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1. Introduction	  
 
In this Supplementary Information we give further information referred to in the main text 
of the paper.  We also provide a technical description of how the 1000 Genomes Project 
pilot data were collected and processed that will both allow users to understand in more 
detail how the results were generated and be of use to others analyzing comparable data.  
In several places to enhance readability we give a summary description first, referring to 
more complete information later in the document.  In many cases, methods and file 
formats used during the project have been developed by members of the Consortium.  
References to papers and web-sites describing these resources are provided below. 
 

2. Samples	  
 
Requirements for inclusion in the project were: individuals to be sequenced in the project 
had to have been explicitly consented for broad use and public distribution of extensive 
genotype or sequence data over the Internet. Cell lines from the samples had to be 
available to the broad research community, to maximize the value of the 1000 Genomes 
data by facilitating follow-up studies and use of the sequence data to map cellular 
phenotypes.  
 
To allow such broad use of complete genome sequence data while minimizing risks to the 
participants, samples without phenotype data were preferred; samples with phenotype 
data could be used if those data were available only to close collaborators of the sample 
collectors and not to the general research community. Samples with pre-existing whole 
genome SNP and CNV data were preferred for the pilots in order to provide comparative 
information that would maximize the technical information obtained.  
 
The Samples/ELSI Group and Steering Committee agreed that the HapMap and extended 
set of HapMap samples (The International HapMap Consortium 2007; The International 
HapMap 3 Consortium 2010) met these requirements. The HapMap samples came from 
the Yoruba in Ibadan, Nigeria (YRI); the Centre de'Etude du Polymorphisme Humain 
(CEPH) collection in Utah, USA, with ancestry from Northern and Western Europe (CEU), 
the Han Chinese in Beijing, China (CHB), and the Japanese in Tokyo, Japan (JPT), and 
have proven value as baseline representatives of human genetic diversity.  The extended 
set of HapMap samples had been collected the same way as the HapMap samples (The 
International HapMap 3 Consortium 2010). They include additional samples from the 
HapMap populations as well as samples from additional populations. The project includes 
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samples from the Luhya in Webuye, Kenya (LWK), the Toscani in Italia (TSI), and the 
Chinese in Metropolitan Denver, CO, USA (CHD). The full list of samples for the pilot 
projects can be found on the project FTP site in the sequence index file. The samples are 
available to researchers, from the non-profit Coriell Institute for Medical Research 
(http://ccr.coriell.org/sections/collections/NHGRI/?SsId=11). No identifying or phenotype 
data are available for these samples. 
 
For the trio project, two HapMap trios were used: YRI daughter NA19240, mother 
NA19238, and father NA19239; and CEU daughter NA12878, mother NA12892, and 
father NA12891. Each daughter was chosen, in part, because of extensive prior genomic 
data including a fosmid library with extensive sequence coverage (Kidd, Cooper et al. 
2008) and tiling array CGH data (Conrad, Pinto et al. 2010).  The parent samples have 
HapMap 3 genotype data for 1.6 million SNPs and sequence data in the ENCODE regions 
(The International HapMap 3 Consortium 2010). 
 
For the low-coverage project, all the suitable unrelated HapMap I and II samples were 
included, as genotype data are available on 3.5 million SNPs from 
http://hapmap.ncbi.nlm.nih.gov (The International HapMap Consortium 2007). Some 
HapMap samples had unexpectedly been shown to be related or have cell line artifacts 
(McCarroll, Kuruvilla et al. 2008), so were deemed unsuitable. The set was filled out with 
additional samples from the same populations, many with HapMap 3 data. A total of 179 
unrelated samples were sequenced: 60 CEU, 59 YRI, 30 CHB, and 30 JPT.  
 
For the exon project, samples from sets of closely related populations were included to 
provide as much data as possible on the frequency distribution of low-frequency and rare 
variants. The trio project samples and most of the low-coverage project samples were 
included, as well as some from the extended set of HapMap samples, most with HapMap 
3 data (The International HapMap 3 Consortium 2010). A total of 697 unrelated samples 
were sequenced: 105 JPT, 109 CHB, and 107 CHD (321 of East Asian ancestry); 112 YRI 
and 108 LWK (220 of West African ancestry); and 90 CEU and 66 TSI (156 of European 
ancestry). 
 

3. Data	  Generation	  
 
Given the early state and diversity of approaches when the project was conceived, the 
overall work flow for the project was intentionally based upon central sample collection, 
data generation at multiple sites using multiple technology platforms, iterative 
development, optimization and comparison of alignment and variant calling routines, and 
central data submission and final release.  
 
DNA was prepared by Coriell from cell lines and distributed to the nine sequencing 
centres. All DNA was provided by Coriell in a uniform fashion.  We do not know the 
passage number of the cell lines, but it was not the same for all samples.  
 
The centres performed sequencing using the Illumina Genome Analyzer (I and II), AB 
SOLiD System (1.0 and 2.0) or the 454 GS FLX. Full details of lanes submitted to the 
project (including sequencing centre, instrument and library) are given in the sequence 
index file available on the FTP site. A summary of the amount of data generated by each 
centre and platform is given in Supplementary Table 1. 
 

WWW.NATURE.COM/NATURE | 5

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09534



  

In general, data generation followed standard protocols, but the period of data collection 
for the project (January 2008 through summer 2009) was one of rapid development of the 
sequencing platforms, so there was some heterogeneity in methods used.  Specific details 
of the methods used in each sequencing centre are given in Section 16 of this document.  
In brief, sequencing libraries were made by shearing genomic DNA, selecting the required 
insert size band on a gel, then using the relevant manufacturer’s standard methods.  
Library insert size and concentration were assessed before sequencing using the Agilent 
Bioanalyzer 2100 and/or quantitative PCR.  Sequencing and initial data analysis to extract 
sequence reads with quality values for each base were performed using manufacturers’ 
protocols and software.   
 
A mix of read lengths and single end (fragment) and paired end libraries were used, as 
technology advanced and paired end protocols were introduced during the period of data 
collection.  Overall, 77% of the mapped low-coverage data, 80% of the mapped trio data 
and 56% of the mapped exon data were from read pairs rather than fragments.  A more 
complete breakdown by project and population is given in Supplementary Table 1, and full 
details of data submission are given in the sequence index file relating to release 2010_07 
on the project FTP site. 
 

3.1. Exon	  Targeting	  
 
Exon targeting was by hybridization capture. We intentionally used multiple platforms for 
capture, as capture reagents and protocols were in an early and rapidly evolving stage of 
development. All groups received the same initial list of a set of 1,000 CCDS genes. 
These consisted of 980 randomly chosen CCDS entries and 20 genes that were known to 
be in ENCODE regions and in parallel analysis in HapMap 3.  Due to differences in 
interpretation of gene models, and the ability of the different capture methods to program 
design of specific genomic regions, the overlapping targets from the different groups 
totaled 8140 exons from 906 genes for which coordinates are given on the project ftp site. 
Details of the approaches used at each of the four centres participating in the exon project 
are given in Section 16 below, alongside sequence production details. In brief: 
 

• Baylor College of Medicine used NimbleGen 385K capture chips to pull down 
fragments that were converted to 454 platform sequencing libraries and 
sequenced single ended on 454 GS FLX/Titanium machines.  

• The Broad Institute used RNA baits transcribed in the presence of biotinylated 
UTP from primers cleaved from an Agilent microarray, capturing the target by pull 
down with streptavidin beads and sequencing on Illumina GA II machines.  Either 
premade Illumina libraries were pulled down then sequenced, or pulled down 
material was concatenated then randomly sheared before library making and 
sequencing. 

• The Wellcome Trust Sanger Institute used NimbleGen 385K capture chips to pull 
down the target region from a premade Illumina paired end library.  Captured 
material was then amplified and sequenced on Illumina GA II machines. 

• Washington University in St Louis used a biotinylated capture library generated by 
PCR in the presence of biotinylated CTP from a pool of 190 bp synthesized oligos 
to pull down the target region from a premade Illumina sequencing library.  
Captured material was then amplified and sequenced on Illumina GA II machines. 
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4. Read	  Mapping	  and	  Generation	  of	  BAM	  Files	  
 
Read sets from each sequencing machine run, or lane in the case of Illumina data, were 
submitted by the sequencing centre to the international short read archives (SRA at NCBI 
and the ERA at EBI) in SRF format (http://srf.sourceforge.net) with project IDs 
SRP000031 for the low-coverage project, SRP000032 for the trio project, and SRP000033 
for the exon project.  From there, the project Data Coordination Centre (DCC, also at 
NCBI and EBI), picked up the data files, transformed them to FASTQ format (as defined at 
http://maq.sourceforge.net/fastq.shtml) and made them available on the project FTP site.   
The DCC carried out basic QC checks on the integrity of the data, and files passing these 
checks were listed in a date-stamped sequence.index file on the FTP site. 
A standard mapping procedure was used for each platform, as described below.  Mapped 
reads were combined into one main BAM file (BAM is a binary representation of the SAM 
format, http://samtools.sourceforge.net/) per individual per project per platform that 
contains read alignments, together with a second BAM file of unmapped reads.  In the 
case of read pairs, if one of the pair mapped and the other did not, the unmapped mate 
was placed adjacent to the mapped mate in the aligned BAM file, as described in the SAM 
format.  The unmapped BAM files were not used during further analysis, but are available 
from the project FTP site. 
 
The steps taken in the mapping process for Illumina and 454 data were as follows: 

• Read sets were downloaded as FASTQ from the DCC. 
• Reads were initially mapped to the reference genome. 
• Reads from positions of a set of previously-genotyped SNPs were checked to 

ensure that the sample identifier attached to the sequence was correct.  If this 
check failed the run/lane was removed from the sequence.index file and from all 
further analysis.  Some data on incorrectly labeled samples for which the correct 
identifier could be deduced were resubmitted to the SRA/ERA, entering the process 
again at the beginning. 

• Quality values were recalibrated, and the adjusted FASTQ files were uploaded 
back to the DCC FTP site.   

• The recalibrated FASTQ files were remapped, using the same parameters as 
before. 

• Lanes from the same library were merged using Picard MergeSamFiles.  
• To remove duplicates arising from the library making and cluster calling process 

(usually only a few percent, but occasionally more abundant), samtools rmdup was 
run on the lanes produced from paired libraries and samtools rmdupse (single 
ended) was run on single ended libraries.   

• Libraries were then merged to the platform level, and finally Picard MarkDuplicates 
was run to remove duplicates missed by samtools. 

   
Data generated on the SOLiD platform underwent the same data processing with the 
following modifications: 

• Reads were obtained directly as CSFASTA/QUAL files from the sequencing 
centres, and not from the Data Coordination Centre (DCC) because the SRF format 
specifications and convertors were not available for timely submission to the 
SRA/ERA.  SRA/ERA run identifiers were substituted in the BAM files once 
available.   

• Alignments were performed as described below.  SOLiD alignments did not include 
mapping quality scores, were not recalibrated post-alignment, and did not have 
duplicates removed.  
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The standard BAM files produced by this process are available from the project FTP site, 
together with an alignment statistics file containing basic alignment statistics for each BAM 
file, and an alignment index file containing combined statistics for the entire data set.  
Mapped data quantities are given in Supplementary Table 1. 
 
These BAM files were used for most subsequent analyses, including all SNP and indel 
calling in the low-coverage and trio projects, and most structural variation calling.  For 
some structural variation analysis different mapping information was required so different 
mapping software was used, as described in the relevant subsection of Section 8 below.  
For SNP and indel calling in the exon project, a second set of mapped BAM files was 
produced and calls from both sets were combined as described in Section 5.3 below.  

4.1. Reference	  Genome	  
 
Reads were aligned to the genome reference NCBI36 including all chromosomes and 
unlocalised contigs, replacing the mtDNA with the revised Cambridge reference sequence 
(rCRS; Andrews, Kubacka et al. 1999). Mappings were performed using a sex-specific 
reference sequence including the Y chromosome for males but not for females. The 
pseudoautosomal regions of the Y chromosome were masked out. In addition, the 
Epstein-Barr virus (EBV) genome, used to immortalise the sample cells, was included in 
the reference.  
 
The reference sequence is available for download from the project FTP sites. 
 

4.2. Mapping	  of	  Illumina	  Data	  
 
Lanes were mapped individually using Maq v0.7 with the following parameters: -u (to save 
all unmapped read pairs to a separate file) and –a 1000 (to mark all read pairs separated 
by 1000 bp or less as properly paired). All alignments were carried out on a compute 
cluster consisting of 199 nodes (1192 processors), each with 8-16Gb of RAM. 
 

4.3. Mapping	  of	  454	  Data	  
 
Lanes were mapped individually using SSAHA v2.4 with the following parameters -454 
(which tunes the error model to handle 454 data) and –disk 1 (which saves some 
intermediate data structures to disk, to reduce memory requirements) on the same 
compute resource as the Illumina data. 
 
For paired 454 lanes, each end was aligned independently, and the top ten hits for each 
read were recorded. If both ends aligned uniquely, then the reads were assigned to these 
positions. If one end mapped uniquely and the other end had multiple hits, then the 
multiple hit read was placed at the position closest to the expected insert size. If both ends 
mapped with multiple hits, then the reads were placed at the location closest to the 
expected insert size and the mapping quality set to zero. 
 

4.4. Mapping	  SOLiD	  Data	  
 
Alignment of SOLiD data was carried out using the Corona_Lite version v4.0r2.0 pipeline. 
Sequencing reads were mapped separately to chromosomes 1-22, X, Y, and the 
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mitochondrion allowing up to 3 mismatches. Only mate-pairs mapping uniquely between 
500 - 5,000 bp of each other were included within the primary merged BAM files. Local 
gapped alignment was done using the Small_Indel_Tool for instances where only 1 of 2 
mates aligned to the genome. Separate files containing only those rescued gapped 
mapped reads are available on the project FTP site. 
 
Conversion from Corona_lite version 2 GFF files to SAM format was done using 
GFF2SAM version 0.01.6. Mapping was done on a cluster of 2688 2.8 Ghz Dell 
PowerEdge servers with Infiniband DDR.  
 

4.5. Recalibration	  of	  Base	  Quality	  Values	  
 
All data from Illumina and 454 platforms were recalibrated after initial alignment using the 
following algorithm implemented in GATK software (McKenna, Hanna et al. 2010). 
 
In order to improve the accuracy of the Phred-scaled base quality score Q, we developed 
a covariate-aware base quality recalibration algorithm that provides empirically accurate 
base quality scores for each base in every read, adjusted for several significant error 
covariates such as machine cycle and dinucleotide context.  The algorithm first tabulates 
empirical mismatches to the reference at all sites not known to vary in the population 
(dbSNP 129), stratifying the bases by their reported quality score (Qraw), their machine 
cycle in the read, their dinucleotide context, and their read group.  For each category we 
estimated the empirical quality score Qemp = (Nmismatches + 1) / (Nbases observed + 1).  These 
initial Qemp scores were then broken into linear components and the recalibrated quality 
score Qrecal was estimated according to the equation: 
 

    

! 

Qrecal = Qraw + "Qreadgroup + "QQraw
+ ""Qcovariate,Qraw

covariates

#  

 
where each ΔQ and ΔΔQ are the residual differences between empirical mismatch rates 
and those implied by the reported quality score for all observations conditioning only on 
the Qraw or on both the covariate and the Qraw, as indicated.  A second pass through the 
reads updated the quality scores to their Qrecal values given their Qraw scores and 
covariate context, enabling downstream tools to benefit without modification. 
 
