Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Review Article

Enhancing the Antiviral Potential and Anti-inflammatory Properties of Astragalus membranaceus: A Comprehensive Review

Author(s): Soad Ghabeshi, Leila Mousavizadeh and Sorayya Ghasemi*

Volume 22, Issue 4, 2023

Published on: 19 December, 2023

Page: [211 - 219] Pages: 9

DOI: 10.2174/0118715230280333231207114927

Price: $65

Abstract

The role of herbal medicines in the treatment of viruses and the identification of potential antiviral drugs has been the focus of researchers for decades. The control and treatment of viral diseases are very important due to the evolution of viruses and the emergence of new viruses compared to other pathogens such as fungi and bacteria. Astragalus membranaceus (AM) is a significant medicinal plant. The potential use of this plant and its chemical components in the treatment of inflammatory illnesses and viral diseases has been vigorously researched recently. Astragalus polysaccharides (APS) make up the majority of AM's ingredients. The main mechanisms of the antiviral effect of APS have been investigated in some studies. The results of these studies show that APS can exert its antiviral effect by enhancing type I IFN signaling, inhibiting the expression of Bax and Caspase-3 proteins in the apoptosis pathway, and other antiviral mechanisms such as anti-inflammatory activities. The most well-known inflammatory products of APS's antiviral effects are B-cell proliferation, antibody products, nuclear factor-kappa B (NF-κB), and IL(s).

Although it has a known effectiveness, there are some limitations to this substance's use as medicine. The use of nanotechnology is removing these limitations and its ability to be used as an anti-virus agent. The purpose of this review is to emphasize the role of AM, especially APS, in controlling inflammatory pathways in the treatment of viral infections. With the emergence of these herbal medications, a new path has been opened in the control and treatment of viral infections.

Keywords: Astragalus, herbal medicine, viral infections, inflammation pathways, antiviral activity, nano-carrier.

