<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">
Research Article
No access
Published Online: 9 January 2009

Engineered Early Embryonic Cardiac Tissue Increases Cardiomyocyte Proliferation by Cyclic Mechanical Stretch via p38-MAP Kinase Phosphorylation

Publication: Tissue Engineering Part A
Volume 15, Issue Number 6

Abstract

Cardiomyocyte (CM) transplantation is one therapeutic option for cardiac repair. Studies suggest that fetal CMs display the best cell type for cardiac repair, which can finitely proliferate, integrate with injured host myocardium, and restore cardiac function. We have recently developed an engineered early embryonic cardiac tissue (EEECT) using embryonic cardiac cells and have shown that EEECT contractile properties and cellular proliferative response to cyclic mechanical stretch stimulation mimic developing fetal myocardium. However, it remains unknown whether cyclic mechanical stretch–mediated high cellular proliferation activity within EEECT reflects CM or non-CM population. Studies have shown that p38-mitogen-activated protein kinase (p38MAPK) plays an important role in both cyclic mechanical stretch stimulation and cellular proliferation. Therefore, in the present study, we tested the hypothesis that cyclic mechanical stretch (0.5 Hz, 5% strain for 48 h) specifically increases EEECT CM proliferation mediated by p38MAPK activity. Cyclic mechanical stretch increased CM, but not non-CM, proliferation and increased p38MAPK phosphorylation. Treatment of EEECT with the p38MAPK inhibitor, SB202190, reduced CM proliferation. The negative CM proliferation effects of SB202190 were not reversed by concurrent stretch stimulation. Results suggest that immature CM proliferation within EEECT can be positively regulated by mechanical stretch and negatively regulated by p38MAPK inhibition.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Li F.McNelis M.R.Lustig K.Gerdes A.M. Hyperplasia and hypertrophy of chicken cardiac myocytes during posthatching developmentAm J Physiol273R5181997. 1. Li, F., McNelis, M.R., Lustig, K., and Gerdes, A.M. Hyperplasia and hypertrophy of chicken cardiac myocytes during posthatching development. Am J Physiol 273, R518, 1997.
2.
Sedmera D.Hu N.Weiss K.M.Keller B.B.Denslow S.Thompson R.P. Cellular changes in experimental left heart hypoplasiaAnat Rec2671372002. 2. Sedmera, D., Hu, N., Weiss, K.M., Keller, B.B., Denslow, S., and Thompson, R.P. Cellular changes in experimental left heart hypoplasia. Anat Rec 267, 137, 2002.
3.
Hagege A.A.Menasche P. Cellular cardiomyoplasty: a new hope in heart failure?Heart844652000. 3. Hagege, A.A., and Menasche, P. Cellular cardiomyoplasty: a new hope in heart failure? Heart 84, 465, 2000.
4.
Laflamme M.A.Zbinden S.Epstein S.E.Murry C.E. Cell-based therapy for myocardial ischemia and infarction: pathophysiological mechanismsAnnu Rev Pathol23072007. 4. Laflamme, M.A., Zbinden, S., Epstein, S.E., and Murry, C.E. Cell-based therapy for myocardial ischemia and infarction: pathophysiological mechanisms. Annu Rev Pathol 2, 307, 2007.
5.
Payne T.R.Oshima H.Okada M.Momoi N.Tobita K.Keller B.B.Peng H.Huard J. A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic heartsJ Am Coll Cardiol5016772007. 5. Payne, T.R., Oshima, H., Okada, M., Momoi, N., Tobita, K., Keller, B.B., Peng, H., and Huard, J. A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts. J Am Coll Cardiol 50, 1677, 2007.
6.
Laflamme M.A.Murry C.E. Regenerating the heartNat Biotechnol238452005. 6. Laflamme, M.A., and Murry, C.E. Regenerating the heart. Nat Biotechnol 23, 845, 2005.