To quantify the impact of recalibration, we called SNPs for NA12878 (the CEU trio 
daughter) with both raw and recalibrated data using the GATK SNP Caller.  In the 
recalibrated data, the total number of variants called decreased by 2.8%, with the net calls 
removed having a transition to transversion (Ti/Tv) ratio of 1.07, compared to 1.96 for the 
post-calibration calls. Typically, true variants have a Ti/Tv ratio around 2, whereas random 
changes in a genome with all four bases equally frequent have Ti/Tv of 0.5. 
 

4.6. Comparison	  of	  Read	  Data	  to	  Known	  HapMap	  Genotypes	  
 
In order to check that the sequenced data had been correctly assigned to each individual, 
the sequenced genotypes were matched to the genotypes from HapMap II for the same 
samples (The International HapMap Consortium 2007).  After each sequence lane was 
mapped to the reference, genotype log likelihoods were calculated with the samtools 
pileup –g command, and using these the log likelihood of the data for each set of HapMap 
3 genotypes was calculated.  Sequence runs/lanes for which either the best matching 
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genotypes were not from the expected individual, or the best matching genotypes did not 
separate well from all the other individuals (factor of 1.2 separation) were rejected and 
removed from all subsequent analysis. 
 
Across all three projects 650 of 13,042 SRA run ids originally submitted to the project 
were rejected because of bad likelihoods (5%).  In addition 126 run ids were dropped from 
analysis because of other quality control failures, in most cases extremely low data quality 
or missing data, and 121 were withdrawn for other reasons (2% total), leaving 12,145 
(93%) contributing to the project analysis. 
 

5. SNP	  Calling	  
 
Whereas a single read mapping process was used for most of the analysis in the project, 
multiple SNP calling procedures were used.  In part this was because different methods 
were thought most appropriate for the design of three different data sets, in part because 
different approaches were under active development by individual members of the project 
during the course of the pilots, and in part because we found empirically that, given the 
state of current methods, the consensus of multiple primary call sets from different 
methods proved to be of higher quality than any of the primary call sets themselves 
(Section 5.1.5).   
 
All SNP callers used in the project share several features. Each caller starts by examining 
the sequence reads overlapping each site in the genome. Then, base calls and quality 
scores overlapping each position are examined and used to calculate the probability of 
observed bases and quality scores for each individual given a potential underlying 
genotype. We call these quantities the “genotype likelihoods” defined as: 
 

GLij(g) = P(Bij, Qij| Gij = g) 
 
Here, GLij is the genotype likelihood associated with a specific genotype g and position j in 
individual i. It is calculated as the probability of observing the vectors of bases Bij and Qij 
overlapping position j in the mapped reads for individual i. Typically, we considered 10 
values for the underlying genotype g, corresponding to the 10 possible genotypes (A/A, 
A/C, A/G, A/T, C/C, C/G, C/T, G/G, G/T and T/T).  Standard equations to calculate the GLij 
values are given in Li and Durbin (2008), together with a modified version that allows for 
simple dependency in the relationship between base qualities of multiple reads at a site; 
the equations given there are implemented in samtools, with the default being to use the 
dependency model with theta = 0.85. The resulting likelihoods are used by several of the 
SNP callers described below. 
  
To assign genotypes, all methods then use Bayes rule to assign individual genotypes as: 
 
 P(Gij = g| Bij, Qij) = P(Bij, Qij| Gij = g) P(Gij = g) / Kij 
  
Where K is a normalizing constant, defined as Kij = Σg P(Bij, Qij| Gij = g) P(Gij = g). 
Although there are some differences in the calculation of the likelihoods P(Bij, Qij| Gij = g), 
the main way methods differ is in the types of information and the approaches used to 
estimate P(Gij = g), the prior probability for genotype g at each location j in individual i.   
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Once an initial set of variants is called, a number of post-processing steps are taken to 
remove potential false positives.  All sets of variants are stored in VCF format 
(http://1000genomes.org/wiki/doku.php?id=1000_genomes:analysis:vcf4.0), which as well 
as representing the location on the genome and nature of the base change, also supports 
an identifier, a quality score scaled in PHRED (-10log10) units analogous to a base quality, 
a possible filter field, an extendable field containing additional information in tag=value 
notation, and the genotypes of the sequenced individuals with their own qualities and 
ancillary information.   
 
Filters that were applied include: 

• Depth thresholds to reject SNPs where the read depth in at a site is either much 
lower or much higher than expected, suggestive of copy number variation that 
might lead to miscalling of SNPs based on the mapping of paralogous sequences.  
We rejected sites that were more than twice or less than half the mean depth 
across samples in a population/trio in the low-coverage and trio genome-wide data 
sets (depth is too variable in exon data to use this filter). 

• Local realignment to remove false positives due to small insertions and deletions 
(indels). Current mapping algorithms are limited in that they align each read 
independently, without considering all overlapping reads jointly to guide placement 
of  variants. Consequently, reads whose first or last few bases overlap an indel 
tend to have those bases misaligned as mismatching bases rather than indels 
(because the gap open penalty is larger than the mismatch penalty in typical 
mapping algorithms). In order to correct apparent SNP calls in fact caused by 
misalignment around an indel, we applied a local realignment process as a filtering 
step around each candidate SNP call in the genome-wide data sets.  

• Poor mapping quality.  Because the reference genome is both incomplete and does 
not represent all genetic variation, reads from unrepresented regions can end up 
mapping with apparent certainty to incorrect locations, thus leading to false positive 
variant calls.  Although this remains a challenge to variant calling, such regions are 
often highly repetitive.  Our experience led us to identify regions where a 
substantial fraction of reads map with low mapping quality as being strongly 
enriched for false positive calls (Section 6.1).  On this basis we constructed a map 
of the accessible genome, details of which are given below in Section 5.1.6 and 
discussed in the main text.  

 
Below we first describe the specific methods used to call SNPs in low-coverage data, then 
the differences in calling variants in the deeply sequenced trios, then the exon data (all 
exon targets were autosomal). 
 

5.1. Low-‐Coverage	  SNP	  Calling	  
 
Calling was separate for the three analysis panels, CEU, YRI and CHB+JPT.  For each, 
three primary SNP call sets were generated, from the Broad Institute (Broad), the 
University of Michigan (Michigan) and the Sanger Institute (Sanger).  Details of the 
methods are given in separate publications (DePristo, Banks et al. 2010; Le and Durbin 
2010; Li, Willer et al. 2010), with brief details of the main features given below.  All three 
were produced by a two step processes, involving in the first step a set of candidate calls 
made based on the evidence at each base pair in the reference, independent of 
neighbouring sites.  Then in each case a more computationally intensive linkage 
disequilibrium (LD)/imputation based approach was used to refine the call set and 
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genotypes for all individuals.  Formally, the difference between the first and second steps 
can be seen as a difference in the prior P(Gij = g); the likelihoods remain the same. 
 

5.1.1. Generation	  of	  Broad	  Low-‐Coverage	  SNP	  Call	  Set	  
 
The GenomeAnalysisToolkit (GATK, 
http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit) module 
UnifiedGenotyper (DePristo et al 2010; DePristo, Banks et al. 2010; McKenna, Hanna et 
al. 2010; McKenna et al 2010) was used to calculate genotype likelihoods from all 
samples and technology platforms in an analysis panel simultaneously. This calculation 
was the same as that used in samtools assuming read independence, but only used reads 
with a minimum mapping quality at least 10 and fewer than 4 mismatches within 40 bp, 
mate pairs mapped to the same chromosome, and bases with quality score greater than 
10. 
 
SNP candidate sites were called assuming an unstructured population of unrelated 
individuals with a per site prior probability of polymorphism set at 0.001.  An E-M algorithm 
is used to estimate the allele frequency at each site by maximum likelihood and candidate 
sites require a posterior probability greater than 0.9 (corresponding to a minimum PHRED 
scaled quality score of 10). 
 
In order to detect technical artifacts caused by systematic sequencer errors, strand-
specific log odds values (LODs) were computed using only non-reference evidence from 
the forward strand, and separately for the reverse strand, divided by the all-reference 
hypothesis. If either of these strand-specific LODs, referred to as SLOD, is positive then 
the non-reference alleles have a directional bias.  Frequency dependent filter thresholds 
for LOD and SLOD were fit to maximize the number of candidate SNPs passing a 
minimum transition to transversion ratio threshold. 
 
Finally, LD/imputation based genotype calling was carried out at each candidate site using 
the BEAGLE package, which can take genotype likelihoods as described above and 
return an estimate of the true genotypes, as described in Browning and Yu (2009).  
 
The Broad call set contained SNP calls and genotypes for the X chromosome as well as 
the autosomes, but the X chromosome calls used the same methods as the autosomes 
and were not sex aware, so potentially modeled heterozygous sites in males.   
. 

5.1.2. Generation	  of	  Michigan	  Low-‐Coverage	  SNP	  Call	  Set	  
 
For the Michigan call set, genotype likelihoods were calculated on a per platform basis 
using the default samtools genotype likelihood model, as described above.  For each 
platform, sites where alignment depth was too high (top percentile) or too low (bottom 
percentile) were excluded from analysis. The resulting platform-specific genotype 
likelihoods were then combined for each individual. This strategy effectively assumes 
dependency between base calling errors within a platform, but no dependency across 
platforms. 
  
To identify candidate polymorphic sites, we used Brent’s likelihood optimization algorithm 
to estimate allele frequencies at each locus.  When comparing LnoVariant to Lvariant we 
favored sites with transition polymorphisms over those with transversions (in our prior, 2/3 
of polymorphic sites are expected to be transitions). Sites were considered as potentially 

WWW.NATURE.COM/NATURE | 12

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09534



  

polymorphic when the posterior probability of a variant call was ~0.90 (corresponding to a 
phred scaled quality score of 10). 
  
For the LD based refinement step the Michigan SNP calls used the Markov model 
implemented in MACH (http://www.sph.umich.edu/csg/abecasis/MACH) that decomposes 
the haplotypes carried by each individual into a series of segments, each copied from a 
different individual. The model tries to minimize the number of switches between 
segments and the number of discrepancies between the genotypes implied by each 
segment and observed read and genotype data for each individual. The model is 
described in detail elsewhere (Li and Stephens 2003; Li, Willer et al. 2010).  
  
The model proceeds stochastically: initial estimates of the haplotypes for each individual 
are generated, the genome of each individual is decomposed into haplotype segments 
derived from the other individuals, and these haplotype segments are used to derive a 
prior for each genotype at each position. After updating genotype call estimates, the 
procedure was repeated 100 times. Each iteration of this procedure generates a pair of 
estimated haplotypes and genotypes per individual, which were then used to generate a 
set of consensus haplotypes and genotypes (Li, Willer et al. 2010).  
  
A final, method-specific filter was applied.  For each marker, we calculated an r2 statistic 
that estimates the correlation between estimated genotype calls and the true underlying 
genotypes (Li, Willer et al. 2010).  The r2 measure is defined as the ratio of the variance in 
expected genotype counts for the minor allele (a real number between 0.0 and 2.0 for 
each individual) and 2p(1-p), the expected variance of this quantity in a Hardy-Weinberg 
equilibrium population where genotypes are observed without error (here p is the 
estimated allele frequency for the site of interest).  This measure has been used to filter 
poorly imputed markers in genome-wide association scan meta-analysis (Demichelis, 
Setlur et al. 2009).  We filtered out sites with r2 estimates of 0.5 or less. 
  
The Michigan low-coverage calls were for autosomes only. 
 

5.1.3.  Generation	  of	  Sanger	  Low-‐Coverage	  SNP	  Call	  Set	  
 
The Sanger low-coverage genotype calls started from the samtools likelihoods.   
 
The subsequent candidate generating step and LD/imputation based post analysis are 
implemented in the software package QCALL (Le and Durbin 2010).  Candidate 
polymorphic sites are found by a dynamic programming algorithm that estimates the 
probability of the data given there are k non-reference alleles in 2N chromosomes (for all 
k).  For each site, the probability of a SNP is calculated as the probability of k > 0, 
assuming a prior probability for the variant frequency of p(k) = θ(1/k+1/(2N-k)), where θ is 
the per-site population mutation rate (taken as 0.001 for humans). This generated 
approximately 40 million SNP candidates across all 179 samples combined. 
 
In the second, linkage disequilibrium aware, analysis, shared haplotype structures are 
used to estimate posterior probabilities of SNPs and genotypes. For each population, 
CEU, YRI, and CHB+JPT, 20 possible ancestral recombination graphs for the full set of 
samples were built using MARGARITA (Minichiello and Durbin 2006) on genotypes or, 
where available, phased haplotypes from the HapMap project (The International HapMap 
3 Consortium 2010), considering 1 Mb of the genome at a time. For each SNP candidate, 
40 marginal ancestral trees inferred at the left and right flanking genotyped sites were 
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used to estimate the SNP posterior probability by evaluating the likelihood of the observed 
sequencing data for all possible (single) mutations in the 40 trees.  Genotypes and phased 
haplotypes are estimated by integrating over the different trees and sites within each tree. 
SNPs were subsequently filtered by removing regions containing three or more calls within 
10 bp (FW10 filter).  
 
The Sanger low-coverage calls were for the autosomes and the X chromosome and were 
sex aware so that the male X chromosome was treated as haploid. 
 

5.1.4. HapMap	  3	  Genotype	  Data	  as	  Scaffold	  for	  Analysis	  of	  Low-‐Coverage	  Data	  
 
Nearly all samples selected for sequencing by the project had previously been genotyped 
by the HapMap 3 project. We used HapMap 3 genotype data in our analysis in three 
ways.  
First, by comparing reads in each lane to HapMap 3 genotypes that they putatively 
overlap, we used the HapMap 3 genotypes to very sample identities and minimize 
mistakes in sample tracking (Section 4.6). 
 
Second, for the Michigan low-coverage call sets, we used HapMap 3 genotypes to aid 
analysis of low-coverage data. Specifically, we adjusted the genotype likelihoods at 
HapMap 3 sites to consider both the observed read data at that location and the observed 
HapMap 3 genotype. Thus, at HapMap 3 sites our likelihood become GLij(g) α P(HapMap 
3 Genotype|Gij = g) * P(Base Calls, Quality Scores|Gij = g). The definition of P(HapMap 3 
Genotype|Gij = g) assumed a small error rate (of about 0.2%) at HapMap 3 sites. 
Supplementary Table 13 shows that, in simulated datasets, using a scaffold of genotyped 
SNPs in this way is expected to improve genotype call accuracy slightly, particularly when 
sequencing depth is low. 
 
Third, for the Sanger call set, haplotypes derived from analysis of HapMap 3 were used to 
construct a model of haplotype variation across each sequenced region on which low-
coverage genotype calls were then placed. In this way, for example, if a set of individuals 
was predicted to share a particular haplotype segment identical-by-descent based on 
HapMap 3 information, the Sanger caller favored solutions that assigned a consistent 
allele to all these individuals. Since HapMap 3 haplotypes were for the CEU and YRI 
samples were derived using trio information, they are expected to be extremely accurate. 
In effect, for CEU and YRI, this analysis places genotypes derived from analysis of 
sequence data onto a framework of extremely accurate haplotypes derived from trios. As 
with the Michigan call set, Sanger calls are expected to be much more accurate at 
HapMap 3 sites than elsewhere in the genome. 
 