Next »
[1]
Tahmasbi, S.F.; Revell, M.A.; Tahmasebi, N. Herbal medication to enhance or modulate viral infections. Nurs. Clin. North Am., 2021, 56(1), 79-89.
[http://dx.doi.org/10.1016/j.cnur.2020.10.007] [PMID: 33549288]
[2]
Cieśla, Ł; Moaddel, R. Comparison of analytical techniques for the identification of bioactive compounds from natural products. Nat. Prod. Rep., 2016, 33(10), 1131-1145.
[http://dx.doi.org/10.1039/C6NP00016A] [PMID: 27367973]
[3]
Cho, W.C.S.; Leung, K.N. In vitro and in vivo immunomodulating and immunorestorative effects of Astragalus membranaceus. J. Ethnopharmacol., 2007, 113(1), 132-141.
[http://dx.doi.org/10.1016/j.jep.2007.05.020] [PMID: 17611061]
[4]
Park, H.M.; Lee, J.Y.; Kim, M.Y.; Kang, C.H.; Hwang, H.S. Antioxidative and anti-inflammatory activities of Astragalus membranaceus fermented by lactiplantibacillus plantarum on lpsinduced raw 264.7 cells. Fermentation , 2021, 7(4), 252.
[http://dx.doi.org/10.3390/fermentation7040252]
[5]
Farag, M.R.; Alagawany, M. The role of Astragalus membranaceus as immunomodulator in poultry. Worlds Poult. Sci. J., 2019, 75(1), 43-54.
[http://dx.doi.org/10.1017/S0043933918000739]
[6]
Sun, Y.; Xie, X.; He, J.; Jiang, J.; Niu, R.; Bai, Y.; Li, H. Enhancement of immune response for Newcastle disease vaccine using a combined adjuvant solution of Astragalus polysaccharides, levamisole, and selenoprotein. Turk. J. Vet. Anim. Sci., 2013, 37(5), 516-522.
[http://dx.doi.org/10.3906/vet-1207-30]
[7]
Jin, M.; Zhao, K.; Huang, Q.; Shang, P. Structural features and biological activities of the polysaccharides from Astragalus membranaceus. Int. J. Biol. Macromol., 2014, 64, 257-266.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.12.002] [PMID: 24325861]
[8]
Khan, H.M.; Raza, S.M.; Anjum, A.A.; Ali, M.A.; Akbar, H. Antiviral, embryo toxic and cytotoxic activities of Astragalus membranaceus root extracts. Pak. J. Pharm. Sci., 2019, 32(1), 137-142.
[PMID: 30772802]
[9]
Ntie-Kang, F.; Karaman Mayack, B.; Valente, S.; Battistelli, C. Natural product epigenetic modulators and inhibitors; Frontiers Media: SA, 2021, p. 651395.
[10]
Schäfer, A.; Baric, RS. Epigenetic landscape during coronavirus infection. Pathogens, 2017, 6(1), 8.
[11]
Zhang, N.; Li, J.; Hu, Y.; Cheng, G.; Zhu, X.; Liu, F.; Zhang, Y.; Liu, Z.; Xu, J. Effects of astragalus polysaccharide on the immune response to foot-and-mouth disease vaccine in mice. Carbohydr. Polym., 2010, 82(3), 680-686.
[http://dx.doi.org/10.1016/j.carbpol.2010.05.030]
[12]
Zhuge, Z.Y.; Zhu, Y.H.; Liu, P.Q.; Yan, X.D.; Yue, Y.; Weng, X.G.; Zhang, R.; Wang, J.F. Effects of Astragalus polysaccharide on immune responses of porcine PBMC stimulated with PRRSV or CSFV. PLoS One, 2012, 7(1), e29320.
[http://dx.doi.org/10.1371/journal.pone.0029320] [PMID: 22253710]
[13]
Li, Y.; Ran, C.; Wei, K.; Xie, Y.; Xie, M.; Zhou, W.; Yang, Y.; Zhang, Z.; Lv, H.; Ma, X.; Zhou, Z. The effect of Astragalus polysaccharide on growth, gut and liver health, and anti-viral immunity of zebrafish. Aquaculture, 2021, 540, 736677.
[http://dx.doi.org/10.1016/j.aquaculture.2021.736677]
[14]
Shang, L.; Qu, Z.; Sun, L.; Wang, Y.; Liu, F.; Wang, S.; Gao, H.; Jiang, F. Astragaloside IV inhibits adenovirus replication and apoptosis in A549 cells in vitro. J. Pharm. Pharmacol., 2011, 63(5), 688-694.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01258.x] [PMID: 21492171]