7.
Pasumarthi K.B.Field L.J. Cardiomyocyte cell cycle regulationCirc Res9010442002. 7. Pasumarthi, K.B., and Field, L.J. Cardiomyocyte cell cycle regulation. Circ Res 90, 1044, 2002.
8.
Roell W.Lewalter T.Sasse P.Tallini Y.N.Choi B.R.Breitbach M.Doran R.Becher U.M.Hwang S.M.Bostani T.von Maltzahn J.Hofmann A.Reining S.Eiberger B.Gabris B.Pfeifer A.Welz A.Willecke K.Salama G.Schrickel J.W.Kotlikoff M.I.Fleischmann B.K. Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmiaNature4508192007. 8. Roell, W., Lewalter, T., Sasse, P., Tallini, Y.N., Choi, B.R., Breitbach, M., Doran, R., Becher, U.M., Hwang, S.M., Bostani, T., von Maltzahn, J., Hofmann, A., Reining, S., Eiberger, B., Gabris, B., Pfeifer, A., Welz, A., Willecke, K., Salama, G., Schrickel, J.W., Kotlikoff, M.I., and Fleischmann, B.K. Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature 450, 819, 2007.
9.
Zimmermann W.H.Didie M.Doker S.Melnychenko I.Naito H.Rogge C.Tiburcy M.Eschenhagen T. Heart muscle engineering: an update on cardiac muscle replacement therapyCardiovasc Res714192006. 9. Zimmermann, W.H., Didie, M., Doker, S., Melnychenko, I., Naito, H., Rogge, C., Tiburcy, M., and Eschenhagen, T. Heart muscle engineering: an update on cardiac muscle replacement therapy. Cardiovasc Res 71, 419, 2006.
10.
Zimmermann W.H.Melnychenko I.Wasmeier G.Didié M.Naito H.Nixdorff U.Hess A.Budinsky L.Brune K.Michaelis B.Dhein S.Schwoerer A.Ehmke H.Eschenhagen T. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat heartsNat Med124522006. 10. Zimmermann, W.H., Melnychenko, I., Wasmeier, G., Didié, M., Naito, H., Nixdorff, U., Hess, A., Budinsky, L., Brune, K., Michaelis, B., Dhein, S., Schwoerer, A., Ehmke, H., and Eschenhagen, T. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12, 452, 2006.
11.
Nussbaum J.Minami E.Laflamme M.A.Virag J.A.Ware C.B.Masino A.Muskheli V.Pabon L.Reinecke H.Murry C.E. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune responseFASEB J2113452007. 11. Nussbaum, J., Minami, E., Laflamme, M.A., Virag, J.A., Ware, C.B., Masino, A., Muskheli, V., Pabon, L., Reinecke, H., and Murry, C.E. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21, 1345, 2007.
12.
Bulić-Jakus F.Ulamec M.Vlahović M.Sincić N.Katusić A.Jurić-Lekć G.Serman L.Kruslin B.Belicza M. Of mice and men: teratomas and teratocarcinomasColl Antropol309212006. 12. Bulić-Jakus, F., Ulamec, M., Vlahović, M., Sincić, N., Katusić, A., Jurić-Lekć, G., Serman, L., Kruslin, B., and Belicza, M. Of mice and men: teratomas and teratocarcinomas. Coll Antropol 30, 921, 2006.
13.
Chien K.R. Stem cells: lost in translationNature4286072004. 13. Chien, K.R. Stem cells: lost in translation. Nature 428, 607, 2004.
14.
Dowell J.D.Rubart M.Pasumarthi K.B.Soonpaa M.H.Field L.J. Myocyte and myogenic stem cell transplantation in the heartCardiovasc Res583362003. 14. Dowell, J.D., Rubart, M., Pasumarthi, K.B., Soonpaa, M.H., and Field, L.J. Myocyte and myogenic stem cell transplantation in the heart. Cardiovasc Res 58, 336, 2003.
15.
Roell W.Lu Z.J.Bloch W.Siedner S.Tiemann K.Xia Y.Stoecker E.Fleischmann M.Bohlen H.Stehle R.Kolossov E.Brem G.Addicks K.Pfitzer G.Welz A.Hescheler J.Fleischmann B.K. Cellular cardiomyoplasty improves survival after myocardial injuryCirculation10524352002. 15. Roell, W., Lu, Z.J., Bloch, W., Siedner, S., Tiemann, K., Xia, Y., Stoecker, E., Fleischmann, M., Bohlen, H., Stehle, R., Kolossov, E., Brem, G., Addicks, K., Pfitzer, G., Welz, A., Hescheler, J., and Fleischmann, B.K. Cellular cardiomyoplasty improves survival after myocardial injury. Circulation 105, 2435, 2002.
