  PubMed  Google Scholar 

  103. Casado-Díaz A, Anter J, Müller S, Winter P, Quesada-Gómez JM, Dorado G. Transcriptomic analyses of the anti-adipogenic effects of oleuropein in human mesenchymal stem cells. Food Function. 2017;8(3):1254–70.

    PubMed  Google Scholar 

  104. Santiago-Mora R, Casado-Díaz A, De Castro MD, Quesada-Gómez JM. Oleuropein enhances osteoblastogenesis and inhibits adipogenesis: the effect on differentiation in stem cells derived from bone marrow. Osteoporos Int. 2011Feb;22:675–84.

    CAS  PubMed  Google Scholar 

  105. Zhang S, Lam KK, Wan JH, Yip CW, Liu HK, Lau QM, Man AH, Cheung CH, Wong LH, Chen HB, Shi J. Dietary phytochemical approaches to stem cell regulation. Journal of Functional Foods. 2020;1(66):103822.

    Google Scholar 

  106. Saulite L, Jekabsons K, Klavins M, Muceniece R, Riekstina U. Effects of malvidin, cyanidin and delphinidin on human adipose mesenchymal stem cell differentiation into adipocytes, chondrocytes and osteocytes. Phytomedicine. 2019;53:86–95.

    CAS  PubMed  Google Scholar 

  107. Lim RZ, Li L, Yong EL, Chew N. STAT-3 regulation of CXCR4 is necessary for the prenylflavonoidIcaritin to enhance mesenchymal stem cell proliferation, migration and osteogenic differentiation. Biochimicaet Biophysica Acta (BBA)-General Subjects. 2018;1862(7):1680–92.

    CAS  Google Scholar 

  108. Fu X, Li S, Zhou S, Wu Q, Jin F, Shi J. Stimulatory effect of icariin on the proliferation of neural stem cells from rat hippocampus. BMC Complement Altern Med. 2018;18(1):1–9.

    Google Scholar 

  109. Qin S, Zhou W, Liu S, Chen P, Wu H. Icariin stimulates the proliferation of rat bone mesenchymal stem cells via ERK and p38 MAPK signaling. Int J Clin Exp Med. 2015;8(5):7125.

    PubMed  PubMed Central  Google Scholar 

  110. Yang P, Guan YQ, Li YL, Zhang L, Zhang L, Li L. Icariin promotes cell proliferation and regulates gene expression in human neural stem cells in vitro. Mol Med Rep. 2016;14(2):1316–22.

    CAS  PubMed  Google Scholar 

  111. Wei Q, He M, Chen M, Chen Z, Yang F, Wang H, Zhang J, He W. Icariin stimulates osteogenic differentiation of rat bone marrow stromal stem cells by increasing TAZ expression. Biomed Pharmacother. 2017;1(91):581–9.

    Google Scholar 

  112. Wu Y, Xia L, Zhou Y, Xu Y, Jiang X. Icariin induces osteogenic differentiation of bone mesenchymal stem cells in a MAPK-dependent manner. Cell Prolif. 2015;48(3):375–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ye Y, Jing X, Li N, Wu Y, Li B, Xu T. Icariin promotes proliferation and osteogenic differentiation of rat adipose-derived stem cells by activating the RhoA-TAZ signaling pathway. Biomed Pharmacother. 2017;1(88):384–94.

    Google Scholar 

  114. Zhai YK, Guo XY, Ge BF, Zhen P, Ma XN, Zhou J, Ma HP, Xian CJ, Chen KM. Icariin stimulates the osteogenic differentiation of rat bone marrow stromal cells via activating the PI3K–AKT–eNOS–NO–cGMP–PKG. Bone. 2014;66:189–98.

    CAS  PubMed  Google Scholar 

  115. Zhang S, Feng P, Mo G, Li D, Li Y, Mo L, Yang Z, Liang D. Icariin influences adipogenic differentiation of stem cells affected by osteoblast-osteoclast co-culture and clinical research adipogenic. Biomed Pharmacother. 2017;1(88):436–42.