[15]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. A review of Astragalus species as foodstuffs, dietary supplements, a traditional chinese medicine and a part of modern pharmaceutical science. Appl. Ecol. Environ. Res., 2019, 17(6), 13371-13382.
[http://dx.doi.org/10.15666/aeer/1706_1337113382]
[16]
Liu, T.; Yang, F.; Liu, J.; Zhang, M.; Sun, J.; Xiao, Y.; Xiao, Z.; Niu, H.; Ma, R.; Wang, Y.; Liu, X.; Dong, Y. Astragaloside IV reduces cardiomyocyte apoptosis in a murine model of coxsackievirus B3-induced viral myocarditis. Exp. Anim., 2019, 68(4), 549-558.
[http://dx.doi.org/10.1538/expanim.19-0037] [PMID: 31243190]
[17]
Liang, Y; Zhang, Q; Zhang, L; Wang, R; Xu, X; Hu, X Astragalus membranaceus treatment protects Raw264.7 cells from influenza virus by regulating G1 phase and the TLR3-mediated signaling pathway. Evid Based Complement Alternat Med., 2019, 2019, 2971604.
[18]
Aallon, S.; Li, X.; Ji, J.; Chen, C.; Xi, Q.; Chang, S. Astragalus polysaccharide enhances immunity and inhibits H9N2 avian influenza virus in vitro and in vivo. J. Anim. Sci. Biotechnol., 2013, 4(1), 1-11.
[PMID: 23289727]
[19]
Xue, H.; Gan, F.; Zhang, Z.; Hu, J.; Chen, X.; Huang, K. Astragalus polysaccharides inhibits PCV2 replication by inhibiting oxidative stress and blocking NF-κB pathway. Int. J. Biol. Macromol., 2015, 81, 22-30.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.07.050] [PMID: 26226456]
[20]
Zhang, P.; Liu, X.; Liu, H.; Wang, W.; Liu, X.; Li, X.; Wu, X. Astragalus polysaccharides inhibit avian infectious bronchitis virus infection by regulating viral replication. Microb. Pathog., 2018, 114, 124-128.
[http://dx.doi.org/10.1016/j.micpath.2017.11.026] [PMID: 29170045]
[21]
Shi, L; Yin, F; Xin, X; Mao, S; Hu, P; Zhao, C Astragalus polysaccharide protects astrocytes from being infected by HSV-1 through TLR3/NF-κB signaling pathway. Evid Based Complement Alternat Med., 2014, 2014, 285356.
[22]
Guo, Q.; Sun, X.; Zhang, Z.; Zhang, L.; Yao, G.; Li, F.; Yang, X.; Song, L.; Jiang, G. The effect of Astragalus polysaccharide on the Epstein-Barr virus lytic cycle. Acta Virol., 2014, 58(1), 76-83.
[http://dx.doi.org/10.4149/av_2014_01_76] [PMID: 24717032]
[23]
Ge, C.; He, Y. In silico prediction of molecular targets of astragaloside iv for alleviation of COVID-19 hyperinflammation by systems network pharmacology and bioinformatic gene expression analysis. Front. Pharmacol., 2020, 11, 556984.
[24]
Song, J.H.; Kwon, B.E.; Jang, H.; Kang, H.; Cho, S.; Park, K.; Ko, H.J.; Kim, H. Antiviral activity of chrysin derivatives against coxsackievirus B3 in vitro and in vivo. Biomol. Ther. , 2015, 23(5), 465-470.
[http://dx.doi.org/10.4062/biomolther.2015.095] [PMID: 26336587]
[25]
Zhang, X.; Hao, J.; Sun, C.; Du, J.; Han, Q.; Li, Q. Total astragalosides decrease apoptosis and pyroptosis by inhibiting enterovirus 71 replication in gastric epithelial cells. Exp. Ther. Med., 2022, 23(3), 237.
[http://dx.doi.org/10.3892/etm.2022.11162] [PMID: 35222714]
[26]
Pu, X.; Wang, H.; Li, Y.; Fan, W.; Yu, S. Antiviral activity of GuiQi polysaccharides against enterovirus 71 in vitro. Virol. Sin., 2013, 28(6), 352-359.