An important consequence of the last two uses of HapMap 3 genotype data is that 
genotype calls derived by the project at HapMap 3 sites are generally more accurate than 
those generated elsewhere in the genome. Thus, in all evaluations of genotype call quality 
(for example, in comparisons to HapMap II genotype data), we specifically focus on sites 
not included in HapMap 3. Outside of HapMap 3 sites, similar to the simulations presented 
in Supplementary Table 13, we expect a much smaller improvement in accuracy results 
from using the HapMap 3-based model of haplotype variation. 
 
 

5.1.5. Merging	  of	  Low-‐Coverage	  SNP	  Call	  Sets	  
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Analysis of individual call sets produced by Broad, Michigan and Sanger demonstrated 
that a consensus approach to defining variant positions led to a higher quality data set as 
demonstrated by: (a) genotype calls that were more accurate than in any single call set, 
(b) a transition-transversion ratio at newly discovered SNPs that was more similar to that 
observed at dbSNP sites, (c) an overall transition-transversion ratio that was closer to 
value of slightly >2 observed in previous SNP discovery efforts, (d) consistently high 
rediscovery rates for dbSNPs and HapMap SNPs (Supplementary Table 12). Overall, 
genotypes obtained through a consensus procedure are estimated to have 30% fewer 
errors than those generated by any single caller (Supplementary Figure 1).   
 
Consensus genotypes were defined using a simple majority vote among callers. In case of 
conflicting evidence (for example if a different genotype was listed in all three sets or the 
genotype was different in two sets and absent from the third), the following order of 
precedence was used: Sanger, UMich, Broad for the CEU and YRI call sets, and UMich, 
Sanger, Broad for the CHB+JPT call set. Where possible, phase was taken from the 
primary dataset. If the chosen genotype was not from the primary dataset, then the 
genotype was set as unphased.  SNP and genotype quality scores were not retained in 
the merged dataset. 
 
Low-coverage SNP calls on the X chromosome were derived from call sets generated by 
the Broad and Sanger pipelines described above, and only calls made by both pipelines 
were reported.  At sites in the intersection, the genotypes reported came from the Sanger 
calls, which were sex aware. 
 
The primary call files as well as the final merged files are available from the project FTP 
site. 
 

5.1.6. The	  Accessible	  Genome	  
 
Following merging, additional filters were imposed on the set of SNPs on a per-population 
basis. These were (1) the average (per sample) coverage at a candidate SNP had to be 
within a factor of 2 of the median genome coverage, and (2) the fraction of reads mapping 
to the candidate SNP location that have a mapping quality of zero had to be less than 
10%. The implications for the fraction of genome that is accessible using these metrics are 
discussed in the main text. 
 
The filters on coverage and fraction of reads with low mapping quality described above 
lead to the exclusion of a substantial fraction of sites in the genome.  To enable population 
genetic analysis and to describe the completeness of the resource we created mask files 
that define, for each population/analysis panel, those bases that were accessible to SNP 
discovery in the low-coverage project (available on the project FTP site).  Overall, about 
15% of the genome was excluded through the filters, with the fraction varying slightly 
between analysis panels (a result of different coverage and technology combinations).  
Details of the accessible genome for CEU are given in Supplementary Table 2. 
 

5.1.7. Phasing	  of	  Merged	  Low-‐Coverage	  SNP	  Call	  Sets	  
 
The call set merging produced a set of partially phased haplotypes, i.e., a series of 
haplotype fragments that were phased relative to each other but separated by unphased 
heterozygotes. We sought to “phase-finish” these haplotypes by using an LD-based 
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method to place the remaining unphased alleles onto the haplotype scaffold that resulted 
from the merging. 
 
To do so, we used a modified version (v2.2) of the IMPUTE2 software (Howie, Donnelly et 
al. 2009). IMPUTE2 has previously been described in the context of genotype imputation 
from a reference panel, but the algorithm also includes a phasing step, and this can be 
used to produce best-guess haplotypes from unphased genotype data. Howie et al. (2009) 
explain the basic procedure for sampling from the joint posterior distribution of haplotypes 
underlying the genotypes of a number of individuals: the IMPUTE model (Marchini, Howie 
et al. 2007) is embedded in a Gibbs sampler, and at each iteration every individual 
samples a new pair of haplotypes, conditional on the current guesses of the other 
individuals. 
 
We used a similar procedure here. The main difference is that we assigned different HMM 
emission probabilities to the phased and unphased genotypes: unphased genotypes used 
the emission probabilities described by Marchini et al. (2007) and Howie et al. (2009), 
whereas phased genotypes used simpler probabilities that result from ordering the 
observed alleles. Supplementary Table 1 of Marchini et al. (2007) shows the probabilities 
for “mutating” from two ordered copied alleles to two unordered observed alleles; when 
the observed alleles are ordered (i.e., phased), only the column labeled ‘1’ (observed 
heterozygote) changes. 
 
In addition to sampling from the posterior distribution of haplotypes, we also calculated the 
marginal probabilities of both possible phase calls at each unphased heterozygote. When 
summed across iterations, these Rao-Blackwellized probabilities amount to weighted 
Monte Carlo counts of the phase calls. At the end of a run, we divided these counts by the 
number of iterations (minus burn-in) to generate marginal posterior probabilities. In order 
to generate best-guess, phase-finished haplotypes, we simply chose the phase call with 
the largest marginal probability at each unphased genotype. In the rare case that the 
posterior probabilities were both exactly 0.5, we phased that genotype at random. 
 
We omitted singleton SNPs from this analysis because they contain very little LD 
information for phasing; we also omitted SNPs with more than two alleles since they are 
not easily handled by the model. We phased each analysis panel separately, and we 
analyzed each chromosome in non-overlapping 5 Mb chunks for computational 
convenience. Each of these regions had a 250 kb buffer (which was used for inference but 
omitted from the output, and which did overlap between chunks) to prevent edge effects. 
We combined the chunk-specific output files into whole-chromosome haplotypes by 
simple concatenation – since the phase-finishing was applied to a chromosome-wide 
haplotype scaffold, there was no need for more complicated ligation procedures. For each 
phasing analysis, we ran IMPUTE2 for 110 iterations, the first 10 of which were discarded 
as burn in. Since this is a small sample of individuals, we did not use the state selection 
approximation that is usually used with IMPUTE2; i.e., we set the number of HMM states 
(-k in the software) to be the entire sample. 
 
Although monomorphic sites, singleton sites and tri-allelic sites were excluded from the 
phase-finishing, they were replaced into the phased haplotypes available from the project 
FTP site so that the files agree on a line-by-line basis with the partially-phased genotype 
files. 
 

WWW.NATURE.COM/NATURE | 16

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09534



  

5.2. Trio	  Data	  SNP	  Calling	  
 
Trio SNP calling was analogous to low-coverage calling except that only two call sets 
were generated, from Broad and Michigan, and the LD/imputation based refinement stage 
that was relevant to population data was simply removed in the Broad set, which relied on 
much deeper data, and replaced in the Michigan set by a structured prior that enforced 
Mendelian segregation.  The intersection of the two call sets was taken as the consensus.  
Details are given below. 
 

5.2.1. Generation	  of	  Broad	  Trio	  Call	  Set	  
 
A pre-processing step used GATK to locally realign all sequence reads that cover either 
an indel or a cluster of apparent polymorphisms (DePristo, Banks et al. 2010; McKenna, 
Hanna et al. 2010).  Likelihoods were calculated as for the low-coverage data, and the 
likelihood-based SNP calling treated each trio as a population of three unrelated females. 
 
Because coverage is high a minimum threshold of Q50 was required before declaring a 
potential variant site. These raw SNP sites were subsequently filtered based on the 
following criteria: 
 

• Heterozygote Allele balance (AB) <= 75% reference 
• Depth of coverage (DP) <= 360, AND 
• Strand bias (SB) <= -0.10, AND 
• (Number of covering reads with mapping quality score zero (MQ0) <= 0.1 * depth of 

coverage OR (MQ0 < 4)). 
 
Only SNPs passing all four of the above criteria were included in the final Broad Institute 
(BI) call set. Full descriptions of these filters can be found in the documentation for GATK. 
 

5.2.2. Generation	  of	  Michigan	  Trio	  Call	  Set	  
 
Likelihoods were obtained from SAMtools, and combined using a prior that enforced 
Mendelian segregation. Genotypes were phased where possible using transmission 
among family members, otherwise reported as unphased.  A potential polymorphic site 
had to satisfy:  
 

• For each sequencing technology, the depth of coverage combined across all trio 
members at the site is between 50% and 150% of the average depth, and the root 
mean squared (RMS) mapping quality score of covering reads is at least 30. 

• Sequence data passing the above filter is present for each person in the trio 
(although perhaps not from the same sequencing technology). 

• The posterior probability for at least one non-reference allele exceeds 0.999 (SNP 
call quality score > 30). 

• The site is at least 3 bp away from a potential indel detected by local realignment. 
 
The primary call set integrates data from all sequencing platforms. Additional call sets, 
specific to each platform, were also generated to enable analysis of the extent of overlap 
in technologies. 
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5.2.3. Merging	  of	  Trio	  Call	  Sets	  
 
The release set consists of all sites that are called by both analyses, including passing the 
criteria shown above. In almost call cases where both approaches called the same SNP, 
genotypes for the three family members were identical. Where there were differences, 
genotypes from the trio-aware Michigan call set were used.  As with the low-coverage 
analysis a fraction of the genome had to be excluded due to high or low coverage and 
poor mapping quality.  Masks for each trio are available on the FTP site and a summary of 
the accessible genome is given in Table 1.  Because the trio project data were typically 
generated earlier than the low-coverage data, a greater fraction of the genome has to be 
excluded (approximately 20%).   
 

5.2.4. Phasing	  of	  Trios	  
 
Once the trio genotypes were called, we set aside all SNPs that violated the rules of 
Mendelian inheritance (these were later used in the analysis of de novo mutation and 
structural variation). We then phased as many of the remaining SNPs as possible by 
identifying unambiguous transmissions from at least one parent. SNPs that are 
heterozygous in the child and both parents cannot be phased in this way, and we sought 
to recover some of these by borrowing LD information from the low-coverage project. 
 
For each trio, we used IMPUTE2 to phase the intersection of the SNPs called in the low-
coverage project dataset and the corresponding trio project dataset (CEU and YRI, 
respectively). We fixed the phase of the low-coverage haplotypes (following the phase-
finishing step described earlier), as well as the haplotypes of the trio parents at SNPs with 
unambiguous phase. We then phased the remaining SNPs in the parents, separately for 
CEU and YRI, as described in section 5.1.7 on phase-finishing the low-coverage project. 
 
The trio parents were phased as if they were unrelated, in the sense that the model did 
not force the parents to transmit opposite alleles at SNPs that were heterozygous in both 
parents and their child. Instead, this constraint was enforced post-hoc by recalculating the 
marginal posterior probabilities for each unphased genotype, conditional on the parents 
transmitting opposite alleles.  
 

5.3. Exon	  Project	  SNP	  Calls	  
 
The exon project SNP call set was composed of the intersection of SNP calls made using 
the GATK Unified Genotyper essentially as described above for low-coverage and trio 
calls, with calls from an alternate pipeline using the MOSAIK read mapper and the 
GigaBayes SNP caller. Note that unlike the low-coverage and trio projects, the different 
SNP call sets started with different read alignments.  SNP calls were made separately for 
each of the 7 exon project populations. 
 

5.3.1. MOSAIK	  Read	  Mapping	  for	  the	  Exon	  Project	  
 
Reads for Illumina and 454 data were mapped using the MOSAIK read mapper 
(http://code.google.com/p/mosaik-aligner/).  This uses gapped alignment to map reads 
and is expected to have higher sensitivity for reads containing indels than MAQ.  The hash 
size used was 15 for Illumina reads with a minimum mismatch of 4 (36mer read length), 6 
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(51mer read length), and 12 (76 and 101mer read lengths).  Parameters for alignment of 
454 reads consisted of a hash size of 15 with at least 70 percent of the read being aligned 
and the maximum percentage of mismatches of 5 %.  Following alignment, GATK was 
used for quality score recalibration as described above.  Duplicates were removed using 
Picard MarkDuplicates for Illumina reads and BCMMarkDuplicates for 454 reads. 
 

5.3.2. Broad	  Institute	  SNP	  Calls	  
 
The Broad SNP calls were made separately within each of the seven ESP populations. A 
superset of calls was obtained as the union of all per-population calls. 
 
An initial step used GATK to locally realign all sequence reads that cover either an indel or 
a cluster of apparent polymorphisms (DePristo, Banks et al. 2010; McKenna, Hanna et al. 
2010). The likelihood based SNP calling treated each trio as three unrelated females. The 
GenomeAnalysisToolkit (GATK) module UnifiedGenotyper was used to calculate 
genotype likelihoods from all samples and technologies simultaneously, exactly as in the 
low-coverage analysis, except that potential SNP sites were only retained when the 
posterior probability of a segregating SNP exceeds a minimum threshold of 10-3 (Q30).  
 
These raw SNP sites were subsequently filtered using GATK VariantFiltrationWalker 
(DePristo, Banks et al. 2010; McKenna, Hanna et al. 2010). During the calling stage, each 
variant is annotated with information derived from the BAM files (i.e., depth of coverage, 
allele balance, the result of a statistical test for strand bias, etc.).  Filters were then applied 
to each of these annotations to reject likely false-positive SNPs. SNPs that met any of the 
following filters were eliminated from the final call set: 

• Allele balance for hets (ref/(ref+alt)) (AB) >= 0.75. 
• Length of adjacent, homopolymer run where the base matches the alternate allele 

of the SNP (HRun) > 3. 
• Ratio of discovery confidence to read depth (QD) < 5.0. 

 
These filters were based on comparisons of annotation behaviour for known SNPs (i.e., 
present in dbSNP build 129) to behaviour for novel SNPs (a mixture of true- and false-
positives). Novel SNPs with annotation profiles markedly different from known SNPs tend 
to indicate false-positive status. A threshold was placed such that it would affect few 
known sites, while eliminating the offending a subset of the novel SNPs, presumed to be 
false-positives. 
 
Conditional on a site passing the filters, genotypes on all samples with data were called 
independently using a flat prior. 

 

5.3.3. Boston	  College	  SNP	  Calls	  
 
SNPs were called using the GigaBayes package 
(http://bioinformatics.bc.edu/marthlab/GigaBayes), which is an extension of the original 
Bayesian SNP caller PolyBayes (Marth, Korf et al. 1999). The method uses many of the 
same features as the other methods calling SNPs directly from primary sequence data, 
described above. First, genotype likelihoods are computed in a way similar to samtools, 
using a simple model to account for the non-independence of errors, and after excluding 
reads with mapping quality<20 and sites with base quality <10. Second, the algorithm 
computes the posterior probabilities for the most likely constellations of sample genotypes 
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by combining the genotype likelihoods with a prior on variant frequency of 0.001/k per site, 
where k is the number of non-reference alleles in the samples, and assuming Hardy-
Weinberg equilibrium. Third, it computes the overall a posteriori probability that the site is 
variant, by summing over the probabilities of sample genotype constellations containing at 
least one non-reference allele. Fourth, it obtains the maximum a posteriori estimate of the 
individual sample genotypes.  Candidate SNP sites were filtered so that variant calls had a 
PHRED Q score of at least 40 and at least one individual with a non-reference variant with 
genotype quality of at least 10. 
 