    Google Scholar 

  116. Wang Z, Li K, Sun H, Wang J, Fu Z, Liu M. Icariin promotes stable chondrogenic differentiation of bone marrow mesenchymal stem cells in self assembling peptide nanofiber hydrogel scaffolds. Mol Med Rep. 2018;17(6):8237–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang ZC, Sun HJ, Li KH, Fu C, Liu MZ. Icariin promotes directed chondrogenic differentiation of bone marrow mesenchymal stem cells but not hypertrophy in vitro. Exp Ther Med. 2014;8(5):1528–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Jin MS, Shi S, Zhang Y, Yan Y, Sun XD, Liu W, Liu HW. Icariin-mediated differentiation of mouse adipose-derived stem cells into cardiomyocytes. Mol Cell Biochem. 2010Nov;344:1–9.

    CAS  PubMed  Google Scholar 

  119. Sun X, Sun X, Jin X, Zhang X, Liu C, Lei L, Jin L, Liu H. Icariin induces mouse embryonic stem cell differentiation into beating functional cardiomyocytes. Mol Cell Biochem. 2011;349:117–23.

    CAS  PubMed  Google Scholar 

  120. Wo Y, Zhu D, Yu Y, Lou Y. Involvement of NF-κB and AP-1 activation in icariin promoted cardiac differentiation of mouse embryonic stem cells. Eur J Pharmacol. 2008;586(1–3):59–66.

    CAS  PubMed  Google Scholar 

  121. Zhou L, Huang Y, Zhang Y, Zhao Q, Zheng B, Lou Y, Zhu D. mGluR5 stimulating Homer–PIKE formation initiates icariin induced cardiomyogenesis of mouse embryonic stem cells by activating reactive oxygen species. Exp Cell Res. 2013;319(10):1505–14.

    CAS  PubMed  Google Scholar 

  122. Zhuang PW, Cui GZ, Zhang YJ, Zhang MX, Guo H, Zhang JB, Lu ZQ, Isaiah AO, Lin YX. Baicalin regulates neuronal fate decision in neural stem/progenitor cells and stimulates hippocampal neurogenesis in adult rats. CNS Neurosci Ther. 2013;19(3):154–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhao J, Lu S, Yu H, Duan S, Zhao J. Baicalin and ginsenoside Rb1 promote the proliferation and differentiation of neural stem cells in Alzheimer’s disease model rats. Brain Res. 2018;1(1678):187–94.

    Google Scholar 

  124. Morita A, Soga K, Nakayama H, Ishida T, Kawanishi S, Sato EF. Neuronal differentiation of human iPS cells induced by baicalin via regulation of bHLH gene expression. Biochem Biophys Res Commun. 2015;465(3):458–63.

    CAS  PubMed  Google Scholar 

  125. Li M, Tsang KS, Choi ST, Li K, Shaw PC, Lau KF. Neuronal differentiation of C17. 2 neural stem cells induced by a natural flavonoid, baicalin. Chembiochem. 2011;12(3):449–56.

    CAS  PubMed  Google Scholar 

  126. Tang M, Yin M, Tang M, Liang H, Yu C, Hu X, Luo H, Baudis B, Haustein M, Khalil M, Šarić T. Baicalin maintains late-stage functional cardiomyocytes in embryoid bodies derived from murine embryonic stem cells. Cell Physiol Biochem. 2013;32(1):86–99.

    CAS  PubMed  Google Scholar 

  127. Heim M, Frank O, Kampmann G, Sochocky N, Pennimpede T, Fuchs P, Hunziker W, Weber P, Martin I, Bendik I. The phytoestrogen genistein enhances osteogenesis and represses adipogenic differentiation of human primary bone marrow stromal cells. Endocrinology. 2004;145(2):848–59.

    CAS  PubMed  Google Scholar 

  128. Kim MH, Park JS, Seo MS, Jung JW, Lee YS, Kang KS. Genistein and daidzein repress adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells via Wnt/β-catenin signalling or lipolysis. Cell Prolif. 2010;43(6):594–605.

    CAS  PubMed  Google Scholar 

  129. Liao QC, Li YL, Qin YF, Quarles LD, Xu KK, Li R, Zhou HH, Xiao ZS. Inhibition of adipocyte differentiation by phytoestrogen genistein through a potential downregulation of extracellular signal-regulated kinases 1/2 activity. J Cell Biochem. 2008;104(5):1853–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Dai J, Li Y, Zhou H, Chen J, Chen M, Xiao Z. Genistein promotion of osteogenic differentiation through BMP2/SMAD5/RUNX2 signaling. Int J Biol Sci. 2013;9(10):1089.