[http://dx.doi.org/10.1007/s12250-013-3376-8] [PMID: 24254889]
[27]
Dasgupta, A. Antiinflammatory herbal supplements. In: Translational Inflammation; Actor, J.K.; Smith, K.C., Eds.; Academic Press, 2019; pp. 69-91.
[http://dx.doi.org/10.1016/B978-0-12-813832-8.00004-2]
[28]
Auyeung, K.K.; Han, Q.B.; Ko, J.K. Astragalus membranaceus: A review of its protection against inflammation and gastrointestinal cancers. Am. J. Chin. Med., 2016, 44(1), 1-22.
[http://dx.doi.org/10.1142/S0192415X16500014] [PMID: 26916911]
[29]
Nair, A.; Gopi, S.; Jacob, J. 14 - Bioavailability, pharmacokinetic, pharmacodynamic, and clinical studies of natural products on their antiinflammatory activities. In: Inflammation and Natural Products; Gopi, S.; Amalraj, A.; Kunnumakkara, A.; Thomas, S., Eds.; Academic Press, 2021; pp. 321-358.
[http://dx.doi.org/10.1016/B978-0-12-819218-4.00006-7]
[30]
Adesso, S.; Russo, R.; Quaroni, A.; Autore, G.; Marzocco, S. Astragalus membranaceus extract attenuates inflammation and oxidative stress in intestinal epithelial cells via nf-κb activation and nrf2 response. Int. J. Mol. Sci., 2018, 19(3), 800.
[http://dx.doi.org/10.3390/ijms19030800] [PMID: 29534459]
[31]
Liu, T.; Zhang, M.; Niu, H.; Liu, J.; Ruilian, M.; Wang, Y.; Xiao, Y.; Xiao, Z.; Sun, J.; Dong, Y.; Liu, X. Astragalus polysaccharide from astragalus melittin ameliorates inflammation via suppressing the activation of TLR-4/NF-κB p65 signal pathway and protects mice from CVB3-induced virus myocarditis. Int. J. Biol. Macromol., 2019, 126, 179-186.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.207] [PMID: 30586589]
[32]
Barrett, B. Viral upper respiratory infection.In: Integrative Medicine, 4th ed.; Rakel, D., Ed.; elsevier , 2018, pp. 170-179. e7
[33]
Kobayashi, Y. The regulatory role of nitric oxide in proinflammatory cytokine expression during the induction and resolution of inflammation. J. Leukoc. Biol., 2010, 88(6), 1157-1162.
[http://dx.doi.org/10.1189/jlb.0310149] [PMID: 20807706]
[34]
Karin, M. Greten, F.R. NF-κB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol., 2005, 5(10), 749-759.
[http://dx.doi.org/10.1038/nri1703] [PMID: 16175180]
[35]
Zheng, Y.; Ren, W.; Zhang, L.; Zhang, Y.; Liu, D.; Liu, Y. Aa review of the pharmacological action of Astragalus polysaccharide. Front. Pharmacol., 2020, 11, 349.
[http://dx.doi.org/10.3389/fphar.2020.00349] [PMID: 32265719]
[36]
Gupta, A.; Pandey, A.K. Plant secondary metabolites with hepatoprotective efficacy. In: Nutraceuticals and Natural Product Pharmaceuticals; Galanakis, C.M., Ed.; Academic Press, 2019; pp. 71-104.
[http://dx.doi.org/10.1016/B978-0-12-816450-1.00003-9]
[37]
Lu, J.; Chen, X.; Zhang, Y.; Xu, J.; Zhang, L.; Li, Z.; Liu, W.; Ouyang, J.; Han, S.; He, X. Astragalus polysaccharide induces anti-inflammatory effects dependent on AMPK activity in palmitate-treated RAW264.7 cells. Int. J. Mol. Med., 2013, 31(6), 1463-1470.
[http://dx.doi.org/10.3892/ijmm.2013.1335] [PMID: 23563695]
[38]
Zheng, Q; Zhuang, Z; Wang, Z-H; Deng, L-H; Jin, W-J Huang, ZJ linical and preclinical systematic review of Astragalus membranaceus for viral myocarditis. Oxid. Med. Cell. Longev. 2020 2020.
[39]
Du, Y.; Wan, H.; Huang, P.; Yang, J.; He, Y. A critical review of Astragalus polysaccharides: From therapeutic mechanisms to pharmaceutics. Biomed. Pharmacother., 2022, 147, 112654.