16.
Tobita K.Liu L.Janczewski A.Tinney J.Nonemaker J.Augustine S.Stolz D.Shroff S.Keller B.B. Engineered early embryonic cardiac tissue (EEECT) retains proliferative and contractile properties of developing embryonic myocardiumAm J Physiol Heart Circ Physiol291H18292006. 16. Tobita, K., Liu, L., Janczewski, A., Tinney, J., Nonemaker, J., Augustine, S., Stolz, D., Shroff, S., and Keller, B.B. Engineered early embryonic cardiac tissue (EEECT) retains proliferative and contractile properties of developing embryonic myocardium. Am J Physiol Heart Circ Physiol 291, H1829, 2006.
17.
Ahuja P.Sdek P.MacLellan W.R. Cardiac myocyte cell cycle control in development, disease, and regenerationPhysiol Rev875212007. 17. Ahuja, P., Sdek, P., and MacLellan, W.R. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 87, 521, 2007.
18.
Clerk A.Sugden P.H. Inflame my heart (by p38-MAPK)Circ Res994552006. 18. Clerk, A., and Sugden, P.H. Inflame my heart (by p38-MAPK). Circ Res 99, 455, 2006.
19.
Engel F.B.Schebesta M.Duong M.T.Lu G.Ren S.Madwed J.B.Juang H.Wang Y.Keating M.T. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytesGenes Dev1911752005. 19. Engel, F.B., Schebesta, M., Duong, M.T., Lu, G., Ren, S., Madwed, J.B., Juang, H., Wang, Y., and Keating, M.T. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev 19, 1175, 2005.
20.
Morissette M.R.Cook S.A.Foo S.Y.McKoy G.Ashida N.Novikov M.Scherrer-Crosbie M.Li L.Matsui T.Brooks G.Rosenzweig A. Signaling myostatin regulates cardiomyocyte growth through modulation of AktCirc Res99152006. 20. Morissette, M.R., Cook, S.A., Foo, S.Y., McKoy, G., Ashida, N., Novikov, M., Scherrer-Crosbie, M., Li, L., Matsui, T., Brooks, G., and Rosenzweig, A. Signaling myostatin regulates cardiomyocyte growth through modulation of Akt. Circ Res 99, 15, 2006.
21.
Olson A.K.Protheroe K.N.Segar J.L.Scholz T. Mitogen-activated protein kinase activation and regulation in the pressure-loaded fetal ovine heartAm J Physiol Heart Circ Physiol290H15872006. 21. Olson, A.K., Protheroe, K.N., Segar, J.L., and Scholz, T. Mitogen-activated protein kinase activation and regulation in the pressure-loaded fetal ovine heart. Am J Physiol Heart Circ Physiol 290, H1587, 2006.
22.
Tenhunen O.Rysä J.Ilves M.Soini Y.Ruskoaho H.Leskinen H. Identification of cell cycle regulatory and inflammatory genes as predominant targets of p38 mitogen-activated protein kinase in the heartCirc Res994852006. 22. Tenhunen, O., Rysä, J., Ilves, M., Soini, Y., Ruskoaho, H., and Leskinen, H. Identification of cell cycle regulatory and inflammatory genes as predominant targets of p38 mitogen-activated protein kinase in the heart. Circ Res 99, 485, 2006.
1380
23.
Tenhunen O.Soini Y.Ilves M.Rysä J.Tuukkanen J.Serpi R.Pennanen H.Ruskoaho H.Leskinen H. p38 Kinase rescues failing myocardium after myocardial infarction: evidence for angiogenic and antiapoptotic mechanismsFASEB J20E12762006. 23. Tenhunen, O., Soini, Y., Ilves, M., Rysä, J., Tuukkanen, J., Serpi, R., Pennanen, H., Ruskoaho, H., and Leskinen, H. p38 Kinase rescues failing myocardium after myocardial infarction: evidence for angiogenic and antiapoptotic mechanisms. FASEB J 20, E1276, 2006.
24.
Hamburger V.Hamilton H.L. A series of normal stages in the development of the chick embryoJ Morphol88491951. 24. Hamburger, V., and Hamilton, H.L. A series of normal stages in the development of the chick embryo. J Morphol 88, 49, 1951.
25.