    PubMed  PubMed Central  Google Scholar 

  131. Liao QC, Xiao ZS, Qin YF, Zhou HH. Genistein stimulates osteoblastic differentiation via p38 MAPK-Cbfa1 pathway in bone marrow culture. Acta PharmacologicaSinica. 2007;28(10):1597–602.

    CAS  Google Scholar 

  132. Pan W, Quarles LD, Song LH, Yu YH, Jiao C, Tang HB, Jiang CH, Deng HW, Li YJ, Zhou HH, Xiao ZS. Genistein stimulates the osteoblastic differentiation via NO/cGMP in bone marrow culture. J Cell Biochem. 2005;94(2):307–16.

    CAS  PubMed  Google Scholar 

  133. Yadav M, Song F, Huang J, Chakravarti A, Jacob NK. Ocimum flavone Orientin as a countermeasure for thrombocytopenia. Sci Rep. 2018;8(1):5075.

    PubMed  PubMed Central  Google Scholar 

  134. Menon AH, Soundarya SP, Sanjay V, Chandran SV, Balagangadharan K, Selvamurugan N. Sustained release of chrysin from chitosan-based scaffolds promotes mesenchymal stem cell proliferation and osteoblast differentiation. Carbohyd Polym. 2018;1(195):356–67.

    Google Scholar 

  135. Zeng W, Yan Y, Zhang F, Zhang C, Liang W. Chrysin promotes osteogenic differentiation via ERK/MAPK activation. Protein Cell. 2013;4:539–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Fan J, Li J, Fan Q. Naringin promotes differentiation of bone marrow stem cells into osteoblasts by upregulating the expression levels of microRNA 20a and downregulating the expression levels of PPARγ. Mol Med Rep. 2015;12(3):4759–65.

    CAS  PubMed  Google Scholar 

  137. Lavrador P, Gaspar VM, Mano JF. Bioinstructive naringin‐loaded micelles for guiding stem cell osteodifferentiation. Adv Healthc Mater. 2018;7(19):1800890.

  138. Liu M, Li Y, Yang ST. Effects of naringin on the proliferation and osteogenic differentiation of human amniotic fluid-derived stem cells. J Tissue Eng Regen Med. 2017;11(1):276–84.

    CAS  PubMed  Google Scholar 

  139. Wei K, Xie Y, Chen T, Fu B, Cui S, Wang Y, Cai G, Chen X. ERK1/2 signaling mediated naringin-induced osteogenic differentiation of immortalized human periodontal ligament stem cells. Biochem Biophys Res Commun. 2017;489(3):319–25.

    CAS  PubMed  Google Scholar 

  140. Dai KR, Yan SG, Yan WQ, Chen DQ, Xu ZW. Effects of naringin on the proliferation and osteogenic differentiation of human bone mesenchymal stem cell. Eur J Pharmacol. 2009;607(1–3):1–5.

    PubMed  Google Scholar 

  141. Gao J, Bai H, Li Q, Li J, Wan F, Tian M, Li Y, Song Y, Zhang J, Si Y. In vitro investigation of the mechanism underlying the effect of ginsenoside on the proliferation and differentiation of neural stem cells subjected to oxygen-glucose deprivation/reperfusion. Int J Mol Med. 2018;41(1):353–63.

    CAS  PubMed  Google Scholar 

  142. Shen LH, Zhang JT. Ginsenoside Rg1 promotes proliferation of hippocampal progenitor cells. Neurol Res. 2004;26(4):422–8.

    CAS  PubMed  Google Scholar 

  143. Wang P, Wei X, Zhang F, Yang K, Qu C, Luo H, He L. Ginsenoside Rg1 of Panax ginseng stimulates the proliferation, odontogenic/osteogenic differentiation and gene expression profiles of human dental pulp stem cells. Phytomedicine. 2014;21(2):177–83.

    CAS  PubMed  Google Scholar 

  144. Xu FT, Li HM, Yin QS, Cui SE, Liu DL, Nan H, Han ZA, Xu KM. Effect of ginsenoside Rg1 on proliferation and neural phenotype differentiation of human adipose-derived stem cells in vitro. Can J Physiol Pharmacol. 2014;92(6):467–75.

    CAS  PubMed  Google Scholar 

  145. Yin LH, Cheng WX, Qin ZS, Sun KM, Zhong M, Wang JK, Gao WY, Yu ZH. Effects of ginsenoside Rg-1 on the proliferation and osteogenic differentiation of human periodontal ligament stem cells. Chin J Integr Med. 2015;21:676–81.

    CAS  PubMed  Google Scholar 

  146. Wu J, Pan Z, Cheng M, Shen Y, Yu H, Wang Q, Lou Y. Ginsenoside Rg1 facilitates neural differentiation of mouse embryonic stem cells via GR-dependent signaling pathway. Neurochem Int. 2013;62(1):92–102.

    CAS  PubMed  Google Scholar 

  147. Gu Y, Zhou J, Wang Q, Fan W, Yin G. Ginsenoside Rg1 promotes osteogenic differentiation of rBMSCs and healing of rat tibial fractures through regulation of GR-dependent BMP-2/SMAD signaling. Sci Rep. 2016;6(1):1–3.

    Google Scholar 

  148. Xu FT, Li HM, Zhao CY, Liang ZJ, Huang MH, Li Q, Chen YC, Chi GY. Characterization of chondrogenic gene expression and cartilage phenotype differentiation in human breast adipose-derived stem cells promoted by ginsenoside Rg1 in vitro. Cell Physiol Biochem. 2015;37(5):1890–902.

    CAS  PubMed  Google Scholar 

  149. Hsieh WT, Chiang BH. A well-refined in vitro model derived from human embryonic stem cell for screening phytochemicals with midbrain dopaminergic differentiation-boosting potential for improving Parkinson’s disease. J Agric Food Chem. 2014;62(27):6326–36.

    CAS  PubMed  Google Scholar 

  150. Kim YY, Ku JB, Liu HC, Ku SY, Kim SH, Choi YM. Ginsenosides may enhance the functionality of human embryonic stem cell–derived cardiomyocytes in vitro. Reprod Sci. 2014;21:1312–8.

    CAS  PubMed  Google Scholar 

  151. Jiang LH, Yang NY, Yuan XL, Zou YJ, Zhao FM, Chen JP, Wang MY, Lu DX. Daucosterol promotes the proliferation of neural stem cells. J Steroid Biochem Mol Biol. 2014;1(140):90–9.

    Google Scholar 

  152. Russo VC, Gluckman PD, Feldman EL, Werther GA. The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev. 2005;26(7):916–43.

    CAS  PubMed  Google Scholar 

  153. Imenshahidi M, Hosseinzadeh H. Berberis vulgaris and berberine: an update review. Phytotherapy Res. 2016;30(11):1745–64.

    Google Scholar 

  154. Lee HW, Suh JH, Kim HN, Kim AY, Park SY, Shin CS, Choi JY, Kim JB. Berberine promotes osteoblast differentiation by Runx2 activation with p38 MAPK. J Bone Miner Res. 2008;23(8):1227–37.

    CAS  PubMed  Google Scholar 

  155. Tao K, Xiao D, Weng J, Xiong A, Kang B, Zeng H. Berberine promotes bone marrow-derived mesenchymal stem cells osteogenic differentiation via canonical Wnt/β-catenin signaling pathway. Toxicol Lett. 2016;240(1):68–80.

    CAS  PubMed  Google Scholar 

  156. Zhang R, Yang J, Wu J, Xiao L, Miao L, Qi X, Li Y, Sun W. Berberine promotes osteogenic differentiation of mesenchymal stem cells with therapeutic potential in periodontal regeneration. Eur J Pharmacol. 2019;15(851):144–50.

    Google Scholar 

  157. Liu J, Zhao X, Pei D, Sun G, Li Y, Zhu C, Qiang C, Sun J, Shi J, Dong Y, Gou J. The promotion function of berberine for osteogenic differentiation of human periodontal ligament stem cells via ERK-FOS pathway mediated by EGFR. Sci Rep. 2018;8(1):1.

    Google Scholar 

  158. Smit HJ. Theobromine and the pharmacology of cocoa. Handb Exp Pharmacol. 2011;(200):201–34.

  159. Nakamoto T, Falster AU, Simmons WB Jr. Theobromine: a safe and effective alternative for fluoride in dentifrices. J Caffeine Res. 2016;6(1):1–9.

    CAS  Google Scholar 

  160. Clough BH, Ylostalo J, Browder E, McNeill EP, Bartosh TJ, Rawls HR, Nakamoto T, Gregory CA. Theobromine upregulates osteogenesis by human mesenchymal stem cells in vitro and accelerates bone development in rats. Calcif Tissue Int. 2017;100(3):298–310.

  161. Yang XW, Yang CP, Jiang LP, Qin XJ, Liu YP, Shen QS, Chen YB, Luo XD. Indole alkaloids with new skeleton activating neural stem cells. Org Lett. 2014;16(21):5808–11.

    CAS  PubMed  Google Scholar 

  162. Mason JD, Weinreb SM. Synthesis of alstoscholarisines A-E, monoterpeneindole alkaloids with modulating effects on neural stem cells. J Org Chem. 2018;83(11):5877–96.

    CAS  PubMed  Google Scholar 

  163. Yang CH, Lin CY, Yang JH, et al. Supplementary catechins attenuate cooking-oil-fumes-induced oxidative stress in rat lung. Chin J Physiol. 2009;52:151–9.

    CAS  PubMed  Google Scholar 

  164. Yagi H, Tan J, Tuan RS. Polyphenols suppress hydrogen peroxide-induced oxidative stress in human bone-marrow derived mesenchymal stem cells. J Cell Biochem. 2013;114:1163–73.

    CAS  PubMed  Google Scholar 

  165. Hanai J, Chen LF, Kanno T, et al. Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline C-alpha promoter. J Biol Chem. 1999;274:31577–82.

    CAS  PubMed  Google Scholar 

  166. Javed A, Barnes GL, Jasanya BO, et al. Runt homology domain transcription factors (Runx, Cbfa and AML) mediate repression of the bone sialoprotein promoter: evidence for promoter context-dependent activity of Cbfa proteins. Mol Cell Biol. 2001;21:2891–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Nishimura R, Hata K, Harris SE, et al. Core-binding factor alpha 1 (Cbfa1) induces osteoblastic differentiation of C2C12 cells without interactions with Smad1 and Smad5. Bone. 2002;31:303–12.

    CAS  PubMed  Google Scholar 

  168. Stanić Z. Curcumin, a compound from natural sources, a true scientific challenge - a review. Plant Foods Hum Nutr. 2017;72(1):1–12.

    PubMed  Google Scholar 

  169. Pang XG, Cong Y, Bao NR, Li YG, Zhao JN. Quercetin stimulates bone marrow mesenchymal stem cell differentiation through an estrogen receptor-mediated pathway. Biomed Res Int. 2018;15(2018):4178021.

    Google Scholar 

  170. Bian W, Xiao S, Yang L, Chen J, Deng S. Quercetin promotes bone marrow mesenchymal stem cell proliferation and osteogenic differentiation through the H19/miR-625-5p axis to activate the Wnt/β-catenin pathway. BMC Complement Med Ther. 2021;21(1):243.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhang J, Wu K, Xu T, Wu J, Li P, Wang H, Wu H, Wu G. Epigallocatechin-3-gallate enhances the osteoblastogenic differentiation of human adipose-derived stem cells. Drug Des DevelTher. 2019;23(13):1311–21.

    Google Scholar 

  172. Ketkaew Y, Osathanon T, Pavasant P, Sooampon S. Apigenin inhibited hypoxia induced stem cell marker expression in a head and neck squamous cell carcinoma cell line. Arch Oral Biol. 2017;74:69–74.

    CAS  PubMed  Google Scholar 

  173. Shi Y, Lian K, Jia J. Apigenin suppresses the Warburg effect and stem-like properties in SOSP-9607 cells by inactivating the PI3K/Akt/mTOR signaling pathway. Evid Based Complement Alternat Med. 2022;9(2022):3983637.