 

5.3.4. Generation	  of	  Exon	  Project	  SNP	  Release	  Set	  
 
The SNP release consisted of 7 population-specific call sets. In a given population, the set 
of SNP sites for the release call set was formed as the intersection of the BC and the BI 
calls.  As for the low-coverage project, the quality of the consensus calls (as measured by 
transition-transversion ratio, dbSNP concordance and genotype accuracy against external 
data; data not shown) was better than either individual data set.  Genotypes were reported 
for every sample for which the BC and BI genotype calls agreed.  Samples for which the 
estimated genotypes differed are reported as missing data.  The merged call set was not 
filtered further. 
 

6. Validation	  of	  SNP	  Calls	  
 
Targeted genotyping at predicted SNP locations was used iteratively through the pilot 
phase to estimate both the false positive rate for sequence based SNP discovery and the 
error rate of sequence based genotyping. This validation was not intended to characterize 
the final SNP calls, but rather to inform technical and analytical artifacts so that they could 
be addresse.  Moreover, such validation of sites called as polymorphic cannot provide 
information about the false negative rate for SNP discovery.  
 
The sequence based SNP discovery process deliberately disregards existing information 
from dbSNP (as of build 129). However, SNPs previously reported as polymorphic in 
dbSNP naturally have much higher probability of being variable than sites not previously 
marked in dbSNP, and empirically, show much lower error rates than (novel) sites that 
were not previously in dbSNP. For this reason, the experimental validation deliberately 
oversamples from the novel sites. 
 

6.1. Validation	  of	  Randomly	  Selected	  Low-‐Coverage	  SNPs	  
 
250 novel (not found in dbSNP build 129) sites were chosen at random from the union of 
the three preliminary (March 2009) call sets on chromosome 20 in each of the three 
populations. Sequenom probes were considered to have genotyped effectively if they had 
less than a 5% no-call rate and a Hardy-Weinberg chi-squared value of less than 3.78. 
 
Validation analysis was conducted in December 2009, using the 2-of-3 intersection SNP 
call set from March 2009. The true positive (TP) rate was found to be approximately 77%. 
However, investigation of the SNPs that did not validate revealed a suitable diagnostic for 
removing a high proportion of the calls that did not validate. Namely, positions with a high 
proportion of reads with zero mapping quality were highly enriched for SNPs that did not 
validate. For this reason, the final release set of SNPs has been filtered, as described in 
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section 5.1.4 of the supplementary material. 
 
From the novel SNPs in the final release set, 505 had passed Sequenom design and 
genotyped effectively. 154 were in CEU, 210 in YRI, and 141 in CHB+JPT. These show 
true-positive rates for novel sites of 90.3% in CEU, 91.4% in YRI and 84.4% in CHB+JPT. 
Allowing for the fraction of all sites that were already in dbSNP, this suggests false 
discovery rates (FDR) of approximately 3.26% in CEU, 4.0% in YRI and 4.3% in 
CHB+JPT (See Supplementary Table 3). 
 

6.2. Validation	  of	  Low-‐Coverage	  SNPs	  with	  Large	  Frequency	  Differences	  between	  
Populations	  

 
SNPs with large frequency differences between populations were also selected for 
validation. These SNPs were selected randomly from the set of SNPs with a frequency 
difference of at least 0.6 between two populations, as determined from the merged SNP 
call set. SNPs were chosen for validation regardless of dbSNP status. Equal numbers 
were picked from each pairwise population comparison (CEU vs CHB+JPT, CEU vs YRI 
and CHB+JPT vs YRI). 
 
Of the SNPs that passed the mapping quality filters, 50 SNPs in CEU, 46 in YRI and 41 in 
CHB+JPT passed Sequenom design and genotyped effectively. The true positive rates 
were 96.0%, 95.7% and 95.1% for CEU, YRI and CHB+JPT respectively (see 
Supplementary Table 3). 
 

6.3. Validation	  of	  Loss	  of	  Function	  and	  Non-‐Synonymous	  Low-‐Coverage	  SNPs	  
 
The validation set for loss-of-function (LOF) variants in the low-coverage project included 
all 50 predicted stop-introducing and splice-disrupting SNPs in the 2-out-of-3 call set on 
chromosome 20, as well as 32 such variants present in only one call set. Finally, 40 
predicted frame-shift-inducing indels called by one of the three indel call sets with the 
highest quality metrics were also targeted. 130 predicted non-synonymous SNPs were 
also randomly selected from the 2-out-of-3 call set on chromosome 20. There were 
dbSNP sites in the LOF and nonsynonymous validation sets, although variants previously 
seen to be variable in either HapMap or the Illumina 1KG chip were excluded. 
 
Having applied mapping filters, a total of 87 SNPs in CEU, 100 in YRI and 64 in CHB+JPT 
passed Sequenom design and genotyped effectively. For this set of SNPs, the TP rate 
was 92.0% in CEU and YRI, and 90.6% in CHB+JPT. 
 

6.4. Validation	  of	  Trio	  SNPs	  
 
For the trio project, two independent sets of preliminary genome-wide SNP and genotype 
calls were made in September 2008 at the Sanger Institute and the University of Michigan, 
using sequence data from all three members of the CEU trio. 88% of these SNP locations 
were already contained in dbSNP. A total of 1300 sites were chosen for validation from 
the union of these two call sets. From the UMich calls, 100 sites were chosen at random 
from calls already in dbSNP build 129, and 600 sites were chosen at random from calls 
not in dbSNP. From the Sanger calls, 600 sites were chosen at random from calls 
putatively not in dbSNP. However, the Sanger calls were apparently matched against an 
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earlier version of dbSNP, since 44% of these 600 sites are in fact found in dbSNP build 
129. 1153 sites passed Sequenom primer design criteria and were genotyped on 179 
individuals from the low-coverage project plus all 6 individuals in the trio project. After 
omitting three individuals from the low-coverage project with low Sequenom call rates, 
1117 sites have better than 90% call rate. 1064 of these sites are included in the 
intersection of the two preliminary call sets. 
 
At 308 sites already in dbSNP, 2 are apparent false positives (since the Sequenom 
genotyping shows all three trio individuals to be homozygous for the reference allele) and 
13 more sites show one or more discrepancies between the Sequenom and sequence-
based genotype calls, for a total of 26 genotype discrepancies. This estimates a 0.65% 
false positive rate for SNP discovery at dbSNP sites and a 2.8% rate of genotyping errors. 
756 sites not in dbSNP show a 6.3% false positive rate and a 6.8% per genotype error 
rate for novel sites. However, novel sites are only 12% of the total, so overall, this 
estimates a 1.3% false positive rate and 3.3% genotyping error rate for the intersection of 
the two original call sets. This intersection was released in December 2008 as CEU trio 
SNP calls. The Sequenom data also include 53 sites that were in one of the two call sets 
and not the other. These show 63% false positive rate and 52% genotyping error rate. 
Thus, the intersection of the two call sets shows higher accuracy than either call set 
individually. 
 
We also evaluated the March 2010 final release set against the 2008 Sequenom data, 
although the results will be slightly optimistic, since information from the 2008 validation 
experiment may have been used to guide the choice of subsequent filtering criteria. The 
March 2010 set is more conservative than the earlier release. 286 sites in dbSNP build 
129 and 682 sites not in dbSNP show 0.5% false positive rate and 1.5% genotyping error 
rate overall. Separate estimates for the dbSNP and novel sites in the March 2010 calls 
show 0.35% and 1.6% false positive rates, and 1.4% and 1.9% genotyping error rates, 
respectively. 
 
The Sequenom genotyping results also contain genotypes for all three members of the 
YRI trio. However, the loci being genotyped were ascertained exclusively from the CEU 
trio, and only 262 loci are called as polymorphic within the YRI trio, with more than half 
coming from dbSNP. Because of an unknown selection bias for this subset of sites, 
estimates for the false positive and genotyping error rates would not be reliable. 
 

6.5. Validation	  of	  Exon	  Project	  SNPs	  
 
Three series of validation experiments using Sequenom genotyping were carried out on 
sites from both primary exon SNP call sets in addition to calls in the intersection. Sites 
were filtered out of final genotyping results if they exhibit a Hardy-Weinberg equilibrium 
violation, have high no-call rates across samples or list every sample as homozygous 
variant. 
 
Random Sampling 
126 sites not found in dbSNP 129 were selected at random from the intersection between 
the BC and Broad call sets. These sites were genotyped using Sequenom in the various 
populations and the average TP rate was 94%, suggesting an overall average FDR of 
1.97% 
 
Population Specific Discovery  
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Approximately 135 sites not found in dbSNP 129 were chosen in each of CEU, YRI, and 
CHB+JPT populations, and regardless of the allele frequency were validated via 
Sequenom. Among these, the observed TP rate was 95% or greater, suggesting an 
overall FDR of 2.4% or less. 
 
Low-frequency sites across all samples 
68 sites at low frequency (35 singletons and 33 at 2 – 5 occurrences) not found in dbSNP 
129 were selected from the intersection of BC and Broad calls. These sites were 
genotyped using Sequenom. All but one of these sites were found to be polymorphic, 
suggesting an overall TP rate of 98.5%. 
 
The Sequenom validation outcomes for these sets are given in Supplementary Table 3. In 
all three validation series, the validation rate is over 90%. The raw totals (not weighted by 
the number of calls in each category) yield an overall validation rate of 91.2%. 
 

6.6. Custom	  Validation	  Genotyping	  Chip	  
 

In early 2009 Illumina offered to make a custom genotyping array to validate preliminary 
variant calls from the project, and in May 2009 a set of 150,000 SNP calls was submitted 
for chip design as described in detail at 
ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/supporting/Illumina_Human1KGP-
12/chip_annotation/Illumina.1KGP-12.design.summary.pdf.  Included were ~55,000 non-
synonymous and splice site SNPs in Ensembl genes, ~70,000 SNPs around GWAS 
signals in the NHGRI table of GWAS hits, and ~10,000 SNPs in ENCODE regions 
resequenced for the HapMap 3 project.  

 
Approximately 120,000 of these sites converted into working assays, and the resulting 
chips provided by Illumina were used to genotype all 1000 Genomes Project samples 
available at the time.  The resulting genotypes are available on the project FTP site. 

 
Based in large part on data from the 1000 Genomes Project, including this experiment, 
other next generation genotyping chips have been designed, including the Metabochip 
(http://www.sph.umich.edu/csg/kang/MetaboChip/) and the 2.5 M Omni chip 
(http://www.illumina.com/applications/gwas.ilmn) have been designed. 
 

6.7. Y	  Chromosome	  and	  Mitochondrial	  SNP	  Calls	  

6.7.1. Y	  Chromosome	  
 
Genotype likelihoods on the Y chromosome in the low-coverage data were generated 
using GLFTools v3 (http://sourceforge.net/projects/samtools/files/glftools, which 
implements likelihood and variant calling algorithms of Li and Durbin (2008)).  Combining 
these with an expected population-scaled mutation rate θ = 0.001, a heterozygosity prior 
penalty of 50, and an RMS mapping quality threshold of 60, generated a list of 49,290 
candidate SNPs.  The phred-scaled heterozygous prior penalty corresponds to a 10^-5 
heterozygosity rate; this penalty is designed to eliminate heterozygous calls except at 
sites with very high evidence for heterozygosity, which can be excluded as mapping 
artefacts.  For sites that were called as variable, genotype posterior probabilities were re-
calculated using a uniform genotype prior (theta=1).  Following this two sets of filters were 
applied. 
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First Stage Filters  

• Heterozygosity Filter. Removed sites with heterozygous calls of any quality (taking 
into account the het-prior), or more than 3 different high-certainty alleles. 

• Depth Filter. Removed sites with under 1/2 or over than 3/2 times the mean depth at 
HapMap sites. 

• Proximity Filter. Removed sites that are within 4 bp of other candidate sites. 
 

A total of 5,839 sites passed the First Stage filters.  Of the novel sites within the unique Y 
region that passed First Stage filters, 200 were randomly selected for capillary 
resequencing. However, 4 failed primer design and 40 primer pairs were excluded as 
being non-specific by nucleotide BLAST (blastn). The remaining 156 were amplified in two 
males and a female sample and 117 that gave male-specific amplimers were selected for 
sequencing. Of these a total of 112 sites produced good sequence traces on either the 
forward or reverse strand, 69 of which (62%) validated as non-reference. 
 
Following this, Second Stage filters were applied: 

• Haplotype Filter. Removed sites that are polymorphic in more than 1 major 
haplogroup. 

• Quality Filter (Singletons). Removed sites with a non-reference quality < 50. 
• Quality Filter (Non-Singletons). Removed sites with a mean non-reference quality < 

30 and a total non-reference quality < 100. 
 

2,870 sites passed these Second Stage filters, of which 24.1% were in dbSNP 129. Of 
sequenced Second Stage filtered SNPs, 55/56 validated, giving an estimated False 
Positive rate of 1.8% (with a 95% upper confidence bound of 8.2%).  A final filter was 
applied that flagged sites that lie outside of the approximately 12 Mb Unique Y-specific 
Region (UYR), though calls that failed this filter are included in the final call set. A total of 
1,971 SNPs fall inside this region, of which 26.0% were in dbSNP. 
 

6.7.2. Mitochondrial DNA	  Analysis	  
 
Mitochondrial DNA (mtDNA) sequence data were examined from 208 datasets from the 
low-coverage project, each corresponding to a combination of individual and platform. 22 
sequences were excluded because of sequencing quality and 23 individuals were 
represented by two different platforms, so the final dataset was from 163 individuals. 
Mean coverage for each individual ranged from 37.7X to 3535X.  
 
Reads mapping to mtDNA were extracted from the original bam files and regenerated as 
mtDNA bam files. For subsequent analysis, we used the SAMtools package (Li, 
Handsaker et al. 2009) to generate an initial pileup file from which a consensus sequence 
and variation information for each individual were obtained. Consensus sequences were 
aligned and compared with the revised Cambridge Reference Sequence (rCRS; Andrews, 
Kubacka et al. 1999) and initial haplogroup assignments made using a web-based 
haplogrouping program (Brandon, Ruiz-Pesini et al. 2009). 
 
Manual examination of these initial sequences revealed a lot of mis-aligned reads, and 
that these reads caused many ambiguous heteroplasmy calls. A java script was used to 
filter reads based on the NM (number of mismatch) information in the SAM files, removing 
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reads with >10% mismatch (typically 1-5% of initial reads). This filtering step was effective 
and ambiguous heteroplasmy positions were removed (data not shown). 
 
Mitochondrial DNA has the advantage that the sequence variation falls into a well-defined 
and (for many parts of the phylogeny) well-understood phylogenetic pattern (Bandelt, 
Lahermo et al. 2001; Bandelt, Salas et al. 2004). Using this approach, we curated the 163 
sequences manually. All positions (54 position/individual combinations) that were 
ambiguous or surprising according to this analysis were re-sequenced with conventional 
capillary sequencing and 52 provided an interpretable result that was incorporated into the 
final dataset. 
 