Tobita K.Garrison J.B.Liu L.J.Tinney J.P.Keller B.B. Three-dimensional myofiber architecture of the embryonic left ventricle during normal development and altered mechanical loadsAnat Rec A Discov Mol Cell Evol Biol2831932005. 25. Tobita, K., Garrison, J.B., Liu, L.J., Tinney, J.P., and Keller, B.B. Three-dimensional myofiber architecture of the embryonic left ventricle during normal development and altered mechanical loads. Anat Rec A Discov Mol Cell Evol Biol 283, 193, 2005.
26.
Komuro I.Katoh Y.Kaida T.Shibazaki Y.Kurabayashi M.Takaku F.Yazaki Y. Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytesJ Biol Chem26612651991. 26. Komuro, I., Katoh, Y., Kaida, T., Shibazaki, Y., Kurabayashi, M., Takaku, F., and Yazaki, Y. Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes. J Biol Chem 266, 1265, 1991.
27.
Sadoshima J.Izumo S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanismEMBO J1216811993. 27. Sadoshima, J., and Izumo, S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J 12, 1681, 1993.
28.
van den Hoff M.J.Deprez R.H.Ruijter J.M.de Boer P.A.Tesink-Taekema S.Buffing A.A.Lamers W.H.Moorman A.F. Increased cardiac workload by closure of the ductus arteriosus leads to hypertrophy and apoptosis rather than to hyperplasia in the late fetal periodNaunyn Schmiedebergs Arch Pharmacol3701932004. 28. van den Hoff, M.J., Deprez, R.H., Ruijter, J.M., de Boer, P.A., Tesink-Taekema, S., Buffing, A.A., Lamers, W.H., and Moorman, A.F. Increased cardiac workload by closure of the ductus arteriosus leads to hypertrophy and apoptosis rather than to hyperplasia in the late fetal period. Naunyn Schmiedebergs Arch Pharmacol 370, 193, 2004.
29.
Barbera A.Giraud G.D.Reller M.D.Maylie J.Morton M.J.Thornburg K.L. Right ventricular systolic pressure load alters myocyte maturation in fetal sheepAm J Physiol Regul Integr Comp Physiol279R11572000. 29. Barbera, A., Giraud, G.D., Reller, M.D., Maylie, J., Morton, M.J., and Thornburg, K.L. Right ventricular systolic pressure load alters myocyte maturation in fetal sheep. Am J Physiol Regul Integr Comp Physiol 279, R1157, 2000.
30.
Saiki Y.Konig A.Waddell J.Rebeyka I.M. Hemodynamic alteration by fetal surgery accelerates myocyte proliferation in fetal guinea pig heartsSurgery1224121997. 30. Saiki, Y., Konig, A., Waddell, J., and Rebeyka, I.M. Hemodynamic alteration by fetal surgery accelerates myocyte proliferation in fetal guinea pig hearts. Surgery 122, 412, 1997.
31.
Schaffer W.Williams R.S. Age-dependent changes in expression of alpha 1-adrenergic receptors in rat myocardiumBiochem Biophys Res Commun1383871986. 31. Schaffer, W., and Williams, R.S. Age-dependent changes in expression of alpha 1-adrenergic receptors in rat myocardium. Biochem Biophys Res Commun 138, 387, 1986.
32.
Rybin V.O.Steinberg S.F. Protein kinase C isoform expression and regulation in the developing rat heartCirc Res742991994. 32. Rybin, V.O., and Steinberg, S.F. Protein kinase C isoform expression and regulation in the developing rat heart. Circ Res 74, 299, 1994.
33.
Pandya N.Santani D.Jain S. Role of mitogen-activated protein (MAP) kinases in cardiovascular diseasesCardiovasc Drug Rev232472005. 33. Pandya, N., Santani, D., and Jain, S. Role of mitogen-activated protein (MAP) kinases in cardiovascular diseases. Cardiovasc Drug Rev 23, 247, 2005.
34.
Zimmermann W.H.Schneiderbanger K.Schubert P.Didie M.Munzel J.F.Heubach J.F.Kostin S.Neuhuber W.L.Eschenhagen T. Tissue engineering of a differentiated cardiac muscle constructCirc Res902232002. 34. Zimmermann, W.H., Schneiderbanger, K., Schubert, P., Didie, M., Munzel, J.F., Heubach, J.F., Kostin, S., Neuhuber, W.L., and Eschenhagen, T. Tissue engineering of a differentiated cardiac muscle construct. Circ Res 90, 223, 2002.
35.
Olson A.K.Protheroe K.N.Scholz T.D.Segar J.L. The mitogen-activated protein kinases and Akt are developmentally regulated in the chronically anemic fetal sheep heartJ Soc Gynecol Investig131572006. 35. Olson, A.K., Protheroe, K.N., Scholz, T.D., and Segar, J.L. The mitogen-activated protein kinases and Akt are developmentally regulated in the chronically anemic fetal sheep heart. J Soc Gynecol Investig 13, 157, 2006.
36.
Kandel E.S.Hay N. Multiple regulators and multiple downstream effectors of the serine/threonine kinase Akt/PKBExp Cell Res2532101999. 36. Kandel, E.S., and Hay, N. Multiple regulators and multiple downstream effectors of the serine/threonine kinase Akt/PKB. Exp Cell Res 253, 210, 1999.
37.
Khwaja A. Akt is more than just a bad kinaseNature401331999. 37. Khwaja, A. Akt is more than just a bad kinase. Nature 401, 33, 1999.
38.
Cabane C.Coldefy A.S.Yeow K.De'rijard B. The p38 pathway regulates Akt both at the protein and transcriptional activation levels during myogenesisCell Signal1614052004. 38. Cabane, C., Coldefy, A.S., Yeow, K., and De'rijard, B. The p38 pathway regulates Akt both at the protein and transcriptional activation levels during myogenesis. Cell Signal 16, 1405, 2004.
39.
Tamir Y.Bengal E. Phosphoinositide 3-kinase induces the transcriptional activity of MEF2 proteins during muscle differentiationJ Biol Chem275344242000. 39. Tamir, Y., and Bengal, E. Phosphoinositide 3-kinase induces the transcriptional activity of MEF2 proteins during muscle differentiation. J Biol Chem 275, 34424, 2000.
40.
Zetser A.Gredinger E.Bengal E. p38 Mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the MEF2C transcription factorJ Biol Chem27451931999. 40. Zetser, A., Gredinger, E., and Bengal, E. p38 Mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the MEF2C transcription factor. J Biol Chem 274, 5193, 1999.
41.
Gude N.Muraski J.Rubio M.Kajstura J.Schaefer E.Anversa P.Sussman M.A. Akt promotes increased cardiomyocyte cycling and expansion of the cardiac progenitor cell populationCirc Res993812006. 41. Gude, N., Muraski, J., Rubio, M., Kajstura, J., Schaefer, E., Anversa, P., and Sussman, M.A. Akt promotes increased cardiomyocyte cycling and expansion of the cardiac progenitor cell population. Circ Res 99, 381, 2006.
42.
Han J.Molkentin J.D. Regulation of MEF2 by p38 MAPK and its implication in cardiomyocyte biologyTrends Cardiovasc Med10192000. 42. Han, J., and Molkentin, J.D. Regulation of MEF2 by p38 MAPK and its implication in cardiomyocyte biology. Trends Cardiovasc Med 10, 19, 2000.
43.
Sedmera D.Thompson R.P.Kolar F. Effect of increased pressure loading on heart growth in neonatal ratsJ Mol Cell Cardiol353012003. 43. Sedmera, D., Thompson, R.P., and Kolar, F. Effect of increased pressure loading on heart growth in neonatal rats. J Mol Cell Cardiol 35, 301, 2003.
44.
Tenhunen O.Sarman B.Kerkela R.Szokodi I.Papp L.Toth M.Ruskoaho H. Mitogen-activated protein kinases p38 and ERK1/2 mediate the wall stress-induced activation of GATA-4 binding in adult heartJ Biol Chem279248522004. 44. Tenhunen, O., Sarman, B., Kerkela, R., Szokodi, I., Papp, L., Toth, M., and Ruskoaho, H. Mitogen-activated protein kinases p38 and ERK1/2 mediate the wall stress-induced activation of GATA-4 binding in adult heart. J Biol Chem 279, 24852, 2004.
45.