[http://dx.doi.org/10.1016/j.biopha.2022.112654] [PMID: 35086031]
[40]
Huang, X.; Wang, D.; Hu, Y.; Lu, Y.; Guo, Z.; Kong, X.; Sun, J. Effect of sulfated astragalus polysaccharide on cellular infectivity of infectious bursal disease virus. Int. J. Biol. Macromol., 2008, 42(2), 166-171.
[http://dx.doi.org/10.1016/j.ijbiomac.2007.10.019] [PMID: 18061660]
[41]
Wang, X.; Wang, S.; Li, Y.; Wang, F.; Yang, X.; Yao, J. Sulfated Astragalus polysaccharide can regulate the inflammatory reaction induced by LPS in Caco2 cells. Int. J. Biol. Macromol., 2013, 60, 248-252.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.05.037] [PMID: 23751319]
[42]
Xu, X.; Rui, S.; Chen, C.; Zhang, G.; Li, Z.; Wang, J.; Luo, Y.; Zhu, H.; Ma, X. Protective effects of astragalus polysaccharide nanoparticles on septic cardiac dysfunction through inhibition of TLR4/NF-κB signaling pathway. Int. J. Biol. Macromol., 2020, 153, 977-985.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.227] [PMID: 31760017]
[43]
Meng, Y.; Zhang, Y.; Jia, N.; Qiao, H.; Zhu, M.; Meng, Q.; Lu, Q.; Zu, Y. Synthesis and evaluation of a novel water-soluble high Seenriched Astragalus polysaccharide nanoparticles. Int. J. Biol. Macromol., 2018, 118(Pt B), 1438-1448.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.153] [PMID: 30170361]
[44]
Xiong, J.; Jiang, B.; Luo, Y.; Zou, J.; Gao, X.; Xu, D.; Du, Y.; Hao, L. Multifunctional nanoparticles encapsulating Astragalus polysaccharide and gold nanorods in combination with focused ultrasound for the treatment of breast cancer. Int. J. Nanomedicine, 2020, 15, 4151-4169.
[http://dx.doi.org/10.2147/IJN.S246447] [PMID: 32606670]
[45]
Ma, Y.; Liu, C.; Qu, D.; Chen, Y.; Huang, M.; Liu, Y. Antibacterial evaluation of sliver nanoparticles synthesized by polysaccharides from Astragalus membranaceus roots. Biomed. Pharmacother., 2017, 89, 351-357.
[http://dx.doi.org/10.1016/j.biopha.2017.02.009] [PMID: 28242544]
[46]
Liang, Y.; Chen, B.; Liang, D.; Quan, X.; Gu, R.; Meng, Z.; Gan, H.; Wu, Z.; Sun, Y.; Liu, S.; Dou, G. Pharmacological effects of astragaloside iv: A review. Molecules, 2023, 28(16), 6118.
[http://dx.doi.org/10.3390/molecules28166118] [PMID: 37630371]
[47]
Mohammed, A.S.A.; Naveed, M.; Jost, N. Polysaccharides; classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (a review of current applications and upcoming potentialities). J. Polym. Environ., 2021, 29(8), 2359-2371.
[http://dx.doi.org/10.1007/s10924-021-02052-2] [PMID: 33526994]
[48]
Karak, P. Biological activities of flavonoids: An overview. Int. J. Pharm. Sci. Res., 2019, 10(4), 1567-1574.
[49]
Tay, K.C.; Tan, L.T.H.; Chan, C.K.; Hong, S.L.; Chan, K.G.; Yap, W.H.; Pusparajah, P.; Lee, L.H.; Goh, B.H. Formononetin: A review of its anticancer potentials and mechanisms. Front. Pharmacol., 2019, 10, 820.
[http://dx.doi.org/10.3389/fphar.2019.00820] [PMID: 31402861]
[50]
Zhang, D.Q.; Wang, H.B.; Wang, S.F.; Wang, D.Q. [Research achievements on biological activities of calycosin]. Zhongguo Zhongyao Zazhi, 2015, 40(22), 4339-4345.
[PMID: 27097403]
[51]
Alshehri, MM; Sharifi-Rad, J; Herrera-Bravo, J; Jara, EL; Salazar, LA; Kregiel, D Therapeutic potential of isoflavones with an emphasis on daidzein. Oxid Med Cell Longev., 2021, 2021, 6331630.
