<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">
Research Article
No access
Published Online: 12 February 2014

Fucoidan Promotes Early Step of Cardiac Differentiation from Human Embryonic Stem Cells and Long-Term Maintenance of Beating Areas

Publication: Tissue Engineering Part A
Volume 20, Issue Number 7-8

Abstract

Somatic stem cells require specific niches and three-dimensional scaffolds provide ways to mimic this microenvironment. Here, we studied a scaffold based on Fucoidan, a sulfated polysaccharide known to influence morphogen gradients during embryonic development, to support human embryonic stem cells (hESCs) differentiation toward the cardiac lineage. A macroporous (pore 200 μm) Fucoidan scaffold was selected to support hESCs attachment and proliferation. Using a protocol based on the cardiogenic morphogen bone morphogenic protein 2 (BMP2) and transforming growth factor (TGFβ) followed by tumor necrosis factor (TNFα), an effector of cardiopoietic priming, we examined the cardiac differentiation in the scaffold compared to culture dishes and embryoid bodies (EBs). At day 8, Fucoidan scaffolds supported a significantly higher expression of the 3 genes encoding for transcription factors marking the early step of embryonic cardiac differentiation NKX2.5 (p<0.05), MEF2C (p<0.01), and GATA4 (p<0.01), confirmed by flow cytometry analysis for MEF2C and NKX2.5. The ability of Fucoidan scaffolds to locally concentrate and slowly release TGFβ and TNFα was confirmed by Luminex technology. We also found that Fucoidan scaffolds supported the late stage of embryonic cardiac differentiation marked by a significantly higher atrial natriuretic factor (ANF) expression (p<0.001), although only rare beating areas were observed. We postulated that absence of mechanical stress in the soft hydrogel impaired sarcomere formation, as confirmed by molecular analysis of the cardiac muscle myosin MYH6 and immunohistological staining of sarcomeric α-actinin. Nevertheless, Fucoidan scaffolds contributed to the development of thin filaments connecting beating areas through promotion of smooth muscle cells, thus enabling maintenance of beating areas for up to 6 months. In conclusion, Fucoidan scaffolds appear as a very promising biomaterial to control cardiac differentiation from hESCs that could be further combined with mechanical stress to promote sarcomere formation at terminal stages of differentiation.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Klump H., Schiedlmeier B., and Baum C. Control of self-renewal and differentiation of hematopoietic stem cells: HOXB4 on the threshold. Ann N Y Acad Sci 1044, 6, 2005.
2.
Gomez-Lopez S., Wiskow O., Favaro R., Nicolis S.K., Price D.J., Pollard S.M., and Smith A. Sox2 and Pax6 maintain the proliferative and developmental potential of gliogenic neural stem cells In vitro. Glia 59, 1588, 2011.
3.
Montarras D., Morgan J., Collins C., Relaix F., Zaffran S., Cumano A., Partridge T., and Buckingham M. Direct isolation of satellite cells for skeletal muscle regeneration. Science 309, 2064, 2005.
4.
Watt F.M., and Hogan B.L. Out of Eden: stem cells and their niches. Science 287, 1427, 2000.
5.
Spradling A., Drummond-Barbosa D., and Kai T. Stem cells find their niche. Nature 414, 98, 2001.
6.
Howard D., Buttery L.D., Shakesheff K.M., and Roberts S.J. Tissue engineering: strategies, stem cells and scaffolds. J Anat 213, 66, 2008.
7.
Burdick J.A., and Vunjak-Novakovic G. Engineered microenvironments for controlled stem cell differentiation. Tissue Eng Part A 15, 205, 2009.
8.
Votteler M., Kluger P.J., Walles H., and Schenke-Layland K. Stem cell microenvironments—unveiling the secret of how stem cell fate is defined. Macromol Biosci 10, 1302, 2010.
9.
Engler A.J., Sen S., Sweeney H.L., and Discher D.E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677, 2006.
10.
Krieg M., Arboleda-Estudillo Y., Puech P.H., Kafer J., Graner F., Muller D.J., and Heisenberg C.P. Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol 10, 429, 2008.
11.
Discher D.E., Mooney D.J., and Zandstra P.W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673, 2009.
12.
Levenberg S., Huang N.F., Lavik E., Rogers A.B., Itskovitz-Eldor J., and Langer R. Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc Natl Acad Sci U S A 100, 12741, 2003.
13.
Liu H., Lin J., and Roy K. Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells. Biomaterials 27, 5978, 2006.
14.
Blin G., Lablack N., Louis-Tisserand M., Nicolas C., Picart C., and Puceat M. Nano-scale control of cellular environment to drive embryonic stem cells selfrenewal and fate. Biomaterials 31, 1742, 2010.
15.
Li S.C., Wang L., Jiang H., Acevedo J., Chang A.C., and Loudon W.G. Stem cell engineering for treatment of heart diseases: potentials and challenges. Cell Biol Int 33, 255, 2009.
16.
Delcroix G.J., Schiller P.C., Benoit J.P., and Montero-Menei C.N. Adult cell therapy for brain neuronal damages and the role of tissue engineering. Biomaterials 31, 2105, 2010.
17.
Le Visage C., Gournay O., Benguirat N., Hamidi S., Chaussumier L., Mougenot N., Flanders J.A., Isnard R., Michel J.B., Hatem S., Letourneur D., and Norol F. Mesenchymal stem cell delivery into rat infarcted myocardium using a porous polysaccharide-based scaffold: a quantitative comparison with endocardial injection. Tissue Eng Part A 18, 35, 2012.
18.
Nogami K., Suzuki H., Habuchi H., Ishiguro N., Iwata H., and Kimata K. Distinctive expression patterns of heparan sulfate O-sulfotransferases and regional differences in heparan sulfate structure in chick limb buds. J Biol Chem 279, 8219, 2004.
19.
Powell A.K., Yates E.A., Fernig D.G., and Turnbull J.E. Interactions of heparin/heparan sulfate with proteins: appraisal of structural factors and experimental approaches. Glycobiology 14, 17R, 2004.
20.
Klaus A., and Birchmeier W. Developmental signaling in myocardial progenitor cells: a comprehensive view of Bmp- and Wnt/beta-catenin signaling. Pediatr Cardiol 30, 609, 2009.
21.
Behfar A., Perez-Terzic C., Faustino R.S., Arrell D.K., Hodgson D.M., Yamada S., Puceat M., Niederlander N., Alekseev A.E., Zingman L.V., and Terzic A. Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J Exp Med 204, 405, 2007.
22.
Autissier A., Letourneur D., and Le Visage C. Pullulan-based hydrogel for smooth muscle cell culture. J Biomed Mater Res A 82A, 336, 2007.
23.
Lavergne M., Derkaoui M., Delmau C., Letourneur D., Uzan G., and Le Visage C. Porous polysaccharide-based scaffolds for human endothelial progenitor cells. Macromol Biosci 12, 901, 2012.
24.
Skardal A., Zhang J., McCoard L., Xu X., Oottamasathien S., and Prestwich G.D. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng Part A 16, 2675, 2010.
25.
Kehat I., Kenyagin-Karsenti D., Snir M., Segev H., Amit M., Gepstein A., Livne E., Binah O., Itskovitz-Eldor J., and Gepstein L. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108, 407, 2001.
26.
Srivastava D. Making or breaking the heart: from lineage determination to morphogenesis. Cell 126, 1037, 2006.
27.
Urbanek K., Cesselli D., Rota M., Nascimbene A., De Angelis A., Hosoda T., Bearzi C., Boni A., Bolli R., Kajstura J., Anversa P., and Leri A. Stem cell niches in the adult mouse heart. Proc Natl Acad Sci U S A 103, 9226, 2006.
28.
Daley W.P., Peters S.B., and Larsen M. Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci 121, 255, 2008.
29.
Schenke-Layland K., Nsair A., Van Handel B., Angelis E., Gluck J.M., Votteler M., Goldhaber J.I., Mikkola H.K., Kahn M., and Maclellan W.R. Recapitulation of the embryonic cardiovascular progenitor cell niche. Biomaterials 32, 2748, 2011.
30.
Lake A.C., Vassy R., Di Benedetto M., Lavigne D., Le Visage C., Perret G.Y., and Letourneur D. Low molecular weight Fucoidan increases VEGF165-induced endothelial cell migration by enhancing VEGF165 binding to VEGFR-2 and NRP1. J Biol Chem 281, 37844, 2006.
31.
Ashikari-Hada S., Habuchi H., Kariya Y., Itoh N., Reddi A.H., and Kimata K. Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library. J Biol Chem 279, 12346, 2004.
32.
McCaffrey T.A., Falcone D.J., Vicente D., Du B., Consigli S., and Borth W. Protection of transforming growth factor-beta 1 activity by heparin and Fucoidan. J Cell Physiol 159, 51, 1994.
33.
Senni K., Gueniche F., Foucault-Bertaud A., Igondjo-Tchen S., Fioretti F., Colliec-Jouault S., Durand P., Guezennec J., Godeau G., and Letourneur D. Fucoidan a sulfated polysaccharide from brown algae is a potent modulator of connective tissue proteolysis. Arch Biochem Biophys 445, 56, 2006.
34.
Deux J.F., Meddahi-Pelle A., Le Blanche A.F., Feldman L.J., Colliec-Jouault S., Bree F., Boudghene F., Michel J.B., and Letourneur D. Low molecular weight Fucoidan prevents neointimal hyperplasia in rabbit iliac artery in-stent restenosis model. Arterioscler Thromb Vasc Biol 22, 1604, 2002.
35.
Religa P., Kazi M., Thyberg J., Gaciong Z., Swedenborg J., and Hedin U. Fucoidan inhibits smooth muscle cell proliferation and reduces mitogen-activated protein kinase activity. Eur J Vasc Endovasc Surg 20, 419, 2000.
36.
Freguin-Bouilland C., Alkhatib B., David N., Lallemand F., Henry J.P., Godin M., Thuillez C., and Plissonnier D. Low molecular weight Fucoidan prevents neointimal hyperplasia after aortic allografting. Transplantation 83, 1234, 2007.
37.
Bautch V.L. Stem cells and the vasculature. Nat Med 17, 1437, 2011.
38.
Zemani F., Benisvy D., Galy-Fauroux I., Lokajczyk A., Colliec-Jouault S., Uzan G., Fischer A.M., and Boisson-Vidal C. Low-molecular-weight Fucoidan enhances the proangiogenic phenotype of endothelial progenitor cells. Biochem Pharmacol 70, 1167, 2005.
39.
Sarlon G., Zemani F., David L., Duong Van Huyen J.P., Dizier B., Grelac F., Colliec-Jouault S., Galy-Fauroux I., Bruneval P., Fischer A.M., Emmerich J., and Boisson-Vidal C. Therapeutic effect of Fucoidan-stimulated endothelial colony-forming cells in peripheral ischemia. J Thromb Haemost 10, 38, 2012.
40.
Nakamura S., Nambu M., Ishizuka T., Hattori H., Kanatani Y., Takase B., Kishimoto S., Amano Y., Aoki H., Kiyosawa T., Ishihara M., and Maehara T. Effect of controlled release of fibroblast growth factor-2 from chitosan/Fucoidan micro complex-hydrogel on in vitro and in vivo vascularization. J Biomed Mater Res A 85, 619, 2008.
41.
Jacot J.G., Martin J.C., and Hunt D.L. Mechanobiology of cardiomyocyte development. J Biomech 43, 93, 2010.
42.
Russell B., Curtis M.W., Koshman Y.E., and Samarel A.M. Mechanical stress-induced sarcomere assembly for cardiac muscle growth in length and width. J Mol Cell Cardiol 48, 817, 2010.
43.
White E. Mechanical modulation of cardiac microtubules. Pflugers Arch 462, 177, 2011.
44.
Clause K.C., Tinney J.P., Liu L.J., Keller B.B., and Tobita K. Engineered early embryonic cardiac tissue increases cardiomyocyte proliferation by cyclic mechanical stretch via p38-MAP kinase phosphorylation. Tissue Eng Part A 15, 1373, 2009.
45.
Small E.M., and Krieg P.A. Transgenic analysis of the atrialnatriuretic factor (ANF) promoter: Nkx2-5 and GATA-4 binding sites are required for atrial specific expression of ANF. Dev Biol 261, 116, 2003.
46.
Bian W., Liau B., Badie N., and Bursac N. Mesoscopic hydrogel molding to control the 3D geometry of bioartificial muscle tissues. Nat Protoc 4, 1522, 2009.
47.
Vader D., Kabla A., Weitz D., and Mahadevan L. Strain-induced alignment in collagen gels. PLoS One 4, e5902, 2009.
48.
Flaibani M., Boldrin L., Cimetta E., Piccoli M., De Coppi P., and Elvassore N. Muscle differentiation and myotubes alignment is influenced by micropatterned surfaces and exogenous electrical stimulation. Tissue Eng Part A 15, 2447, 2009.

Information & Authors

Information

Published In

cover image Tissue Engineering Part A
Tissue Engineering Part A
Volume 20Issue Number 7-8April 2014
Pages: 1285 - 1294
PubMed: 24354596

History

Published in print: April 2014
Published ahead of print: 14 February 2014
Published online: 12 February 2014
Published ahead of production: 20 December 2013
Accepted: 12 November 2013
Received: 1 March 2013

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Sofiane Hamidi, MSc
INSERM, UMR 1009, Institut Gustave Roussy, Villejuif, France.
Université Paris-Sud, UMR 1009, Institut Gustave Roussy, Villejuif, France.
Institut Gustave Roussy, Villejuif, France.
Didier Letourneur, PhD
Inserm, U698, Cardiovascular Bioengineering, X Bichat Hospital, Paris, France.
Sorbonne Paris Cité, Universite Paris Nord, Villetaneuse, France.
Univ Paris Diderot, Paris, France.
Rachida Aid-Launais, MSc
Inserm, U698, Cardiovascular Bioengineering, X Bichat Hospital, Paris, France.
Sorbonne Paris Cité, Universite Paris Nord, Villetaneuse, France.
Univ Paris Diderot, Paris, France.
Antonio Di Stefano, PhD
INSERM, UMR 1009, Institut Gustave Roussy, Villejuif, France.
Université Paris-Sud, UMR 1009, Institut Gustave Roussy, Villejuif, France.
Institut Gustave Roussy, Villejuif, France.
William Vainchenker, MD, PhD
INSERM, UMR 1009, Institut Gustave Roussy, Villejuif, France.
Université Paris-Sud, UMR 1009, Institut Gustave Roussy, Villejuif, France.
Institut Gustave Roussy, Villejuif, France.
Françoise Norol, MD, PhD
*
INSERM, UMR 1009, Institut Gustave Roussy, Villejuif, France.
AP-HP, Service de Biothérapie, Hospital Pitié Salpétrière, Paris, France.
Catherine Le Visage, PhD*
Inserm, U698, Cardiovascular Bioengineering, X Bichat Hospital, Paris, France.
Sorbonne Paris Cité, Universite Paris Nord, Villetaneuse, France.
Univ Paris Diderot, Paris, France.

Notes

Address correspondence to:Catherine Le Visage, PhDInserm, U698Cardiovascular BioengineeringX Bichat HospitalParis 75018France
E-mail: [email protected]

Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top