Aouadi M.Bost F.Caron L.Laurent K.Le Y.Brustel M.Binetruy B. p38 Mitogen-activated protein kinase activity commits embryonic stem cells to either neurogenesis of cardiomyogenesisStem Cells2413992006. 45. Aouadi, M., Bost, F., Caron, L., Laurent, K., Le, Y., Brustel, M., and Binetruy, B. p38 Mitogen-activated protein kinase activity commits embryonic stem cells to either neurogenesis of cardiomyogenesis. Stem Cells 24, 1399, 2006.
46.
Clark E.B.Hu N.Frommelt P.Vandekieft G.K.Dummett J.L.Tomanek R.J. Effect of increased pressure on growth in stage 21 chick embryosAm J Physiol257H551989. 46. Clark, E.B., Hu, N., Frommelt, P., Vandekieft, G.K., Dummett, J.L., and Tomanek, R.J. Effect of increased pressure on growth in stage 21 chick embryos. Am J Physiol 257, H55, 1989.
47.
Kyriakis J.M.Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammationPhysiol Rev818072001. 47. Kyriakis, J.M., and Avruch, J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81, 807, 2001.
48.
Komuro I.Kudo S.Yamazaki T.Zou Y.Shiojima I.Yazaki Y. Mechanical stretch activates the stress-activated protein kinases in cardiac myocytesFASEB J106311996. 48. Komuro, I., Kudo, S., Yamazaki, T., Zou, Y., Shiojima, I., and Yazaki, Y. Mechanical stretch activates the stress-activated protein kinases in cardiac myocytes. FASEB J 10, 631, 1996.
49.
Rauch C.Loughna P.T. Static stretch promotes MEF2A nuclear translocation and expression of neonatal myosin heavy chain in C2C12 myocytes in a calcineurin- and p38-dependent mannerAm J Physiol Cell Physiol2885932005. 49. Rauch, C., and Loughna, P.T. Static stretch promotes MEF2A nuclear translocation and expression of neonatal myosin heavy chain in C2C12 myocytes in a calcineurin- and p38-dependent manner. Am J Physiol Cell Physiol 288, 593, 2005.
50.
Farge E. Mechanical induction of Twist in the Drosophila foregut/stomodeal primordiumCurr Biol1313652003. 50. Farge, E. Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr Biol 13, 1365, 2003.
51.
Xu L.Kappler C.S.Menick D.R. The role of p38 in the regulation of Na+ -Ca2+ exchanger expression in adult cardiomyocytesJ Mol Cell Cardiol387352005. 51. Xu, L., Kappler, C.S., and Menick, D.R. The role of p38 in the regulation of Na+ -Ca2+ exchanger expression in adult cardiomyocytes. J Mol Cell Cardiol 38, 735, 2005.
52.
Shepherd N.Graham V.Trevedi B.Creazzo T.L. Changes in regulation of sodium/calcium exchanger of avian ventricular heart cells during embryonic developmentAm J Physiol Cell Physiol292C19422007. 52. Shepherd, N., Graham, V., Trevedi, B., and Creazzo, T.L. Changes in regulation of sodium/calcium exchanger of avian ventricular heart cells during embryonic development. Am J Physiol Cell Physiol 292, C1942, 2007.
53.
Reppel M.Fleischmann B.K.Reuter H.Sasse P.Schunkert H.Hescheler J. Regulation of the Na+/Ca2+ exchanger (NCX) in the murine embryonic heartCardiovasc Res75992007. 53. Reppel, M., Fleischmann, B.K., Reuter, H., Sasse, P., Schunkert, H., and Hescheler, J. Regulation of the Na+/Ca2+ exchanger (NCX) in the murine embryonic heart. Cardiovasc Res 75, 99, 2007.
54.
Nagy N.Shiroto K.Malik G.Huang C.K.Gaestel M.Abdellatif M.Tosaki A.Maulik N.Das D.K. Ischemic preconditioning involves dual cardio-protective axes with p38MAPK as upstream targetJ Mol Cell Cardiol429812007. 54. Nagy, N., Shiroto, K., Malik, G., Huang, C.K., Gaestel, M., Abdellatif, M., Tosaki, A., Maulik, N., and Das, D.K. Ischemic preconditioning involves dual cardio-protective axes with p38MAPK as upstream target. J Mol Cell Cardiol 42, 981, 2007.