    Google Scholar 

  174. Rahmani AH, Alsahli MA, Almatroudi A, Almogbel MA, Khan AA, Anwar S, Almatroodi SA. The potential role of apigenin in cancer prevention and treatment. Molecules. 2022;27:6051.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Shukla S, Gupta S. Apigenin: a promising molecule for cancer prevention. Pharm Res. 2010;27(6):962–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Mattioli R, Francioso A, Mosca L, Silva P. Anthocyanins: a comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules. 2020;25(17):3809.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Mao W, Huang G, Chen H, Xu L, Qin S, Li A. Research progress of the role of anthocyanins on bone regeneration. Front Pharmacol. 2021;12:773660.

  178. Gao JM, Wu YT, He DJ, Zhu XQ, Li HB, Liu HF, Liu HL. Anti-aging effects of Ribesmeyerianthocyanins on neural stem cells and aging mice. Aging. 2020;12:17738–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Moustafa EM, Moawed FSM, Abdel-Hamid GR. Icariin promote stem cells regeneration and repair acinar cells in L-arginine / radiation -inducing chronic pancreatitis in rats. Dose Response. 2020;18(4):1559325820970810.

  180. Fu X, Li S, Zhou S, Wu Q, Jin F, Shi J. Stimulatory effect of icariin on the proliferation of neural stem cells from rat hippocampus. BMC Complement Altern Med. 2018;18(1):34.

    PubMed  PubMed Central  Google Scholar 

  181. Zhang Z, Qin F, Feng Y, Zhang S, Xie C, Huang H, Sang C, Hu S, Jiao F, Jiang J, Qin Y. Icariin regulates stem cell migration for endogenous repair of intervertebral disc degeneration by increasing the expression of chemotactic cytokines. BMC Complement Med Ther. 2022;22(1):1–1.

    Google Scholar 

  182. Fang J, Zhang Y. Icariin, An anti-atherosclerotic drug from Chinese medicinal herb horny goat weed. Front Pharmacol. 2017;12(8):734.

    Google Scholar 

  183. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH. PubChem Substance and Compound databases. Nucleic Acids Res. 2016;44(D1):D1202–13.

  184. Ali G, Elsayed AK, Nandakumar M, Bashir M, Younis I, Abu AY, et al. Keratinocytes derived from patient-specific induced pluripotent stem cells recapitulate the genetic signature of psoriasis disease. Stem Cells Dev. 2020;29(7):383–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Weiss JN, Levy S. Stem cell ophthalmology treatment study (Scots): bone marrow derived stem cells in the treatment of dominant optic atrophy. Stem Cell Investig. 2019;6:41.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Chen W, Wei W, Yu L, Zhang X, Huang F, Zheng Q, Wang L, Cai C. Baicalin promotes mammary gland development via steroid-like activities. Frontiers Cell Dev Biol. 2021;6(9):1711.

    Google Scholar 

  187. Coward L, Barnes NC, Setchell KD, Sn Barnes. Genistein, daidzein, and their β-glycoside conjugates: antitumor isoflavones in soybean foods from American and Asian diets. J Agric Food Chem. 1993;41(11):1961–7.

    CAS  Google Scholar 

  188. Kaufman PB, Duke JA, Brielmann H, Boik J, Hoyt JE. A comparative survey of leguminous plants as sources of the isoflavones, genistein and daidzein: implications for human nutrition and health. J Altern Complemen Med. 1997;3(1):7–12.

    CAS  Google Scholar 

  189. Rao HSP, Reddy KS. Isoflavones from Flemingiavestita. Fitoterapia. 1991;62(5):458.

    CAS  Google Scholar 

  190. Wang BS, Juang LJ, Yang JJ, Chen LY, Tai HM, Huang MH. Antioxidant and antityrosinase activity of flemingia macrophylla and glycine tomentella roots. Evid Based Complement Alternat Med. 2012;2012:431081.

  191. Zhang L, Li L, Jiao M, Wu D, Wu K, Li X, Zhu G, Yang L, Wang X, Hsieh JT, et al. Genistein inhibits the stemness properties of prostate cancer cells through targeting Hedgehog-Gli1 pathway. Cancer Lett. 2012;323:48–57.

    CAS  PubMed  Google Scholar 

  192. Huang W, Wan C, Luo Q, Huang Z, Luo Q. Genistein-inhibited cancer stem cell-like properties and reduced chemoresistance of gastric cancer. Int J Mol Sci. 2014;15:3432–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Yu D, Shin H, Lee YS, Lee D, Kim S, Lee YC. Genistein attenuates cancer stem cell characteristics in gastric cancer through the downregulation of Gli1. Oncology Reports. 2014;31(2):673–8.