The 163 sequences studied here were successfully classified into specific (sub-
)haplogroups (Supplementary Figure 5). Each continental sample was perfectly divided 
into population-specific haplogroups as expected (e.g., Haplogroup L for African samples, 
Haplogroup H for Europeans and Haplogroup D or B for the East Asian samples) 
according to their previously-identified continental affiliations (van Oven and Kayser 2009). 
 
Heteroplasmies were also assessed in this study (Supplementary Table 10). 
Heteroplasmy was called with a mean MAF of 26%, with seven calls having a MAF <10%. 
Heteroplasmies within individuals were first detected in consensus sequences generated 
from the BAM files after filtering out ambiguous reads.  The MAF at each locus was 
estimated by counting the number of occurrences of each allele in the reads spanning the 
locus, and confirmed by manual inspection using the program IGV (Integrative Genome 
Viewer: http://www.broadinstitute.org/igv/). 
 
Of the 163 samples, 85.9% showed at least one heteroplasmic position. Length 
heteroplasmy was observed in 79% of individuals in the known HVS1, HVS2 and HVS3 C-
stretch regions (Supplementary Figure 6A). Point heteroplasmies were identified in 45% of 
individuals, distributed through the whole mtDNA genome (Supplementary Figure 6B). 
Irwin et al. (Irwin, Saunier et al. 2009) examined the control region of 5,015 individuals and 
reported length heteroplasmy in 52%, a little lower than the 79% identified here. Since all 
the C-stretch regions are located in the control region of the mtDNA, this difference could 
reflect a small difference in either sensitivity of detection or source material (blood or 
buccal compared with lymphoblastoid cell line). The same authors reported point 
heteroplasmy in the control region in approximately 6% of their samples. The incidence of 
point heteroplasmy in the control region in this study was approximately 4.9%, a similar 
and indeed slightly lower number, suggesting that somatic mutation during cell culture has 
not increased the level of heteroplasmy substantially. The higher overall level of point 
heteroplasmy detected in this study thus most likely reflects the accessing of the complete 
mtDNA molecule, and the more uniform distribution of point heteroplasmy. 
 

7. Short	  Insertion/Deletion	  (Indel)	  Calls	  
 
 
The process of generating indel variant and genotype calls for the genome-wide data was 
broken up into three stages: candidate indel identification, calculation of genotype 
likelihood through local re-alignment, and LD-based genotype inference and calling. This 
workflow was chosen because, in contrast to SNPs, it is not possible to enumerate all 
potential indel mutations, and compute the posterior support of each. Instead, a pseudo-
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Bayesian approach was used, in which potential candidates are first obtained, and then 
subsequently tested (together with the reference) in a Bayesian framework.  
 
All likelihood-based calculations were made from the Illumina data, although candidate 
indels from the 454 and SOLiD reads were considered. 
 
The low-coverage project release consists of indel calls on the finished autosomal 
sequence. No indel calls on the X, Y, mitochondrial, or unplaced chromosomes have been 
made. 
 

7.1. Generation	  of	  Low-‐Coverage	  Candidate	  Indels	  
 
Candidate indels for low-coverage project were obtained using a diverse set of algorithms, 
working from different primary data sets. The methods were tuned for high sensitivity. 
Sequenom validation of a small number of randomly chosen calls (50 per set) showed that 
all candidate call sets were enriched for false positive calls. The 454-based call sets were 
excluded from the validation experiment because of either low sensitivity or high false-
positive rates as indicated by low dbSNP129 concordance.  Candidate indels were used 
subsequently to identify high-quality variant calls (see next section). 
 
The “Broad” method uses the GATK suite of tools to partial re-align reads to identify 
possible indels directly from read data, using both Illumina and SOLiD reads (DePristo, 
Banks et al. 2010; McKenna, Hanna et al. 2010). 
 
The “Pindel” method implements a split-read approach; when either side of a single read 
map confidently to nearby locations on the reference, a potentially large indel is inferred 
(Ye, Schulz et al. 2009). 
 
The “Oxford” method uses the Stampy read mapper to identify indels by directly aligning 
reads to the reference. Indels seen in 2 or more samples were reported (Lunter and 
Goodson 2010). 
 
The “SAMtools” method uses the indel caller implemented in the SAMtools package to call 
indels directly from 454- or Illumina BAM files (Li, Handsaker et al. 2009). 
 
The “Yale” method uses a split-read approach to identify small to potentially large indels. 
 

7.2. Indel	  Genotype	  Calling	  
 
The Dindel algorithm (Albers, Lunter et al. 2010) was used to generate both indel calls 
and individual-level genotype likelihoods. The basic idea of Dindel is to realign all reads 
mapped to a genomic region to a number of candidate haplotypes. Each candidate 
haplotype is a sequence of 120 bp that represents an alternative to the reference 
sequence, and corresponds to the hypothesis of an indel event and potentially other 
candidate sequence variants such as SNPs. By assigning prior probabilities to the 
candidate haplotypes, the posterior probability of a haplotype and consequently an indel 
being present in the sample(s) can be estimated. This Bayesian approach allows us to 
model different types and rates of error consistently in a single framework. The advantage 
of modeling hypotheses as candidate haplotypes is that all differences between the read 
and the candidate haplotype must be due to sequencing errors. Thus, in the realignment 
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of a read to a candidate haplotype, Dindel accounts for the increased sequencing error 
indel rates in homonucleotide runs, as well as the base-qualities, and naturally separates 
contributions of errors from statements about biological differences. The process of 
realigning reads to candidate haplotypes also resolves the issue of mismatches around 
indel event and corrects alignment artifacts introduced by the read mapper. Furthermore, 
we deal with mapping errors of by interpreting mapping quality as the prior probability that 
a read should align to any of the candidate haplotypes (Li, Ruan et al. 2008) which 
effectively reduces the weight of reads that cannot be confidently mapped to that location 
in the genome. 
 
Candidate haplotypes are generated by combinatorially combining the candidate indel 
with three additional candidate sequence variants. The additional candidate sequence 
variants are generally SNPs but can also be indel variants. Thus, with 4 sequence 
variants, 16 candidate haplotypes are generated, except when candidate deletions may 
result in identical haplotypes and reduce the number of unique candidate haplotypes. 
 
First, initial indel calls were made for each indel in the candidate set by jointly analyzing 
the reads of all individuals in the same population using the Bayesian EM algorithm in 
Dindel (Albers, Lunter et al. 2010). The Bayesian EM algorithm provides both an estimate 
of the posterior probability that the candidate indel segregates in the population and an 
estimate of the population allele frequency, under the assumption that reads were 
sampled uniformly from the individuals in the population. Here, we also made the 
assumption that at most one non-reference variant was allowed to segregate per site. 
While it is expected that this assumption does not hold for all indel polymorphisms, this 
assumption appeared to lower false discovery rate, and was required for the subsequent 
genotype imputation stage. 
 
Next, genotype likelihoods were generated for each indel called by the Dindel Bayesian 
EM algorithm. The genotype likelihoods were computed after the Bayesian EM stage of 
Dindel, as the genotype likelihoods depend on the estimated frequencies of the variants 
surrounding the candidate indel for which the genotype likelihoods are desired. The 
genotype likelihood for the candidate indel takes into account the population frequencies 
of the additional sequence variants in the candidate haplotypes without assuming linkage 
equilibrium. 
 
Finally, for low-coverage indels QCALL (Le and Durbin 2010) was used to impute 
genotypes using the genotype likelihoods for the indels called by the Dindel Bayesian EM 
algorithm. For a small number of indels called by Dindel (~0.20%), QCALL did not confirm 
that the indel site was variable (all genotypes were imputed as homozygous reference). 
These indel cases were filtered from the final call set.  For trio indels a Mendelian prior 
was enforced, essentially identical to that used by Michigan for their trio SNP call set. 
 

7.3. Homonucleotide	  Sequencing	  Error	  Indels	  
 
In the approach taken by Dindel, all differences between the read and the haplotype are 
assumed to be the result of sequencing errors. Dindel accounts for increased sequencing 
error indel rates in homonucleotide runs. The sequencing error rate is a parameter in the 
read-to-haplotype probabilistic realignment model that depends on the length of the 
homonucleotide run in the candidate haplotype.  
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We estimated the probability of observing a sequencing error indel in a homonucleotide 
run as a function of the length of the run from the low-coverage project data. The details of 
this error model are given in the Dindel paper (Albers, Lunter et al. 2010).  
 

7.4. Indel	  Filtering	  
 
Dindel considered both mapped reads and unmapped reads of which the mate is mapped 
within a distance of the mean library insert size plus 4 standard deviations of the 
candidate haplotype. Only reads with mapping quality >0 were realigned and used to 
make calls. Since Dindel uses mapping qualities in the probabilistic model to weight reads, 
and the reads with high mapping quality dominate the inference. 
 
Dindel and QCALL estimate for every candidate indel the posterior probability that the 
variant segregates in the population. In addition to requiring that the posterior probability 
estimated by both Dindel and QCALL should exceed 90% (q10), the following filters were 
applied post-calling. We required that the estimated population allele frequency >= 
1/number of reads, and that at least one read mapped to the forward strand and one 
mapped to the reverse strand cover the indel. Furthermore, if more than one candidate 
indel had posterior probability >90% in a window of 30 base pairs, only the one with 
highest posterior probability was called. We only called indels in windows where the 
number of reads aligned to the haplotype window was in the 2nd-99th percentile range. 
Finally, indels in homonucleotide runs longer than 10 nucleotides were filtered. 
 

7.5. Validation	  of	  Low-‐Coverage	  Indel	  Calls	  
 
Novel (not found in dbSNP build 129) indels were chosen from chromosome 20 and 
genotyped via Sequenom. Some of the indels chosen appeared in multiple call sets. The 
criteria for inclusion in validation were: 

• Homopolymer or tandem-repeat context of at most 10 bp long 
• Indel length at most 50 bp 

 
79 indels in CEU, 59 in CHB+JPT, and 152 in YRI designed and genotyped effectively 
using Sequenom. Of these, the observed TP rate was 98.7% for CEU, 99.3% for YRI and 
94.9% for CHB+JPT (Supplementary Table 3). 
 

7.6. Generation	  of	  Trio	  Project	  Indel	  Calls	  
 
The process of generating indel calls for the two trios was broken up into analogous 
stages to those in low-coverage indel calling: candidate indel identification, calculation of 
genotype likelihoods through realignment, and trio-aware indel calling.  All the 
components used for these steps have been described previously; only their combination 
is novel. 
 

7.6.1. Generation	  of	  Candidate	  Indels	  
 
The trio project indel calls were made from the Illumina data only. As candidates we took 
all gaps identified by the read-mapper MAQ across all six members of the two trios. Thus, 
candidates from the YRI trio were tested in the CEU trio and vice versa. In total 14.8M 
candidates were identified. 
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7.6.2. Indel	  Genotype	  Likelihoods	  
 
Genotype likelihoods were calculated for each individual for each candidate indel by 
Bayesian realignment of reads to candidate haplotypes using Dindel (Albers, Lunter et al. 
2010). The main difference with the genotype calculation for the low-coverage project is 
that here the prior probability of each haplotype pair based on the variants contained in 
the haplotypes was used, rather than the estimated population haplotype frequencies. 
 

7.6.3. Trio-‐Aware	  Indel	  Calling	  
 
Indel calls were made in each trio by assuming Mendelian segregation of the candidate 
indel. As a result, de novo mutations are not included in the call set. The posterior 
probability for the genotype configurations of the trio members was calculated assuming a 
Mendelian allele transmission model without mutation, and a simple prior probability 
distribution over the genotype configurations of the parents, where the distribution over 
genotypes with at least on non-reference allele was uniform with mass 1/10000. The 
model allowed for multi-allelic indels. An indel was called if the posterior probability that at 
least one individual had a non-reference allele was >99%.  
 

7.6.4. Indel	  Filtering	  
 
We applied most of the filters that were also applied for the low-coverage project indel call 
set. We required that the indel was covered by one read mapped to the forward strand 
and one read mapped to the reverse strand, and reported only the indel with highest 
posterior probability in the window of 30 bp. We only called indels in windows where the 
number of reads aligned to the haplotype window was in the 2nd-99th percentile range. 
Indels in homonucleotide runs longer than 10 nucleotides were filtered. 
  

7.7. Generation	  of	  Exon	  Project	  Indel	  Sites	  and	  Genotype	  Calls	  
 
Indel calls for the exon project were derived from the union of three primary call sets.     
The indel calls were produced using the Illumina platform at Baylor and Broad and the 
Roche 454 platform at Baylor, in three independent pipelines.  The union includes all 697 
Exon Pilot individuals from 7 populations (90 CEU, 109 CHB, 107 CHD, 105 JPT, 108 
LWK, 66 TSI and 112 YRI).   
 
The Broad indel calling pipeline ran the GATK Indel realigner at the population level, 
arranging alignments in a consistent fashion across samples. Following this cleaning, a 
heuristic method (at least ~40% of reads in a sample have a consistent, consensus indel) 
was applied to the realigned reads. Only variant sites were identified; specific genotypes 
were not called. These variant sites were identified per sample, and then aggregated to 
make population-level calls. 
 
Variant sites were filtered via a simple additive points system (sites with fewer than 2 
points were filtered out): 
 Consensus mismatch rate < 1.0 (3.0): +2 (+1) points 
 Consensus mismatch rate < reference mismatch rate: +1 point 
 Homopolymer run <= 2: +1 point 
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 Strand bias >= 0: -1 point 
 Homopolymer Run >= 5: -1 point 
 Single base event: -1 point 
 
The Baylor indel calling pipeline used a logistic regression model of pertinent variables 
implemented in Atlas-INDEL2 (Challis et al. in prep) to make indel calls for individual 
samples from the MOSAIK alignments described above. This was followed with a 
genotyping step, so for each sample-site if the 'variant call reads/total coverage' was >= 
0.2 and < 0.9, the sample was considered a heterozygote. Otherwise it was classified as a 
homozygote. 
 
The Roche 454 data was processed using a separate pipeline by the BCM-HGSC.  Indels 
were called using Atlas-Indel (Wheeler, Srinivasan et al. 2008) and subjected to the 
following filters - reads with high substitution or indel rates are filtered; reads where the 
indel was near the 3' end are filtered; indels that could have resulted from flow errors are 
filtered; at least 5% of the indel's read strands must be in each direction; singletons are 
filtered; and 2 base-pair indels with an allele count of less than 5 are filtered. 
 
The union of the three independent call sets that fell within the consensus target regions 
formed the release call set.  In merging call sets and calculating concordance, indels were 
considered equivalent if they were within 5 base-pairs of each other and of the same type.  
Equivalent indels were merged, so that no indel was counted more than once. 

8. Structural	  Variation	  
 
Several methods were used to discover structural variants (SVs) from trio and low-
coverage raw sequencing reads. Algorithms underlying several distinct rationales for SV 
detection have been used in the SV discovery process. The high-confidence SV set 
reported in this study is based on validated SVs and on such discovered by algorithms 
achieving an FDR ≤10% (see Supplementary Tables 4A, 4B). Further details on SV callset 
generation and analyses on the full set of SVs generated by the 1000 genomes project 
structural variation analysis group are described in a companion paper. 
 

8.1. Discovery	  of	  Structural	  Variants	  in	  the	  1000	  Genomes	  Pilot	  Project	  

8.1.1. Paired-‐End	  Mapping	  
 
The paired-end mapping approach utilizes paired-end sequencing reads and identifies 
SVs by relating the genomic mapping positions of both ends of a pair-end (also called 
read-pair, and, depending on the library preparation protocol, mate-pair) to the paired-end 
insert size distribution. A number of different approaches were used for mining paired-end 
insert sizes and inferring SVs based on the identification of deviations from the expected 
insert size, as described in the following. These approaches usually employ additional 
criteria for discerning high-confidence SV assignments from such made at low confidence. 
 

8.1.2. Deletion	  and	  Insertion	  Analysis	  with	  the	  AB	  Large	  Indel	  Tool	  
 
The AB large indel tool infers insertions and deletions by identifying positions in the 
genome in which the pairing distance between mapped read-pairs (mate pairs) is 
significantly deviated from what is expected at the given level of span coverage (i.e., 
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physical coverage in terms of read-pairs spanning the genome). A look-up table is created 
in which the amount that the read-pairs must be deviated to achieve one standard 
deviation of significance is the standard error at each level of physical coverage. This 
produces an asymptotic curve in which the minimum size of detectable indels at a given 
level of significance drops rapidly as the span coverage increases. The look-up table is 
used to determine the significance of the deviation in average insert size at each position 
in the genome. Regions of the genome that are significantly deviated are selected as 
candidate indels. Hierarchical clustering is used to segregate candidate indels into groups. 
Clusters with <2 read-pairs are removed, and each cluster is assessed to differentiate 
homozygous and heterozygous SVs (McKernan, Peckham et al. 2009), i.e., if 2 different 
clusters of pairing distances are observed, the SV is called heterozygous; if there is only 
one cluster, it is called homozygous. The tool can be downloaded at SOLiD software tool 
website. 
 

8.1.3. Deletion	  and	  Insertion	  Analysis	  with	  PEMer	  
 
The PEMer tool, which identifies SVs by mining paired-end mapping data (Korbel, Urban 
et al. 2007), was applied to 454 paired-end and SOLiD mate-pair reads. The PEMer 
calling method involves a number of subsequent steps, including read-mapping onto the 
reference genome (using megablast for 454 reads and Corona Lite for SOLiD reads), 
removing duplicates, SV-calling with PEMer, and quality checks to generate high-
confidence calls. The PEMer pipeline for calling SVs contains the following steps, which 
were carried out as described previously (Korbel, Abyzov et al. 2009): identification of 
outliers whose paired-end alignment distances on the genome deviate significantly from 
expected distances (with cutoffs determined based on the paired-end cluster size), outlier 
clustering, and cluster merging. For SV calling with 454 data, a p-value cutoff (Korbel, 
Abyzov et al. 2009) of 0.05 was applied. For SV calling with SOLiD data, several post-
processing steps were applied to compensate for the placement of short reads, which is 
more challenging that long-read placement: 1) consistency check of span-size of each 
read-pair within cluster (only read-pairs whose span-size is within 15% deviation from the 
median of span-size in each cluster are kept); 2) recovery of sub-clusters from a big 
cluster that better define the boundaries of an SV event; 3) and span size check of the 
innermost reads within a cluster against the SV event size (the distance between the two 
innermost reads supports the SV event). Sub-cluster recovery was made to clusters 
violating the condition that the rightmost read on the left is left to the leftmost read on the 
right, by identifying sub-clusters that meet the condition. SV size was estimated as a 
difference between the average distance of all read pairs in a cluster, or sub-cluster, and 
the average insert size.  
 

8.1.4. Deletion	  Analysis	  with	  BreakDancer	  
 
We ran BreakDancer (Chen, Wallis et al. 2009) to identify deletions from Illumina paired 
end data in both the trios and the low-coverage project. In each library, paired-ends with 
MAQ (Li, Ruan et al. 2008) mapping qualities greater than 35 were tagged as discordant if 
their outer distances were larger than the mean plus four standard deviations of the insert 
size. We then searched for genomic regions that anchor significantly more discordant 
paired-ends than expected on average. Data from family trios was jointly analyzed 
together with low-coverage data from the same population. A putative deletion is derived 
from the identification of one or more regions that are interconnected by at least two 
discordant paired-ends. At each deletion locus, individual genotypes were determined by 
analyzing the supporting discordant paired-ends. The start and the end coordinates are 
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defined as the inner boundaries of the constituent regions that are closest to the 
suspected breakpoints, while the size is estimated by subtracting the mean insert size 
from the average spanning distance in each library and then averaged across libraries.  
 

8.1.5. Deletion	  Analysis	  with	  VariationHunter	  
 
All high-quality reads (average phred score ≥ 20) were mapped to reference human 
genome build 36 with edit distance ≤ 2 with the mrFAST algorithm (Alkan, Kidd et al. 
2009). Paired-end sequences mapped with a span within the size threshold (average± 
4×stdev) were returned as concordant. ; All locations for non-concordant (i.e., discordant) 
paired-ends returned by mrFAST as potential mapping location were considered for SV 
detection. The SV detection algorithm VariationHunter (Hormozdiari, Alkan et al. 2009), 
uses a maximum parsimony optimization function to minimize the total number of 
structural variants in a given genome while assigning paired-ends to a single location. To 
achieve this goal, VariationHunter first creates all maximal valid clusters (Hormozdiari, 
Alkan et al. 2009) of discordant paired-ends. Maximal valid clusters are defined as 
maximum number of paired-ends that support the same potential variation, where no other 
paired-end can be added to such clusters without conflicting the class and size of the 
structural variant signaled by the other paired-ends in the cluster. VariationHunter then 
uses an approximate solution to the set-cover problem to find the minimum number of 
total structural variations. 
 

8.1.6. Deletion	  Analysis	  by	  Paired-‐End	  Mapping	  at	  WTSI	  
 
Reads from the Illumina/Solexa platform were mapped with MAQ (Li, Ruan et al. 2008), 
then insert size distributions were analyzed for each library separately on chromosome 20. 
To select aberrant paired-ends from each library a cut-off was determined by using a drop 
in the density function in the relevant insert size distribution. Then paired-ends with 
mapping quality of at least 20 were ordered by start position and two aberrant pairs were 
allocated to the same cluster if their start positions were not further apart than a given 
threshold (ten times the median absolute deviation of the insert size distribution) and 
similar their end positions. In a second step neighboring overlapping paired-end clusters 
were merged. To obtain a final set of putative deletions, the candidate clusters were 
filtered by the product of the number of paired-end reads per cluster and their mapping 
quality. Additionally they were filtered by the length of the cluster interval of the first or 
forward reads and the same filter was used for the second or reverse reads (less than ten 
times the maximum median absolute deviation of all libraries). Finally, deletion candidates 
were also filtered by deletion size. A deletion was called if the innermost reads of its 
defining cluster were further apart than the median of all the cut-offs used for extracting 
aberrant paired-ends in the different libraries. Deletions greater than 1 Mb were discarded. 
 

8.1.7. Mobile	  Element	  Insertion	  Analysis	  with	  SPANNER	  
 
Transposable elements were identified by two approaches, a paired-end based approach 
applied to Illumina paired-end data and a split-read based approach applied to 454 data 
(described below). Further details with regard to mobile element detection and analysis 
are provided in a companion paper. 
 
Alignment. All SPANNER calls were based on MOSAIK (Marth 2010) alignments. 
MOSAIK version 0.9.1176 was used to align the Illumina and 454 reads from the 1000 
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Genomes Project low-coverage and trio data against the combined reference genome 
(build hg18) and mobile element consensus sequences, to enable an analysis of 
deletions, tandem duplications (see below), and as well as mobile element insertions.  
 
For the Illumina paired-end data the MOSAIK alignment parameters were: (1) maximum 
mismatch threshold of 4 for 36-43mer reads, 6 for 44-63mers, and 12 for 64mers and 
longer; (2) hash size of 15; (3) Smith-Waterman bandwidth of 17; (4) alignment candidate 
threshold of 25 bp; (5) local alignment search radius of 100 bp; (6) hash position threshold 
to 100. 
 
For 454 data the parameters for initial paired-end alignments were: (1) maximum 
mismatch percent threshold of 5%; (2) hash size of 15; (3) Smith-Waterman bandwidth of 
51; (4) alignment candidate threshold of 55 bp; (5) hash position threshold to 200; 
(6) homo-polymer gap open penalty of 4. 
 
Mobile element insertion detection with Illumina paired-end reads. Mobile element 
insertions were detected as clusters of paired-end fragments in which one end aligns 
uniquely to the genome and the other end maps to a mobile element reference sequence. 
All "proper-pairs" in which the mapping distance between the pairs is consistent (P-
value<0.99) with the paired-end insert size distribution were removed from consideration 
as supporting fragments for candidate insertions, since these fragments are consistent 
with already annotated mobile elements. Paired-ends were classified by mobile element 
type (Alu, L1, or SVA) and the orientation of the uniquely mapped end. Supporting paired-
ends spanning into the mobile element from the 5' direction (F) or such spanning into the 
mobile element from the 3' side (R) were selected for clustering. With this convention, an 
insertion can be identified by two matched clusters of paired-ends spanning into the 
insertion from both 5’ and 3’ sides. The same clustering algorithm was used for grouping 
supporting paired-ends bracketing the insertion, except that the two dimensional clustering 
space consists of the paired-end orientation (F or R) instead of the event length that was 
used for deletions and tandem duplications. A minimum of 4 supporting paired-ends (two 
from each side) was required for each insertion candidate.  
 
Following SPANNER processing, candidate mobile element insertions were filtered with 
post-processing selection criteria. In addition to “alignabilty” and VNTR masking criteria, 
two additional criteria were applied:  
- Insertion candidate coordinates were compared with annotated loci of Alu 

subfamily, L1 family, or SVA elements. Event loci that map within 400 bp of a 
corresponding type mobile element annotation were discarded.  

- The gap between the F and R clusters outside of the range (-30 bp < gap < 500 bp) 
were discarded.  

 

8.2. Read	  Depth	  Analysis	  
 
Read depth analysis identifies SVs through relating the relative depth-of-coverage of 
genomic windows to a model of the expected depth-of-coverage. Groups contributing to 
the analysis used different mapping tools and analysis algorithms to segment the raw 
sequencing data into deletions and duplications. 
 

8.2.1. Read-‐Depth	  Analysis	  with	  CNVnator	  
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The main step for CNV discovery by CNVnator (Abyzov, Urban et al. 2010) is the 
partitioning of the read-depth signal into regions with different copy-number. Read-depth 
was estimated based on reads mapped with MAQ. The read-depth partitioning procedure 
is based on image processing technique, known as mean-shift-theory (Comaniciu and 
Meer 2002; Wang, Abyzov et al. 2009). In relation to processing of read-depth data the 
theory can be applied as follows. A diagram displaying the read-depth signal along a 
chromosome represents an image that needs to be processed with the aim of identifying 
different copy number levels. The read-depth signal is proportional to underlying genomic 
copy number level, but fluctuates around an average value owing to noise. Thus, 
statistically we can formulate this problem as finding a Probability Distribution Function 
(PDF) from observed read-depth data, where the PDF itself represents an unknown 
mixture of PDFs/modes, corresponding to different genomic copy number levels. The 
density maxima in the distribution of intensities are the modes of the PDF, where the 
gradient of the estimated PDF are zeros. The mean-shift method presents a way to locate 
these density maxima without having to estimate the density directly3. The mean-shift 
vector always points in the direction of maximum increase in the density. The mean-shift 
process is an iterative procedure that shifts each data point to these density maxima. 
 
In short, for each bin in genome a mean shift vector is estimated by comparing the bin’s 
read-depth signal with those in the local neighborhood. The vector points in the direction 
of bins with most similar read-depth signal, thus effectively segmenting the read-depth 
signal diagram into local modes of attraction. Boundaries of genomic segments are 
identified by finding consecutive pair of bins with mean-shift vectors of opposite signs. 
Afterwards, smoothing of the read-depth signal is performed by averaging signal values 
within each segment. Note that the mean-shift technique does not require prior knowledge 
of the number of segments or assumptions about probability distributions. This approach 
performs the discontinuity preserving smoothing on the read-depth signal through kernel 
density estimation and the mean-shift computation. 
 

8.2.2. Read-‐Depth	  Analysis	  with	  mrFast	  	  
 
Read depth analysis with mrFAST comprised the following steps: 
 
Repeat masking the genome: Human reference genome build 35 was first masked using 
the RepeatMasker tool with the sensitivity option (-s) enabled. We then ran Tandem 
Repeats Finder to mask tandem repeats shorter than 500 bp.  
 
Read Mapping: All reads were mapped to repeat masked reference human genome build 
35 with edit distance ≤ 2 with the mrFAST algorithm (Alkan, Kidd et al. 2009) (note that the 
resulting SVs are reported as in terms of build 36 / hg18; see below).  
 
Read depth: The human reference genome was first repeat-masked to remove common 
and tandem repeats. Using mrFAST (Alkan, Kidd et al. 2009), whole genome shotgun 
reads were then mapped to a set of BACs with known copy-number to determine the 
average read depth and standard deviation in unique intervals (5 kb of unmasked 
sequence) over the autosomes and chrX. All reads were then mapped to the reference 
genome (build35) and deletions were identified by where at least 6/7 consecutive 5 kb 
windows showing reduced read depth (>average-2stdev). We defined candidate reduced 
depth of coverage deletion intervals as those intervals > 20 kb in size and with < 70% 
repeat masked. Finally the build 35 coordinates were lifted over to build 36 using the 
UCSC liftOver tool. 
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8.2.3. Read-‐Depth	  Analysis	  by	  Event-‐Wise-‐Testing	  
 
Preprocessing of mapped reads. For each sample, alignment (BAM) files were parsed out 
using SAMtools, and reads of low mapping quality (<Q30) were filtered out. Note that we 
included multiply mapped reads with a mapping quality of 0 in our analysis to detect 
duplications. Read-depth was measured by counting the number of mapped reads in 100 
bp windows, assigning each read once by its start position. Then, we adjusted the 100 bp 
window read counts based on the observed deviation in coverage for a given G+C 
percentage. Our subsequent analysis was carried out on such GC-corrected read counts.  
 
Event detection and copy number estimation. We applied event-wise-testing (Yoon, Xuan 
et al. 2009) to the 100 bp window read counts per chromosome. The event-wise-testing 
approach, based on significance testing, rapidly searches the genome for deletions and 
duplications based on assessing whether criteria of statistical significance are met. Since 
the number of iterations in event-wise-testing is far less than the number of windows (e.g., 
19 iterations for all 2.4 million 100 bp windows on chromosome 1), an exhaustive, fast, 
and robust search of events on very large data sets can be performed.  
 
Additional filtering criteria were applied to a set of calls as follows: First, clusters of small 
events (within 500 bp) with a copy-number change in the same direction were merged. 
Then events with a low absolute difference from the average read-depth, that is, a median 
read-depth of between 0.75 and 1.25 times the overall mean, were filtered out. Then we 
tested the significance of each merged event by performing a one-sided Z-test using a 
significance level at P<10−6, which was deemed to be adequate based on manual 
inspection of many events at all significance levels. Finally, events of size less than 1 kb, 
and 2 kb, were filtered out in trios and low-coverage samples, respectively. 
 
Lastly, the copy number of each event in the filtered call set was inferred by rounding the 
average normalized read counts to 2 (1 for X and Y chromosome in male) dividing by the 
average of the chromosome in each individual to the nearest integer.  
 
Pairwise comparison of read-depth among individuals. We conducted a comparison of 
deletions and duplications among multiple individuals. Many of the deleted or duplicated 
regions in our filtered call set clearly differed in copy number among the individuals. 
Therefore, we sought to distinguish regions that were polymorphic from those that were 
monomorphic. For each region called based on event-wise-testing in a given sample, we 
compared the read normalized counts of 100 bp windows in the region between that 
sample and each of the other samples by t-tests. Deletions and duplications were 
identified based on the t-test P-value adjusted for multiple testing and the absolute 
difference between median read counts (D). Events where at least one comparison had 
significant p-values and D > 0.5 were designated as polymorphic, the remainder, as 
monomorphic.  
 
Detection of common deletions based on cross-sample analysis. For low-coverage 
genomes with mapped coverage greater than 1.2x, the normalized read-depth was 
calculated as above. Then we calculated the Pearson correlation coefficient of each 
genomic window with the next one and segmented the series of correlation coefficients to 
detect highly correlated regions. For each region detected, samples with median read-
depth (RD) RD < 1.25, and RD > 1.75 were typed as “deletion” and “normal”, respectively, 
and ones in between were excluded to avoid ambiguity. Regions with more than 4 
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occurrences, each, of “normal” and “deletion”, were identified as common deletion 
regions. 
 

8.2.4. Read-‐Depth	  Analysis	  at	  Albert	  Einstein	  College	  of	  Medicine	  
 
We aimed at discovering common deletions and duplications in low-coverage data by 
identifying regions in the genome whose read counts across 162 individuals displayed 
anomalous patterns of mixtures of (over-dispersed) Poisson distributions. For a given 
window of 500 bps, we constructed a statistic based on the quasi-likelihood of a 
generalized Poisson distribution: 
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in which yi is the observed read count of the i-th individual (after mapping with MAQ and 
adjustment for GC content), and µi and φi are the mean and the over-dispersion parameter 
of the Poisson distribution, empirically estimated for each individual. The reference 
distribution of the statistic Q under the null hypotheses of no structural variant (i.e., 
everyone has copy-number two) is empirically determined by randomly sampled read 
counts from other regions of the same 162 individuals. We performed the statistical test 
along the genome on non-overlapping 500 bp windows and retained those with P-values 
less that 10-5, then implemented several filters to further trim down the list. Finally, we 
merged neighboring statistically significant windows.  
 

8.3. Split-‐Read	  Analysis	  
 
Split-read analysis involves the alignment of raw DNA reads onto candidate SV breakpoint 
junctions by following a gapped sequence alignment rationale. The approach therefore 
identifies SVs at nucleotide resolution. We used different variant split read analysis 
approaches (as described below) and identified deletions and insertions using such 
rationale.  
 

8.3.1. Detecting	  Deletions	  with	  Pindel	  
 
Previously we developed the so-called Pindel (Ye, Schulz et al. 2009) method that can 
identify breakpoints of short indels and SVs, i.e., deletions (1 bp - 50 kb size range) and 
insertions (1-20 bp size range) from short (36 bp) paired-end reads. We examined the 
MAQ-based BAM files to select those paired-ends for which only one end can be mapped. 
The mapping quality of the mapped reads must be larger than 0. The Pindel program uses 
mapped reads to determine their anchor point on the reference genome and the direction 
of the respective unmapped ends. Knowing the anchor point, the direction to search for 
the unmapped read and the user defined maximum deletion size (50 kb), a sub-region in 
the reference genome can be located, where Pindel will break the unmapped reads into 2 
(deletion) or 3 (short insertion) fragments and map the two terminal fragments separately.  
 
In this study we focused on identifying deletions with a size range of 50 bp to 50 kb. We 
developed a procedure based on the Pindel algorithm to process multiple samples. We 
added tags to each sequence read to indicate its source (i.e., sample of origin). Then we 
ran Pindel using the entire pool of reads as the input. We modified our Pindel program to 
report the sample sources of the supporting reads for each identified indel event. This 
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enabled us to identify the sample of origin for each identified indel. We also adapted the 
algorithm to include detection of deletions with small insertions of non-template sequences 
at the breakpoint, and to report a confidence score that is monotonically related to the 
false discovery rate.  
 

8.3.2. Split-‐Read	  Analysis	  of	  Deletions	  and	  Insertions	  at	  Yale	  
 
After BLAT sequence alignment and placing 454 reads at their most likely locations in the 
reference genome, split-read analysis was carried out to search these locations for 
insertions and deletions in the sample genome by identifying reads that encompass SV 
breakpoints. To find deletions in the sample genome, we searched for reads that when 
aligned to the reference genome split on the same strand of a chromosome. To find small 
insertions that are fully included in the reads, we search for reads whose terminal 
sequences can be aligned next to each other on the reference genome. For large 
insertions, we looked for their boundaries, which are found in reads that – except for one 
of their ends – can be aligned to the reference genome continuously in one block. We 
scored each of the many initial mappings with an assessment strategy designed to take 
into account both sequencing and alignment errors. 
 

8.3.3. Split-‐Read	  Analysis	  of	  Transposable	  Element	  Insertions	  with	  MOSAIK	  
 
Unaligned reads from the initial set of MOSAIK alignments of low-coverage and trio DNA 
reads were re-aligned allowing for partial read mapping to the mobile element consensus 
sequences using MOSAIK. The following MOSAIK alignment parameters were used: 15 
bp hash size, alignments with more than 5% of mismatch bases were filtered out, and at 
least 40 bp of the read must align to one of the mobile element consensus sequences. For 
each re-aligned read, a target region was created, which was defined as the largest region 
spanning multiple overlapping alignments. Reads were discarded if multiple, non-
overlapping alignments were found. The remaining sections before and after the target 
region are compared. The longer section is kept for further processing, while the other 
section of the read is trimmed away. If less than 40 bp remained after trimming, the read 
was discarded. Trimmed reads were then aligned to the reference genome (hg18). The 
longest alignment was selected if it was at least 5 bp longer than the second longest 
alignment, otherwise the read was discarded. The remaining reads were considered 
candidate fragments that support a mobile element insertion event. All mobile element 
insertion candidates were checked for novelty by aligning the entire read back to the 
reference genome using relaxed alignment parameters (up to 9% of the read bases could 
be a mismatch and the aligned length could vary from 90 – 100% of the read length). All 
candidates that were aligned using the relaxed parameters were discarded from the 
detection pipeline.  
 
Note that there can be up to three unaligned regions in each candidate: a gap occurring at 
the beginning of the genomic hit region but not immediately adjacent to the mobile 
element (genomic gap); a gap occurring within the mobile element (mobile element gap); 
and a gap occurring at the vicinity of the mobile element and the genomic hit region (mid 
gap). Candidates with a mid gap longer than 6 bp were discarded. Candidates with a 
genome or mobile element gap longer than 6 bp were also discarded, except when the 
target region contained the entire mobile element. Candidates were discarded if any of the 
following criteria were true: the alignment quality score was less than 40; the mobile 
element alignment length was less than 60 bp; candidate occurred within 100 bp of 
annotated Alu, L1, and SVA mobile elements.  
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8.4. Sequence	  Assembly	  
 
The SV group furthermore applied several assembly-based approaches to identify SVs, 
including deletions and insertions at nucleotide resolution. 
 

8.4.1. Identification	  of	  Insertions,	  Deletions	  and	  Complex	  Events	  with	  Cortex	  
 
Structural variant calls were made using Cortex, a de Bruijn graph variant caller. This was 
done by using trio reads, focusing on NA12878, to de novo assemble the Illumina and 454 
data. Errors were removed from the graph, and then two different algorithms were used to 
call variants. Both algorithms involved fully assembling both alleles of a variant, including 
the flanking regions. The first algorithm (“bubble calling”) carried out pure de novo 
assembly of heterozygous sites by looking for motifs in the graph – detecting insertion, 
deletion and complex variants (involving SNPs and indels in close proximity) of up to 1 kb 
in size. The second algorithm (“reference assisted”) draws the human genome reference 
in a different ‘colour’ onto the de Bruijn graph assembly and looks for differences between 
the individual and the reference, and detected homozygous variants ranging up to 40 kb in 
size. 
 

8.4.2. Targeted	  Sequence	  Assembly	  using	  the	  TIGRA	  Assembler	  
 
The TIGRA assembler was applied to deletion calls in low-coverage SV discovery callsets 
based on paired-end mapping (SPANNER, Genome STRiP, WTSI’s paired-end mapping 
caller, BreakDancer, VariationHunter, and PEMer) as well as on two split-read analysis 
approaches (Pindel and Yale split reads).  
 
For each putative SV in each call set, Illumina reads falling into the interval 
[START_INNER – 500 bp, START_INNER + 50 bp] and [END_INNER - 100 bp, 
END_INNER + 450 bp] were obtained from the BAM files of the predicted deletion-
containing samples using SAMtools. Each set of reads was fed into the WashU TIGRA 
assembler and its coupled variant calling pipeline. Cross-match was used to align contig 
sequences generated by TIGRA to intervals in the reference sequence (hg18) 
corresponding to the predicted variant and flanking sequence regions of 500 bp on either 
side of the variant (using the inner start and end coordinates of the variant as starting 
points). Structural variants were then called on the basis of the pair-wise alignment 
results. A structural variant was assumed as "confirmed" if the assembly based call was 
consistent with the original call under the following heuristic criteria: (1) same type (e.g., 
deletion); (2) assembly derived event size >= 50 bp; assembly derived event size differ 
from original by <100 bp for the Illumina calls and <500 bp for the SOLiD paired-end calls. 
To assess the approach we obtained a set of 163 known deletions sequenced in the 
respective individuals, or inferred at nucleotide-resolution using a genotyping approach, 
and confirmed 151/162 (93.2%) of these deletions. 
 

8.4.3. Detection	  of	  Novel	  Sequence	  Insertions	  From	  Orphan	  and	  One-‐End	  Anchored	  
Inserts	  

 
To detect novel sequence insertions of at least 200 bp in size, we utilized the “orphan” 
(both ends unmapped) and one-end anchored (OEA) inserts returned at the initial read-
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mapping stage. Our novel sequence detection pipeline NovelSeq (Hajirasouliha, 
Hormozdiari et al.), that was applied for this purpose, works as follows. We first de novo 
assembled the orphan read pairs using AbySS (Simpson, Wong et al. 2009) and screened 
the resulting contigs for contamination. We removed such contigs that are found to include 
sequence from the Epstein-Barr virus and other contaminants using MegaBLAST and the 
NCBI nr database. The OEA reads were then clustered to find a minimum set of reads 
that signal a sequence insertion, and the unmapped ends of OEA clusters were merged 
with the orphan contigs to anchor the novel sequence insertions. 
 

8.4.4. Detection	  of	  Novel	  Sequence	  Insertions	  with	  SOAPdenovo	  
 
Sequence assembly. We performed de novo assembly with the SOAPdenovo algorithm 
(Li, Zhu et al. 2010). Since sequencing depth of each individual genome is not sufficient 
for achieving a proper assembly, we pooled the individuals into two groups (i.e., the CEU 
trio and the YRI trio) and assembled consensus sequences for each group. Consensus 
sequences were merged into one non-redundant dataset. Through comparison against 
the NCBI reference genome (build 36/hg18), we identified deletions and novel sequence 
insertions that were not present in the reference genome 
 
Identification of structural variations. We pre-aligned all assembled scaffolds to the 
reference genome by BLAT v. 30 with –fastMap and –maxIntron=50 option enabled (Kent 
2002). Scaffolds that pre-aligned to identical chromosomes were grouped as scaffold sets. 
These sets were aligned to corresponding chromosomes by a modified version of LASTZ 
(Harris 2007) based on V1.01.50 with the following options enabled: high-scoring segment 
pairs (HSP) chaining option, ambiguous ‘N’ treatment, and gap-free extension tolerance 
up to 50 kb. Scaffolds with no hit during pre-alignment were aligned to the reference 
genome with the same options, and inaccurately predicted gaps in assembly and 
misalignments were corrected. Best hits were further confirmed using the dynamic-
programming algorithm based utility “axtBest” (Schwartz, Kent et al. 2003). Finally, we 
reported hits that contributed most to the collinearity between a scaffold and a 
chromosome and required two or more alignments to overlap at the same locus in a 
chromosome. These alignment best hits with gapped extensions included insertions and 
deletions. 
 

8.5. Integrative	  Discovery	  Approaches	  Using	  Multiple	  Features	  of	  Sequence	  Data	  
 
The SV group also applied approaches using combinations of some of the rationales 
described above, i.e., paired-end mapping and read-depth analysis for SV discovery. 
 

8.5.1. Deletion	  Analysis	  with	  the	  Genome	  STRucture	  in	  Populations	  
 
Genome STRiP integrates diverse features of NGS data (i.e., paired-ends, read depth, 
and the distribution of evidence across samples and within a genomic locus) to identify 
genomic loci where multiple features of the NGS data coalesce around a model of 
alternate structural alleles segregating in a population.  
 
Deletion discovery was performed on the Illumina data for low-coverage samples. 
Duplicate reads were removed, using Picard MarkDuplicates. In the paired-end 
component of Genome STRiP, data for all low-coverage samples was pooled, and an 
initial set of candidate deletion sites was identified as clusters of paired-ends (N >= 2) 
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having normal orientation and an apparent insert size greater than the median of the insert 
size distribution (for that library/lane) plus ten times the median absolute deviation of insert 
size from the median for that library/lane.  
 
A set of integrative and population-genetic criteria were then applied to the same data. 
The ideas in this approach are described in detail in a companion manuscript, but at a 
high level the following features of the data were recognized: coherence of the aberrantly 
mapping paired-ends in a cluster around a potential alternative molecular structure that 
could give rise to all of the paired-ends in that cluster; non-uniform distribution across 
samples of evidence for an alternative allele; and replacement of a reference allele with a 
deletion allele, as evidenced by local, sample-specific loss of sequence coverage depth. 
 