Information & Authors

Information

Published In

cover image Tissue Engineering Part A
Tissue Engineering Part A
Volume 15Issue Number 6June 2009
Pages: 1373 - 1380
PubMed: 19196150

History

Published in print: June 2009
Published online: 9 January 2009
Accepted: 29 August 2008
Received: 21 March 2008

Permissions

Request permissions for this article.

Topics

    Authors

    Affiliations

    Kelly C. Clause, B.S.
    Cardiovascular Development Research Program, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania.
    Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.
    Joseph P. Tinney, B.A.
    Cardiovascular Development Research Program, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania.
    Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania.
    Li J. Liu, M.D.
    Cardiovascular Development Research Program, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania.
    Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania.
    Bradley B. Keller, M.D.
    Cardiovascular Development Research Program, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania.
    Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.
    Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania.
    Kimimasa Tobita, M.D.
    Cardiovascular Development Research Program, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania.
    Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.
    Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania.

    Notes

    Address reprint requests to:
    Kimimasa Tobita, M.D.
    Rangos Research Center
    Room 3320E
    3460 Fifth Ave.
    Pittsburgh, PA 15213
    E-mail: [email protected]

    Disclosure Statement

    No competing financial interests exist.

    Metrics & Citations

    Metrics

    Citations

    Export citation

    Select the format you want to export the citations of this publication.

    View Options

    Get Access

    Access content

    To read the fulltext, please use one of the options below to sign in or purchase access.

    Society Access

    If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

    Restore your content access

    Enter your email address to restore your content access:

    Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

    View options

    PDF/EPUB

    View PDF/ePub

    Full Text

    View Full Text

    Media

    Figures

    Other

    Tables

    Share

    Share

    Copy the content Link

    Share on social media

    Back to Top