    CAS  PubMed  Google Scholar 

  194. Li Y, He M, Zhang W, Yang M, Ding Y, Xu S, Gu J, Li Y, Yin J, Gao Y. Antioxidant small molecule compound chrysin promotes the self-renewal of hematopoietic stem cells. Front Pharmacol. 2020Apr;2(11):399.

    Google Scholar 

  195. Huo JF, Zhang ML, Wang XX, Zou DH. Chrysin induces osteogenic differentiation of human dental pulp stem cells. Exp Cell Res. 2021Mar 15;400(2):112466.

    CAS  PubMed  Google Scholar 

  196. Dong W, Chen A, Chao X, Li X, Cui Y, Xu C, Cao J, Ning Y, Cao X. Chrysin inhibits proinflammatory factor-induced EMT phenotype and cancer stem cell-like features in HeLa cells by blocking the NF-ΚB/Twist axis. Cell PhysiolBiochem. 2019;52(5):1236–50.

    Google Scholar 

  197. Stompor-Gorący M, Bajek-Bil A, Machaczka M. Chrysin: Perspectives on contemporary status and future possibilities as pro-health agent. Nutrients. 2021;13(6):2038.

    PubMed  PubMed Central  Google Scholar 

  198. Kim Y, Park HJ, Kim MK, Kim YI, Kim HJ, Bae SK, Nör JE, Bae MK. Naringenin stimulates osteogenic/odontogenic differentiation and migration of human dental pulp stem cells. J Dent Sci 2023;18(2):577–585

  199. Hermawan A, Ikawati M, Jenie RI, Khumaira A, Putri H, Nurhayati IP, Angraini SM, Muflikhasari HA. Identification of potential therapeutic target of naringenin in breast cancer stem cells inhibition by bioinformatics and in vitro studies. Saudi Pharm J. 2021;29(1):12–26.

    CAS  PubMed  Google Scholar 

  200. Salehi B, Fokou PVT, Sharifi-Rad M, Zucca P, Pezzani R, Martins N, Sharifi-Rad J. The therapeutic potential of naringenin: a review of clinical trials. Pharmaceuticals (Basel). 2019;12(1):11.

    CAS  PubMed  Google Scholar 

  201. Alam F, Kharya AK, Juber A, Khan MI. Naringin: sources, chemistry, toxicity, pharmacokinetics, pharmacological evidences, molecular docking and cell line study. Res J Pharm Technol. 2020;13(5):2507–15.

    Google Scholar 

  202. Wang Z, Jiang R, Wang L, Chen X, Xiang Y, Chen L, Xiao M, Ling L, Wang Y. Ginsenoside Rg1 improves differentiation by inhibiting senescence of human bone marrow mesenchymal stem cell via GSK-3β and β-catenin. Stem Cells Int. 2020;26(2020):2365814.

    Google Scholar 

  203. He F, Yu C, Liu T, Jia H. Ginsenoside Rg1 as an effective regulator of mesenchymal stem cells. Front Pharmacol. 2020;23(10):1565.

    Google Scholar 

  204. Otimenyin S. Herbal biomolecules acting on central nervous system. In: Herbal biomolecules in healthcare applications. Academic Press; 2022. pp. 475–523.

  205. Zhao Z, Zeng J, Guo Q, Pu K, Yang Y, Chen N, Zhang G, Zhao M, Zheng Q, Tang J, Hu Q. Berberine suppresses stemness and tumorigenicity of colorectal cancer stem-like cells by inhibiting m6A methylation. Front Oncol 2021;11:775418.

  206. McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Yang LV, Murata RM, Rosalen PL, Scalisi A, Neri LM, Cocco L, Ratti S, Martelli AM, Laidler P, Dulińska-Litewka J, Rakus D, Gizak A, Lombardi P, Nicoletti F, Candido S, Libra M, Montalto G, Cervello M. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY). 2017;9(6):1477–536.

    CAS  PubMed  Google Scholar 

  207. Prajwala B, Raghu N, Gopenath TS, Shanmukhappa B, Karthikeyan M, Ashok G, Ranjith MS, Srinivasan V, Kanthesh MB. Berberine and its pharmacology potential: a review. Eur J Biomed. 2020;7:115–23.

    CAS  Google Scholar 

  208. IreriAlejandra Carbajal-Valenzuela, Nuvia Marina Apolonio–Hernandez, Diana Vanesa Gutierrez-Chavez, Beatriz González-Arias, Alejandra Jimenez-Hernandez, Irineotorres-Pacheco, Enrique Rico-García, Ana Angelica Feregrino-Pérez, Ramón Gerardo Guevara-González, Chapter 5 - Biological macromolecules as nutraceuticals, Biological Macromolecules, Academic Press, 2022, Pages 97–138, ISBN 9780323857598. https://doi.org/10.1016/B978-0-323-85759-8.00001-4.

  209. Liang X, Jiang SZ, Wei K, Yang YR. Enantioselective total synthesis of (−)-alstoscholarisine A. J Am Chem Soc. 2016;138(8):2560–2.

    CAS  PubMed  Google Scholar 

  210. Mason JD, Weinreb SM. The Alstoscholarisine alkaloids: isolation, structure determination, biogenesis, biological evaluation, and synthesis. Alkaloids Chem Biol. 2019;1(81):115–50.

    Google Scholar 

  211. Fais G, Manca A, Bolognesi F, Borselli M, Concas A, Busutti M, Broggi G, Sanna P, Castillo-Aleman YM, Rivero-Jiménez RA, Bencomo-Hernandez AA, Ventura-Carmenate Y, Altea M, Pantaleo A, Gabrielli G, Biglioli F, Cao G, Giannaccare G. Wide range applications of spirulina: from earth to space missions. Mar Drugs. 2022;20:299.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Pu X, Chai Y, Guan L, Li W, Gao J, Jiang Z, Li Q, Wu Y, Chen Y. Astragalus improve aging bone marrow mesenchymal stem cells (BMSCs) vitality and osteogenesis through VD-FGF23-Klotho axis. Int J ClinExpPathol. 2020;13(4):721–9.

    Google Scholar 

  213. Zhang YM, Liu YQ, Liu D, Zhang L, Qin J, Zhang Z, Su Y, Yan C, Luo YL, Li J, Xie X, Guan Q. The effects of astragalus polysaccharide on bone marrow-derived mesenchymal stem cell proliferation and morphology induced by A549 lung cancer cells. Med SciMonit. 2019;2(25):4110–21.

    Google Scholar 

  214. Dasgupta A. Anti inflammatory herbal supplements. InTranslational inflammation 2019 Jan 1 (pp. 69–91). Academic Press.

  215. Lao A, Chen Y, Sun Y, Wang T, Lin K, Liu J, Wu J. Transcriptomic analysis provides a new insight: Oleuropein reverses high glucose-induced osteogenic inhibition in bone marrow mesenchymal stem cells via Wnt10b activation. Front Bioeng Biotechnol. 2022;10:990507.

  216. Lu HY, Zhu JS, Zhang Z, Shen WJ, Jiang S, Long YF, Wu B, Ding T, Huan F, Wang SL. Hydroxytyrosol and oleuropein inhibit migration and invasion of MDA-MB-231 triple-negative breast cancer cell via induction of autophagy. Anti-Cancer Agents Med Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2019;19(16):1983–90.

    CAS  Google Scholar 

  217. Omar SH. Oleuropein in olive and its pharmacological effects. Sci Pharm. 2010;78(2):133–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Nediani C, Ruzzolini J, Romani A, Calorini L. Oleuropein, A bioactive compound from Olea europaea L, as a potential preventive and therapeutic agent in non-communicable diseases. Antioxidants (Basel). 2019;8(12):578.

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the University Grants Commission, New Delhi, and the University Of Kalyani for supporting this research.

Author information

Authors and Affiliations

Authors

Contributions

DN conceptualized the title and BB and FK wrote the manuscript text. FK prepared figures and table and all authors reviewed the manuscript.

Corresponding author

Correspondence to Debjani Nath.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This articles does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, D., Bairagi, B. & Khan, F. Phytoconstituents for Boosting the Stem Cells Used in Regenerative Medicine. Curr Pharmacol Rep 9, 228–246 (2023). https://doi.org/10.1007/s40495-023-00322-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-023-00322-2

Keywords

Navigation