[http://dx.doi.org/10.1155/2021/6331630]
[52]
Juang, Y.P.; Liang, P.H. Biological and pharmacological effects of synthetic saponins. Molecules, 2020, 25(21), 4974.
[http://dx.doi.org/10.3390/molecules25214974] [PMID: 33121124]
[53]
Liu, D.; Xu, J.; Qian, G.; Hamid, M.; Gan, F.; Chen, X.; Huang, K. Selenizing astragalus polysaccharide attenuates PCV2 replication promotion caused by oxidative stress through autophagy inhibition via PI3K/AKT activation. Int. J. Biol. Macromol., 2018, 108, 350-359.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.010] [PMID: 29217185]
[54]
Xue, H.; Gan, F.; Qian, G.; Hu, J.; Hao, S.; Xu, J.; Chen, X.; Huang, K. Astragalus polysaccharides attenuate PCV2 infection by inhibiting endoplasmic reticulum stress in vivo and in vitro. Sci. Rep., 2017, 7(1), 40440.
[http://dx.doi.org/10.1038/srep40440] [PMID: 28071725]
[55]
Shi, L; Zhang, C; Liu, L; Xi, Z; Chen, M Effects of astragalus polysaccharides on cd8+ tissue-resident memory t cells in mice with herpes simplex. Evid Based Complement Alternat Med., 2022, 2022, 7729136.
[56]
Xu, J.; Zhang, Y. Traditional Chinese Medicine treatment of COVID-19. Complement. Ther. Clin. Pract., 2020, 39, 101165.
[http://dx.doi.org/10.1016/j.ctcp.2020.101165] [PMID: 32379692]
[57]
Zhang, J.L.; Li, W.X.; Li, Y.; Wong, M.S.; Wang, Y.J.; Zhang, Y. Therapeutic options of TCM for organ injuries associated with COVID-19 and the underlying mechanism. Phytomedicine, 2021, 85, 153297.
[http://dx.doi.org/10.1016/j.phymed.2020.153297] [PMID: 32798019]
[58]
Rafieian-Kopaei, M.; Aleebrahim-Dehkordi, E.; Heidari-Soureshjani, E.; Aryan, A.; Ganjirad, Z.; Soveyzi, F.; Hoseinsalari, A.; Derisi, M.M. Antiviral compounds based on natural Astragalus polysaccharides (aps): Research and foresight in the strategies for combating SARS-COV-2 (COVID-19). Mini Rev. Med. Chem., 2022, 22(17), 2299-2307.
[http://dx.doi.org/10.2174/1389557522666220301143113] [PMID: 35232341]
[59]
Cho, W.C.S.; Leung, K.N. In vitro and in vivo anti-tumor effects of Astragalus membranaceus. Cancer Lett., 2007, 252(1), 43-54.
[http://dx.doi.org/10.1016/j.canlet.2006.12.001] [PMID: 17223259]
[60]
Jia, R.; Cao, L.; Xu, P.; Jeney, G.; Yin, G. In vitro and in vivo hepatoprotective and antioxidant effects of Astragalus polysaccharides against carbon tetrachloride-induced hepatocyte damage in common carp (Cyprinus carpio). Fish Physiol. Biochem., 2012, 38(3), 871-881.
[http://dx.doi.org/10.1007/s10695-011-9575-z] [PMID: 22089693]
[61]
Hong, X.; Lu, H.; Zhang, Q.; Xia, S.; Tang, J.; Ding, Z. Effect of Astragalus polysaccharide on the anti-infection of white spot syndrome virus (WSSV) in procambarus clarkia. Shanghai Haiyang Daxue Xuebao, 2014, 23(3), 423-428.
[62]
Ko, H.C.; Wei, B.L.; Chiou, W.F. The effect of medicinal plants used in Chinese folk medicine on RANTES secretion by virusinfected human epithelial cells. J. Ethnopharmacol., 2006, 107(2), 205-210.
[http://dx.doi.org/10.1016/j.jep.2006.03.004] [PMID: 16621378]
[63]
Qi, Y.; Gao, F.; Hou, L.; Wan, C. Anti-inflammatory and immunostimulatory activities of astragalosides. Am. J. Chin. Med., 2017, 45(6), 1157-1167.
[http://dx.doi.org/10.1142/S0192415X1750063X] [PMID: 28830214]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy