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Abstract

More than 3000 clinical trials are evaluating the clinical activity of the PD-1 checkpoint inhibitors as monotherapies and in
combinations with other cancer therapies [1]. The PD-1 checkpoint inhibitors are remarkable for their clinical activities in shrinking
tumors across a wide range of tumor types, in causing durable responses, and in their tolerability. These attributes position them as
favorable agents in clinical combinations. Historically, approaches to cancer therapy combinations focused on agents with orthog-
onal activities to avoid shared resistance mechanisms and shared toxicities. Although CTLA-4/PD-1 combinations have progressed
based on possible immune interactions, additional approaches have used more orthogonal treatments such as standard of care
chemotherapies and anti-angiogenesis inhibitors. Using the concept of independent activity pioneered by Bliss [2], examples of
these approaches were compared. Both standard of care chemotherapy and anti-angiogenesis combinations show promising clinical
activity above that predicted by the independent contributions of the agents tested on their own. In contrast, the combinations of
CTLA4/PD-1 checkpoint inhibitors in renal cancer and melanoma show no more activity than that predicted by the independent
contributions of the monotherapies. This update on approaches to the development of clinical combination therapies highlights the
potential importance of combining PD-1 checkpoint inhibitors with a broad range of clinically active partners.
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Introduction urothelial cancer, microsatellite instability-high cancers, gas-
tric cancer, primary mediastinal B cell lymphoma, and cervi-

The PD-1 checkpoint inhibitors provide remarkable benefits  cal cancer.

for patients suffering from advanced cancers. As of August
2018, pembrolizumab has the broadest label among the PD-1
inhibitors and is indicated for the treatment of melanoma, non-
small cell lung cancer (NSCLC), head and neck squamous cell
cancer (HNSCC), classical Hodgkin Lymphoma (cHL),
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Pembrolizumab and nivolumab were the fifth and sixth
immunotherapeutics approved for the treatment of advanced
melanoma (Table 1). The clinical activity of these drugs is
remarkable in the context of cancer drug development. The
overall response rate (ORR) in phase 1 for novel agents is
generally predictive for subsequent regulatory approval in on-
cology (Table 1) [3, 4]. Thus, it is noteworthy that the PD-1
checkpoint inhibitors demonstrated a substantial increase in
response rates compared with other immunotherapeutic
agents [5, 6]. By this measure, these are the most active im-
munotherapeutic agents yet studied.

The promise of the new PD-1 checkpoint immunotherapies
goes beyond their remarkable response rates. They offer a
novel breadth of activity across indications, significant dura-
bility of response carrying over to survival benefit, and their
manageable adverse event profiles facilitate combination
therapy.
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Table 1 Clinical activity as
measured by overall response

A: Immunotherapeutic approvals in melanoma

rates is associated with success in

registration trials Product Name Approval Indication ORR Reference
Proleukin Interleukin 2 1992 Renal 6% [61]
carcinoma
Intron A Interferon 2001 Adjuvant 8% [62]
alfa-2b melanoma
Sylatron Peginterferon 2011 Adjuvant 6% [63]
alfa-2b melanoma
Yervoy Ipilimumab 2011 Advanced 10.9% [64]
melanoma
Keytruda Pembrolizumab 2014 Advanced 33% [5]
melanoma
Opdivo Nivolumab 2014 Advanced 40% [6]
melanoma
Imlygic T-Vec 2015 Advanced 16.3% [65]
melanoma
B: Association of ORR with drug approvals 1976-1993
ORR (%) Drugs Trials that registered ~ Trials (%) Registration Reference
1976-1993 1976-1993 1976-19,- success (%)
932 1976-1993
0 59 10 33.9% 16.9% [3]
0.1-5.0 64 14 36.8% 21.9%
5.1-10 32 12 18.4% 37.5%
>10 19 12 10.9% 63.2%
C: Association of ORR with drug approvals 1985-1999
Tumor type and Total number of ~ Number of drugs Registration success (%) Reference
response rate drugs approved for any 1985-1999
categories (%) type of tumor (P)
0 8 1 12.5% [4]
>0 and <10 20 0 0.0%
>10 and <20 12 6 50.0%
>20 6 4 66.7%

Salient features of PD-1 checkpoint inhibition

The cellular dynamics of tumor shrinkage after release
of checkpoint inhibition

PD-1 inhibitors release CDS cells from immune checkpoint
blockade, which then act as a remarkable cytotoxic machine
to shrink tumors. Tumors are typically diagnosed when pa-
tients have a burden of cancer greater than 10'° cells [7].
Humans are thought to have 4 x 10'! circulating T cells [8]
and the average clonotype targeting any specific antigen is
thought to be in the range of 10 cells [9]. Since the release of
CDS8 cells from checkpoint inhibition by PD-1 therapies
results in rapid tumor shrinkage [10], it seems reasonable
to assume that anti-tumor T cells present at the initiation of
PD-1 therapies are critical to the initial tumor response.
The very earliest reports of PD-1 efficacy in melanoma
demonstrated remarkable outcomes for those patients who
experienced complete responses [10, 11]. Spider plots in
early papers showed that PD-1 treatment can induce a com-
plete response in as few as 80 days, and a substantial
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fraction of the patients shown in the spider plots achieved
partial responses in that time. Thus, while a tumor doubling
time of 50 days, together with a starting cell mass containing
5x 10" cells implies that stable disease requires the killing
of 1 x 10" cells per day, a partial response will require the
killing of 3 x 10° more cells per day, and a complete re-
sponse an additional 5 x 10° cells per day. By any measure,
the activation of CD8 tumor cell killing puts PD-1 inhibitors
among the most cytotoxic of cancer therapies. Assuming a
tumor doubling time of 50 days and the ability of a cytotoxic
T cell to kill 2-16 cells per day [12], just to balance immune
killing with tumor growth to achieve stable disease will
require active killing by about 5 x 10° CD8 effector cells,
or about 1 in 100 of circulating T cells. This abundance is
within range of detection by current sequencing technolo-
gies [13], which have been used to identify expansion of
high frequency clones after initiation of PD-1 therapies in
melanoma patients [14].

No other immunotherapy has been identified that is capable
of this degree of tumor cell killing, highlighting this salient
feature of the PD-1 inhibitors.
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Breadth of activity

Among the key initial studies of PD-1 and its ligand(s) PD-L1
(B7-H1) and PD-L2, the Chen laboratory demonstrated abun-
dant expression of PD-L1 on a remarkably broad range of tu-
mors [15]. As initial studies of PD-1 therapy in melanoma
progressed, MSD Research Laboratories’ Keynote studies
012, 028, and 158 consequently sought to systematically ex-
plore the potential for pembrolizumab to work across a broad
spectrum of tumors. In addition to studies of pembrolizumab,
the activity of PD-1 and PD-L1 inhibitors has been reported for
about 30 tumors types as of August 2018. The breadth of ac-
tivity in multiple tumor types uncovered by these studies is
among the many remarkable characteristics of these inhibitors
(Fig. 1a). Figure 1a presents a histogram of ORRs published for
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Fig. 1 a Histogram showing the overall response rate for PD-1 check-
point inhibitors used in monotherapy trials. Ninety trials with published
ORRs for PD-1 checkpoint inhibitors across 31 indications were identi-
fied (references in supplementary materials). These studies also range
across all lines of therapy and many were enriched by selection for PD-
L1 tumor biomarker expression. These were plotted in a histogram with
the x axis depicting the ORR for the trials and the y axis the numbers of
trials demonstrating activity at the designated ORR. b The Bliss indepen-
dent combination. The equation for Bliss independence is shown (Bliss,
1939). The square diagram shows conceptually that a drug with a Y,
response rate would combine with a second drug with a Y4, response rate,
but the combined activity would not be expected to total just the two
numbers. Rather their total must be corrected by their random interaction
(Ya*xYy), if their interaction is truly independent. x and y axes are a
theoretic depiction of the range of possible response rates from 0 to
100% for each drug in a combination

91 published monotherapy studies in 30 tumor types using the
five approved PD-1 and PD-L1 inhibitors. The mean ORR for
all of these studies is 20.7% (C.I. 1.3-25.8%) and the median is
18.7%. (This snapshot contains redundant data since the same
agent has been tested in multiple lines of therapy, and different
agents have been tested in the same indications.) In many cases,
enrichment using PD-L1 biomarker strategies will have elevat-
ed the response rates, so this histogram is skewed toward higher
response rates partly attributable to enrichment designs.
Importantly, a trend toward greater efficacy in earlier lines of
therapy can be found by comparing these data to the ORR for
first line trials only. For the six tumor types where a PD-1 or
PD-L1 has been studied as a first line therapy in an all comer’s
population, the mean ORR improves to 31.3% (C.I. 27.9—
59.1%) and the median ORR is 26%. Nevertheless, this breadth
of activity has not been seen for any other immunotherapeutic,
and the predictive value of these ORRs for eventual success in
regulatory approvals [3, 4] suggests that a PD-1 or PD-L1 in-
hibitor will likely become part of the treatment paradigm for
nearly all cancer types in the future.

Duration of PD-1 treatment effect

In contrast to chemotherapies or targeted therapies, immunother-
apies offer a unique promise for longer term efficacy. By re-
activating the CD8 cell response that is presumed to have be-
come “exhausted” before diagnosis, the PD-1 therapies induce a
durable immune clearance of tumors. Overall survival data sup-
port that view. The 5-year overall survival (OS) rate in Keynote
001 with pembrolizumab treatment for treatment-naive melano-
ma patients is now 41% [16]. The 4-year OS for NSCLC pa-
tients initially treated with pembrolizumab is 27%. These num-
bers appear to be plateauing after 42 months. More remarkable,
these effects may not require lifelong treatment with PD-1 in-
hibitors. The overall survival rate for 67 melanoma patients who
had complete responses to pembrolizumab, discontinued PD-1
therapy, and received no further therapy was 89.9% [17]. To
further assess the need for long-term treatment, in Keynote
006 pembrolizumab was prospectively discontinued after com-
pletion of 2 years of therapy [18]. With 46 months of follow up,
the 4-year OS for these patients is 42%, similar to the results in
Keynote 001 where patients were treated to progression. After
planned discontinuation of the checkpoint inhibitor, with a me-
dian follow-up of 21 months, 86% of patients remain without
disease progression off therapy. These statistics highlight the
potential for checkpoint inhibitors to have re-programmed im-
mune responses to tumors in the direction of long-term benefit
well after completion of treatment courses.

Manageable adverse event profile

The classic drug development approach of combining thera-
pies that function through orthogonal mechanisms works not
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only to prevent development of single overlapping mecha-
nism resistance, but also avoids exacerbating overlapping tox-
icities [19]. The toxicities of immune checkpoint inhibitors are
inherent in their mechanism, which was immediately obvious
when the PD-1 and PD-L1 gene targets were identified [20].
Disruption of the PD-1 gene causes a lupus like autoimmune
disease in mice. While this association was readily apparent in
animal models, genetic associations between PD-1 gene poly-
morphisms and autoimmunity remain somewhat elusive in
humans [21, 22]. On the other hand, side effects of checkpoint
inhibitors fit the obvious expected autoimmune patterns pre-
dicted by the genetic models [23]. PD-1 checkpoint inhibitor
side effects most frequently involve the endocrine glands,
skin, gastrointestinal tract, liver, and lungs.

Meta-analyses have shown that checkpoint inhibitor-
related risk for hypothyroidism, pneumonitis, colitis, and
hypophysitis is increased compared with control treatments
[24]. These meta-analyses also demonstrate non-overlapping
toxicities of checkpoint inhibitors when compared with the
side effects of chemotherapies and targeted therapies. In con-
trast, combinations of PD-1 and CTLA 4 inhibitors result in
higher rates of specific shared adverse events consistent with
synergistic toxicity [25]. Rash, pruritus, and diarrhea all in-
crease in frequency in CTLA4/PD-1 combined therapy.
Increased ALTs, colitis, hypophysitis, hypothyroidism, and
pneumonitis occur in these combinations, and can be dose-
limiting and life threatening. A healthy debate continues re-
garding the benefit/risk ratio of combining checkpoint inhib-
itors. However, the historic approach to cancer combinations
using independently acting compounds would argue for com-
bination therapies that do not include overlapping immune
toxicities.

What is to be done?

Despite high response rates to PD-1/L1 monotherapy, Fig. 1
underscores the unmet medical need of patients not
responding to checkpoint inhibition. At this time, less than
half of patients will respond to monotherapy treatment with
checkpoint inhibitors. This unmet need could be approached
either by using biomarkers for personalized treatments, or by
identifying effective combination therapies.

Biomarkers

This review will focus on combination strategies for immune
checkpoint inhibitors. However, the ligand receptor pairing of
PD-1 provides a strong rationale for PD-L1 as a predictive
biomarker, which has been a highly successful approach to
bringing PD-1 checkpoint inhibitors to patients most likely
to benefit from their use. Exploiting its expression on tumor
cells, a companion diagnostic has been approved by the FDA
to identify patients with NSCLC, bladder, gastric, head, and
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neck squamous cell and cervical cancers likely to benefit from
treatment with pembrolizumab [26]. Several other PD-L1 as-
says are available for use with other PD-1 inhibitors [27].
Unlike many gene tests, PD-L1 expression varies across a
gradient in immunohistochemistry assays, requiring the devel-
opment of empiric cut points derived from receiver operator
curves to optimize assay use. A variety of exploratory assays
in development evaluate T cell receptor clonality, tumor infil-
trating lymphocytes, mutational burden, immune gene signa-
tures, and multiplex immunohistochemistry [28]. These as-
says will similarly require clinical correlation to identify cut
points since they also measure continuous variables.
Complexities of the assay platforms used for these additional
assays seem likely to slow or inhibit their use at this time
compared with the success of PD-L1 as a companion
diagnostic.

Tumor size, resistance to therapy, and rationale
for combining agents

We have entered a new era in the development of the check-
point inhibitors where development of more effective combi-
nation regimens will be critical to further progress.

Basic principles of cancer combination therapy were devel-
oped in the first decade of use of chemotherapeutic agents
[29]. In a seminal analysis, Law articulated fundamental prin-
ciples [30]. First, therapeutic selectivity for cancer cells versus
normal cells is fundamental to the agents used and to their use
in combination. Second, evolution of resistance has always
been proposed as the major contributor to eventual treatment
failure. The development of immunotherapeutic combinations
may now be coming to better understand these basic princi-
ples [31]. The manageable side effects of PD-1 checkpoint
inhibitors readily address the first principle [32].

The nature of resistance to PD-1 checkpoint inhibitors is
only now progressing as a topic for investigation [33].
However, in contrast to the sophisticated molecular tools be-
ing used to identify resistance mechanisms, a consideration of
simpler approaches to understanding resistance may be help-
ful as well. Law’s initial work observed that mutation rates are
fundamental to the development of resistance. It is simple to
note that the probability of resistance emerging from combi-
nations of agents with different and independent mechanisms
is the product of the frequency of resistance mutations for each
of the agents. This is one powerful argument in favor of com-
bining agents with orthogonal mechanisms of action.

DeVita and colleagues further linked resistance to cancer
therapy to tumor mass following simple logic [7]. Resistance
will be tumor mass related simply because the likelihood of a
resistant clone developing is related to the cell numbers in a
tumor. This logic was further linked to Law’s principles of com-
bination therapy to infer that multiple agents shrinking tumors
by any mechanisms could combine successfully. These simple
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principles should be no less true for immunotherapy. If
preexisting anti-tumor T cell repertoires are fundamental to the
success of PD-1 therapies, and if those repertoires are limited,
then the ratio of tumor targeted T cells to the net number of
tumor cells will be critical to the success of PD-1 treatments.
Accordingly, the role of tumor burden in immunotherapeutic
resistance was recently shown by the Wherry lab [34]. So as
anticipated by Devita’s classic arguments, any agent that shrinks
tumors will bring the net number of tumor cells within range of
the effects of PD-1 activation of the CD8 tumor killing response.

Drivers in the clinical development of cancer
combination therapy

The nature of combination effect

In their prospective thinking scientists often seem susceptible
to “latency bias,” despite the rigor of the scientific method.
Just as physicians can be trapped into approaching their next
case with an eye to their immediately preceding one, the sci-
entific community can find itself looking at new paradigms
using thinking guided by any immediately preceding para-
digm shift. The clinical cancer community finds itself in a
transition from the era of novel targeted therapies to the era
of immune oncologic agents. Given the success in developing
BRAF/MEK combination therapies based on the identifica-
tion of molecular resistance mechanisms, it is not surprising
to see an immediate focus on the identification of resistance
mechanisms to the PD-1 checkpoint inhibitors as a paradigm
to develop rational combinations [33]. With that approach
however, “synergy” may be in danger of becoming more of
a biological model than a drug combination concept.

It is worth noting that considerations of the combined ac-
tion of therapeutic agents have been with us for nearly
100 years [35]. By simple logic, the mathematic interaction
between combination agents should start with the determina-
tion of whether both agents are individually effective, only
one of them is effective, or neither is effective when com-
bined. A rigorous mathematic definition should then more
carefully attribute a combination to “synergy” if the combina-
tion effect is greater than the mathematic probability of the
two agents contributing independently (synergy), equal to the
probability of their independent activities (additivity) or less
than predicted (antagonism). Additivity when only one agent
is active has also been described as inertism.

Independent contributions to combined action

The algebra of independent contribution is attractively simple
[2]. Simply by probability, the combined effect of indepen-
dently active agents should be:

Yapr =Ya+ Yp-Ya XYy

This is often envisioned by a simple box diagram (Fig. 1b),
where the box encompasses the responses of a group of pa-
tients, a horizontal rectangle identifies the patients responding
to one agent, and a vertical rectangle identifies those
responding to the other. The equation is a test of independence
since the combined response rate should be less than the sim-
ple sum if the drugs have no interaction.

Achieving Lowe additivity

“Synergy” as a goal becomes more complex if the goal is to
achieve more from a combination than either agent can con-
tribute on their own. The BRAF-MEK model provides a view
of the potential success of that goal in a biological sense.
However, clinical synergy is often confused by the aspirations
of in vitro studies, with hopes of predicting synergy in the
clinic. The in vitro field is substantially more complex than
clinical development since it is possible to identify true syn-
ergy through the use of response surfaces like those of Chou
and Talaly [36]. Since it is rare in clinical practice, and espe-
cially in clinical oncology, to be willing to sacrifice the full
effect of either of two agents if used at sub therapeutic doses,
the evaluation of surface response interactions is rare to non-
existent in clinical practice. In contrast, Palmer and Sorger
recently applied the principles of Bliss independence to ana-
lyze the contributions of ipilimumab and nivolumab to their
combination efficacy in treating advanced melanoma [31].
They applied Bliss independence predictions to measures of
overall tumor shrinkage (Waterfall plots) and progression-free
survival (PFS) to argue for the absence of rigorous mathemat-
ical synergy in that combination despite broad claims for bio-
logical synergy. PFS has proven to be a less than ideal end-
point to measure the clinical effect of immune oncology
agents, often failing to show an effect where the ORR coupled
with durability of response, and overall survival more clearly
measure the benefit of immunotherapeutics to patients. Using
several case studies, this review will assess contributions of
combinations of PD-1 therapies for a subset of the most prom-
ising combinations to better understand the potential to obtain
greater benefit than that achieved independently by either
agent or regimen alone.

Case studies in PD-1 clinical combination
development

Remarkable advances have been seen in the last 2 years com-
bining PD-1 checkpoint inhibitors with standard of care
agents, angiogenesis inhibitors, and by combining more than
one checkpoint inhibitor (Table 2).
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Table 2  Clinical combinations including PD-1 checkpoint inhibitors
PD-1 Combination agent Indication Combination ORR PD-1 Bliss Additional

ORR combination monotherapy independence contribution of

agent ORR' prediction combination (Z%)

Pembrolizumab Pemetrexed-carboplatin NSCLC  71% [39] 31% [66] 23% [67] 54% 0.17
Pembrolizumab Paclitaxel-carboplatin NSCLC  52% [39] 15% [68] 23% [67] 38% 0.14
Pembrolizumab Paclitaxel-carboplatin-bevacizumab NSCLC — 48% [39] 35% [68] 23% [67] 58% -0.10
Nivolumab Paclitaxel-carboplatin NSCLC  47% [41] 15% [68] 23% [67] 38% 0.09
Nivolumab Pemetrexed-cisplatin NSCLC  47% [41] 32% [69] 23% [67] 55% —0.08
Nivolumab Gemcitabine-cisplatin NSCLC  33% [41] 30% [69] 23% [67] 53% -0.20
Pembrolizumab  Axitinib RCC 73% [52] 19% [50] 25% [48] 44% 0.29
Pembrolizumab Lenvatinib RCC 67% [53] 19% [51] 25% [48] 44% 0.23
Nivolumab Ipilimumab RCC 42% [70] 13% [47] 38% [49] 38% 0.04
Nivolumab Ipilimumab Melanoma 58% [58] 11% [64] 40% [6] 51% 0.07

! The PD-1 monotherapy ORR used in the Bliss calculation corresponds to the available ORR for any of the PD-1s in the corresponding line of therapy,
given the increase in ORR seen in earlier lines of therapy. If the ORR is known in the same line of therapy for more than one PD-1, the monotherapy ORR

used corresponds to the PD-1 in the combination where possible

2 The derived equation for any additional combination contribution is Z = ORR — (Y, + Y, — Y, X Y3,). Z can be either positive or negative, depending on
whether the Bliss independent prediction is less than or greater than the measured ORR for a combination

Standard of care chemotherapeutics

The empiric combination of newly emerging agents with stan-
dard of care therapies has moved oncology forward since the
chemotherapy era began [37]. Platinum-based chemotherapy
doublets were established as a standard of care for the first line
treatment of NSCLC prior to the emergence of PD-1 therapies
[38]. Since carboplatin + paclitaxel, carboplatin + paclitaxel +
bevacizumab, and carboplatin + pemetrexed were established
standards, pembrolizumab was compared as a combination
agent for each of those three regimens [39]. A complex but
steady line of experimentation has also proposed immunolog-
ic contributions of standard chemotherapy to their clinical
activity [40], and these experiments provide evidence that
some chemotherapy is less effective in immune deficient an-
imal models. Thus, these combinations had the potential to
benefit both from independent activity as well as beneficial
immune interactions. A similar trial combined nivolumab with
gemcitabine + cisplatin, pemetrexed + cisplatin, paclitaxel +
carboplatin, and paclitaxel + carboplatin [41]. In Table 2, the
components of the Bliss independent contributions to the total
combination ORR were identified and calculated for these six
combination studies in initial phase 1 trials. From this simple
calculation, it is evident that the independent contributions of
the agents might predict a large portion of the combination
ORR, and that an additional contribution can be seen as well.
The ORR of these agents in combination exceeded the ORR
predicted by the Bliss equation [2]. These calculations should
be considered measures of central tendency given the limita-
tions of phase 1-2 data. With the small numbers of subjects
involved, which preclude controlling for variability, these con-
clusions should be considered directional. Nevertheless, this
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framework to evaluating clinical data offers an objective ap-
proach to the assessment of combination effects.

By subtracting the Bliss prediction from the actual combi-
nation ORR, an additional combination specific contribution
(Z) can be assessed. This calculation was not anticipated in the
original Bliss publication, but is offered here as a further ob-
jective measure of what might be a “synergistic” effect that
can be calculated objectively in a phase 1 proof of concept
clinical trial. Since this value is most positive for the
pemetrexed-platinum combinations, the clinical trial evidence
here supports a long line of investigations evaluating the im-
munological effects of platinum therapies [42].

Limits to the interpretation of phase 1 trials are well known.
Their small numbers limit statistical rigor, and the typical use
of single arm structures precludes rigorous comparisons.
Importantly, however, the overall clinical benefit of this com-
bination has been fully supported by the randomized trials that
followed. One hundred twenty-three patients were enrolled in
Keynote 21G, a randomized comparison between the standard
of care pemetrexed-platinum doublet and the doublet with
pembrolizumab added, and the trial’s primary endpoint of an
increase in the ORR from the standard of care to the triplet
combination was achieved showing an increase from 29%
(C.I. 18-41) to 55% (C.1. 42-68) [43]. These responses were
quite durable, since the median duration of response was not
reached in the initial publication. These phases 1 and 2 proof
of concept studies were followed by a large randomized phase
3 trial, Keynote 189 [44]. Six hundred sixteen patients were
randomized 2:1 to receive the pembrolizumab containing trip-
let combination versus the platinum-pemetrexed doublet.
Primary endpoints of overall survival and progression-free
survival were both met with hazard ratios of 0.49 (C.I. 0.38—
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0.64) and 0.52 (C.I. 0.43-0.62). While starting from the sim-
ple principle of adding a new agent to the current standard of
care, supported by rigorous early signal finding studies, this
randomized phase 3 trial established a new standard of care for
first line lung cancer [45], and it now offers a hypothesis
generating clinical data set to explore the postulated immune
oncology contributions of platinum-based chemotherapy.

Angiogenesis inhibition

Vascular endothelial growth factor (VEGF) and vascular en-
dothelial growth factor receptor (VEGFR) inhibitors are effec-
tive standard of care agents used in the treatment of renal
cancer [46]. The logic to combine with PD-1 checkpoint in-
hibitors readily follows the earlier “add-on” logic in lung can-
cer. These combinations are moving rapidly through phases 1
and 2 programs, and the results of randomized phase 3 trials
may occur by the time of publication of this review. For com-
parison, early in the development of CTLA4 inhibitors,
Rosenberg and colleagues evaluated ipilimumab monothera-
py in the treatment of renal cancer [47]. They demonstrated a
response rate of 13% to ipilimumab in second line treatment.
PD-1 therapies have now been tested as monotherapies as
both second and first line treatments for renal cell carcinoma
with nivolumab showing a 25% response rate in the second
line [48] and pembrolizumab demonstrating a 38% (C.1. 29—
48) response rate in first line RCC [49]. Axitinib [50] and
lenvatinib [51] are advanced VEGFR TKIs with favorable
activity in renal cell carcinoma. Combinations of
pembrolizumab with axitinib [52] and pembrolizumab with
lenvatinib [53] show promising phase 1-2 combination activ-
ity. The ORRs for these combinations are shown in Table 2,
along with the ORR for the combination of nivolumab and
ipilimumab [54]. Like the platinum and PD-1 combination in
lung cancer, the combination of a PD-1 inhibitor to standard of
care angiogenesis inhibitors shows a combination ORR that
apparently benefits not only from a Bliss independent contri-
bution of both components, but also shows an additional con-
tribution related to the combination itself (Z). A Bliss inde-
pendent model calculation for the combination of ipilimumab
and nivolumab shows that ipilimumab as the combining agent
achieves no more combination activity than predicted by the
Bliss model. It is additionally interesting to see that any com-
bination specific contribution (z) for ipilimumab and
nivolumab falls below the calculations for the two VEGFR
inhibitors. As for the platinum therapies, a long history of
studies of VEGFR inhibitors has demonstrated their ability
to interact with the immune system [55]. Here again, starting
with more orthogonal combination partners, the combination
ORRs show more than a Bliss additive effect, lending objec-
tive clinical evidence to support previous studies of immune
effects of the VEGFR inhibitors.

Dual checkpoint inhibition in melanoma

The concept to combine two checkpoint inhibitors was initial-
ly demonstrated using murine model systems [56]. The devel-
opment of the ipilimumab and nivolumab combination in mel-
anoma from early phase studies [57] to phase 3 registration
trials [58] was based on this immunologic reasoning. As de-
scribed above, Palmer and Sorger failed to find a contribution
of the combination for progression-free survival beyond that
predicted by the independent contributions of the two agents
taken on their own. To further assess the role of independent
action, Table 2 further shows an analysis of the ORRs for the
ipilimumab and nivolumab combination in melanoma, which
again shows that much of its combination ORR can be attrib-
uted to independent action. Notably, a trial sequencing these
agents by immunologic reasoning [59] failed to match immu-
nologic predictions for the functions of these two agents [60]
so even that reasoning may require continued evaluation.

Conclusion

A recent compilation of the landscape of clinical trials testing
novel immunotherapies identified 3042 active registered clinical
trials at the end of 2017 [1]. A large proportion of those studies
involve combinations of PD-1 checkpoint inhibitors with a
broad range of additional agents. The scale of these studies
makes it hard to summarize their intent and results easily.
Nevertheless, this brief review sought to highlight the logic be-
hind three combination paradigms, and their emerging results.
Indeed, the Tang review showed that CTLA4-PD-1, angiogen-
esis inhibitor-PD-1, and chemotherapy-PD-1 combinations are
the leading combination hypotheses in trials at this time. Using
the Bliss model for independent activity of two agents or regi-
mens in combination, combinations involving chemotherapy
and angiogenesis inhibitor both show more than independent
combination activity. In contrast, the combination of two check-
point inhibitors in renal cancer and melanoma shows no more
activity than expected for the independent contribution of the
two agents. This review, and these principles, suggests that there
is a promising future for a broad range of possible combinations
of PD-1 checkpoint inhibitors with other cancer therapies.
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