8.5.2. Deletion	  and	  Tandem	  Duplication	  Analysis	  with	  SPANNER	  
 
Integrative deletion discovery with SPANNER was carried out as follows. The fragment 
length distribution for each run was created in a scan pass prior to detection so that each 
paired-end could be classified according to it’s length and orientation. Duplicate read pairs 
were removed from the detection sample and identified as multiple fragments with the 
same mapped coordinates at both ends. Only paired-ends with both mapping quality 
values (phred convention of -10log(p)) of at least 30 were considered as supporting 
fragments. Paired-ends for which the mapping distance between the pairs was at the high 
extreme (P-value<0.04% in the trios and p-value<0.02% in the low-coverage data) of the 
corresponding library insert size distribution were considered as discordant. Supporting 
paired-ends were then grouped using a nearest neighbor clustering algorithm (Knuth 
1968; Youssef 1987) such that paired-ends within a group support a given deletion 
breakpoint. Clustering was done in the two-dimensional space of genome position of the 
leftmost end of a fragment, and the fragment length. The clustering neighborhood scale 
for each fragment was set based on the empirical library paired-end insert size 
distribution. In this way supporting paired-ends from a wide range of library fragment 
lengths could be clustered without the assumption of a common neighborhood scale. 
Each paired-end could belong to at most one cluster; ambiguities in the clustering were 
resolved by selecting the cluster with the highest paired-end density among all possible 
clusters in the neighborhood of a fragment. Clustering was done on the pooled set of all 
samples within a data set (trio and low-coverage data were processed separately) and 
only clusters with three or more supporting paired-ends were considered as candidate 
deletions. The minimum deletion size was 50 bp. The candidate deletion selection criteria 
included the following additional conditions to reduce artifacts arising from potential read 
misalignment:  
 
- “Alignability” in the clustered regions > 0.01. Here “alignability” in a region is calculated 
as the ratio of non-multiply mapped read coordinates to all coordinates in the clustered 
regions before and after a deletion breakpoint. This condition served a similar purpose to 
the mapping Q0 criteria imposed for SNP discovery in low-coverage data.  
- Net read coverage over all samples < 2.5 times the expected coverage. The expected 
coverage was calculated by random sampling 100 regions in the chromosome of the 
same length and repeat content of a given candidate deletion. Candidate deletions in 
regions of read depth pileup were discarded as artifact. 
- Deletions with overlapping boundaries were consolidated into one deletion. The longer 
length deletion was discarded as alignment artifact. 
- Candidate deletions within 100 bp and a reciprocal overlap > 25% of a candidate tandem 
duplication were discarded as alignment artifact. 
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- Candidate deletions overlapping with segmental duplication annotations (UCSC browser 
“genomicSuperDups“), or with annotated VNTRs (UCSC browser “Simple Repeats” 
located by Tandem Repeats Finder) were discarded.  
 
Of note, the paired-end detection method brackets the position of the deletion somewhere 
within the gap between the clusters of paired-ends. This results in an estimate for the 
deletion coordinates with a corresponding uncertainty. The breakpoint resolution is limited 
by the combined effects of read coverage and fragment length. The density of read ends 
in a cluster increases as read coverage increases. The uncertainty of the edge of the 
cluster is approximated as the average distance between read ends in the clusters. 
  
The SPANNER program was also to discover tandem duplications. The primary difference 
with deletion detection was that supporting Illumina paired-ends with an orientation such 
that the reverse mapped end precedes the forward mapped end in genomic coordinates 
were selected. This corresponds to a “negative” paired-end span as measured in mapped 
genome coordinates. Tandem duplications were identified from paired-ends with a 
mapping distance at the low extreme (p-value < 0.04% for trio project and p-value < 
0.02% for low-coverage project) of the corresponding library insert size distribution (which 
was defined allowing for negative mapping lengths between the read ends). The clustering 
logic was identical to deletions. Furthermore, equivalent selection criteria were used to 
remove potential mapping artifacts. Additional criteria were imposed on candidate tandem 
duplications based on proximity to annotated VNTRs and based on the local read 
coverage (read depth) for each sample. The read depth was measured by counting reads 
with the leftmost end falling into the predicted duplication (NREAD). A null-model estimate 
for NREAD was based on 100 random samples of the same event length and repeat 
content (EREAD). From this an effective copy number for the candidate duplication was 
calculated as copy-number = 2•NREAD/EREAD for each individual in the dataset. 
Furthermore, candidates with copy-number > 2.5•(1-NF/50), where NF is the number of 
supporting paired-ends for each individual were discarded. Lastly, candidates with 
duplication length > 250 bp with copy-number > 2.2 were discarded. 
 

8.6. Genotyping	  of	  Structural	  Variants	  
 
We determined the allelic state of deletion polymorphism in individual genomes using 
Genome STRiP. Genome STRiP integrates diverse features of NGS data (paired-ends, 
read depth and split reads) using a Bayesian model to produce calibrated genotype 
likelihoods. These genotype likelihoods were then integrated with SNP haplotypes using 
the Beagle phasing/imputation algorithm to produce a final set of genotype calls and 
haplotype-informed genotype likelihoods. 
 
Genotyping by Genome STRiP is described in detail in a companion manuscript. At a high 
level, Genome STRiP utilizes three classes of information about the allelic state of a 
deletion in each individual: 
(1) read-depth-informative reads that map within the variation; 
(2) informative paired-ends that map outside of the variation but are aberrantly spaced 
when mapped to the reference genome; and,  
(3) informative split reads that map to the breakpoint junctions when the breakpoint 
locations and alternate allele sequence are known at base pair resolution. 
 
Two sets of deletions were genotyped separately: Deletions discovered in the low-
coverage samples and deletions discovered in the trios. In both cases, genotyping was 
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performed in 156 samples using the low-coverage Illumina data after duplicate removal 
using Picard MarkDuplicates. Data from the six trio samples was included, downsampled 
to roughly 4x coverage. Data from all samples was pooled for genotyping. 
 
Likelihoods from the three classes of informative read were combined in a Bayesian 
model to generate initial genotype likelihoods. These initial likelihoods were then 
integrated with SNP haplotype information using Beagle (v3.1) and a reference panel of 
SNP genotypes from HapMap 3 r2, to yield posterior genotype likelihoods for each variant. 
The phasing step was performed separately in each population; trio parents and children 
were analyzed separately. After the incorporation of haplotype information into posterior 
genotype likelihoods using Beagle, sites with sufficient information for genotyping were 
selected using two filters: (1) minimum call rate of 50% across all three populations using 
a genotype quality threshold of 13 (95% confidence) and (2) Hardy-Weinberg equilibrium 
p-value > 0.01 in each of the three populations. 
 

8.7. Validation	  of	  Structural	  Variants	  

8.7.1. PCR	  Validation	  of	  SVs	  
 
The rationale behind PCR validation experiments of SVs is that an insertion is expected to 
result in a larger DNA product (amplicon) compared to the reference allele, whereas a 
deletion is expected to result in a shorter amplicon. In PCR experiments, by examining an 
electrophoresis gel and comparing amplicon bands with molecular markers, deviations 
from the expected amplicon size when assuming presence of the reference allele can be 
scored. These deviations were used to examine the size of the respective deletion or 
insertion. Furthermore, amplicon patterns were used to discern homozygous from 
heterozygous SVs, using the rationale that both variant alleles can be amplified by the 
given PCR reaction in parallel, depending on the size of the SV. 
 

8.7.1.1. Design	  of	  PCR	  Validation	  Experiments	  
 
Random locus selection: To enable calculating FDRs for independent SV callsets, we 
randomly picked 100 loci from each callset for subsequent PCR validation experiments. 
The randomization was carried out by randomly picking, without replacement, from the 
entire list of generated calls for each SV discovery callset.  
 
Primer design: We implemented an iterative PCR primer design pipeline to ensure the 
specific placement of primers into unique regions falling into 150 bp windows flanking the 
inferred SV breakpoint region on either side. The primer3 algorithm (available from 
http://frodo.wi.mit.edu/primer3/) was used for primer placement, with the option “exclude 
primers matching onto known repeats”. In-silico PCR (available from 
http://genome.ucsc.edu/cgi-bin/hgPcr) was applied (with default parameters) with the 
primers designed by primer3 to test for the putative presence of alternative amplicons with 
similar, or smaller size. Primer pairs generating unique amplicons were kept and used in 
the PCR experiments. If primer pairs generated more than one amplicon at the given size 
(or at a smaller size), as judged by in-silico PCR, the primer positions were masked with 
‘N’s and the primer design pipeline was re-initiated. If primer3 failed to identify suitable 
primers, the windows for primer design were iteratively increased by 150 bp on either side 
of the inferred SV. In ~25% of target regions, no primers could be designed within 2 kb of 
the inferred SV breakpoint regions; these cases were not tested in the PCR validation 
experiments. 
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Design of additional primer sets to validate insertions of transposable elements: In 
addition to the primer design used for all PCR verifications, a second primer set was 
designed for predicted retrotransposon insertion loci if, 1) no PCR product of a predicted 
amplicon size was obtained or 2) all subjects scored as absent for the insertion (potential 
false negative result due to poor PCR amplification of the larger fragment). These 
additional primers were designed within 500 bp of flanking sequence on either side of the 
predicted insertion site. The flanking sequence was masked for the presence of Alu 
elements. Each primer was tested with BLAT (Kent 2002) and in-silico-PCR was 
performed (http://genome.ucsc.edu) to ensure that the primer pair would amplify one 
unique PCR fragment. For SVA and L1 candidate insertions, internal primers were 
designed within the sequence of the respective human-specific retrotransposon 
consensus sequence. Since transposable elements cannot be validated reliably using 
array based (hybridization) methods, we carried out a relatively large number of PCR 
amplifications (>700) to examine transposable element polymorphisms in humans. 
 

8.7.1.2. PCR	  Validation:	  Experimental	  Conditions	  
 
PCR experiments were carried out in four different laboratories, yielding similar success 
rates. 
 
At WTSI, PCR primers were synthesized at Sigma. A control sample, NA15510 was used 
as a control for each variant. PCR was carried out with JumpStart REDAccuTaq LA DNA 
polymerase (Sigma-Aldrich) on a PTC-225 DNA Engine Tetrad Cycler (Bio-Rad) in 25ul 
reaction volumes. 15ng genomic DNA was used as template. The PCR protocol was as 
follows: Initial denaturation at 96°C for 30 sec; then 28 cycles of 94°C 5 sec, 58°C 30 sec, 
68°C 8 min; and followed by an additional cycle of 68°C for 30 min. All PCR products were 
checked on 1% agarose gel for band visualization and scoring. In order to enable 
validation of small SVs – i.e., SVs at a size range (<100 bp) that impeded scoring the 
validations based on estimating amplicon size – the PCR products were purified with 
QIAquick PCR Purification Kit (QIAGEN #28104), and capillary sequenced with the PCR 
primer from either end. 
 
At LSU, primers were obtained from Sigma. PCRs were carried out as follows: PCR 
amplifications were performed in 25 µl reactions in a 96-well format using either a Perkin 
Elmer GeneAmp 9700 or a BioRad i-cycler thermo-cycler. Each reaction contained 10-50 
ng of template DNA; 200 nM of each oligonucleotide primer; 1.5 mM MgCl2, 1X PCR 
buffer (50 mM KCl; 10 mM TrisHCl, pH 8.3); 0.2 mM dNTPs; and 1-2 U Taq DNA 
polymerase. For predicted amplicons larger than 2 kb LA-taq DNA polymerase (Takara 
Bio USA, Clontech Laboratories, Inc. Mountain View, CA) was used according to the 
manufacturer’s instructions. For fragments up to 2 kb PCR reactions were performed 
under the following conditions: initial denaturation at 94°C for 90 sec, followed by 32 
cycles of denaturation at 94°C for 20 sec, annealing at 57 o -61o for 20 sec, and extension 
at 72°C for 30 to 90 sec depending on the predicted PCR amplicon size. PCRs were 
terminated with a final extension at 72°C for 3 min. For samples amplified with LA-taq 
DNA polymerase the same conditions were applied with the exception of the extension 
steps. Here, extension at 68°C was increased to 8:30 min and the final extension at 68°C 
was set to 10 min. For all SVA and some L1 insertion loci, a second (internal) PCR with 
one primer residing within the retrotransposon insertion was performed to verify insertion 
presence/absence. Primer sequences and PCR conditions can be found at 
http://batzerlab.lsu.edu. 20 µl of each PCR product were size-fractionated in a horizontal 
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gel chamber on a 2% (Alu and SVA) or 1% (L1) agarose gel containing 0.1 µg/ml ethidium 
bromide for 60 minutes at 175V or 105min at 150V, respectively. Each agarose gel 
contained two lanes of DNA ladder, one 100 bp (cat.No. 170-8352) and one 500 bp (cat. 
No.170-8354) EZloadTM molecular ruler (BioRad Laboratories, Inc. Hercules, CA). UV-
fluorescence was used to visualize the DNA fragments and images were saved using a 
BioRad ChemiDoc XRS imaging system (Hercules, CA).  
 
The randomly selected retrotransposon insertion loci were analyzed with PCR on either a 
subset of 25 DNA samples from the low-coverage project or a panel containing the DNA 
of the two trios of the trio project. Both panels also included HeLa (ATCC CCL-2), a 
“Pop80” sample (a locally pooled DNA sample from different individuals of diverse 
geographic origins [Asia, Africa, South America, and Europe]) and a common chimpanzee 
sample (NS06006, Coriell). In addition, a population outgroup sample was included on the 
panel; in the case of the low-coverage project an individual of South American origin 
(NA17319, Coriell), and for the trio project a sample of Asian origin (NA17081, Coriell).  
 
At Yale, PCRs were carried out using a previously described protocol (Korbel, Urban et al. 
2007). In brief, PCR was carried out with JumpStart™ REDAccuTaq® LA DNA 
Polymerase (Sigma-Aldrich Inc., St. Louis, MO) on PTC-225 DNA Engine Tetrad™ Cycler 
(Bio-Rad, formerly MJ Research, Hercules, CA) in a 25 µl or 50 µl reaction volume and 
with 10 or 20 ng of genomic DNA as template. The following program was used: Initial 
denaturation at 94°C for 30 sec, followed by a 3-Step-Touchdown: 1. (94°C 5 sec, 68°C 
30 sec, 68°C 6 min), 2. (94°C 5 sec, 66°C 30 sec, 68°C 6 min), 3. (94°C 5 sec, 64°C 30 
sec, 68°C 6 min); followed by an additional cycle of 68°C 30 min.  
 
At EMBL, PCRs were preformed using 10ng of NA12878 genomic DNA (Coriell) in 20 µl 
volumes in a C1000 thermocycler (BioRad). Two different enzymes, iProof High Fidelity 
DNA Polymerase (Biorad) and Hotstart Taq (Qiagen) were used, with comparable results. 
PCR conditions for iProof were : 98°C for 1min, followed by 5 cycles of 98°C for 10 s, 
68°C for 20s and 72°C for 4 min and 30 cycles of 98°C for 10s, 66°C for 20s and 72°C for 
4.5min, followed by a final cycle of 72°C for 5min. PCR conditions for HotStart Taq were: 
94 °C for 15 min, followed by 5 cycles of 94°C for 30s, 60°C for 30s and 72°C for 3min 
and 30 cycles of 94°C for 30s, 56°C for 30s and 72°C for 3.5min, followed by a final cycle 
of 72°C for 5min. PCR products were analyzed on a 1% agarose gel stained with Sybr 
Safe Dye (Invitrogen) and a 100 bp ladder and 1 kb ladder (NEB). 
 

8.7.1.3. Analysis	  of	  PCR	  Validation	  Data	  
 
Amplicons were analyzed in terms of size in comparison to molecular markers. For 
example, in order to validate retrotransposon insertion sites, amplicons matching the size 
predicted for the pre-insertion site were scored as a zero (0) while amplicons in agreement 
with the insertion were scored as a one (1). Individuals in which the insertion was 
homozygously absent were scored as ‘0,0’; if the sites was homozygously present we 
scored the insertion as ‘1,1’; and heterozygotes were scored as ‘1,0’. 
 

8.7.2. Validation	  of	  SVs	  by	  Array	  Comparative	  Genome	  Hybridization	  (Array-‐CGH)	  

8.7.2.1. Microarray	  Design	  and	  Experimental	  Procedure	  
 
The validation of predicted structural variants via array-CGH was carried out in two 
stages. The first stage made use of custom Agilent 1M CGH microarrays to interrogate 
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and validate/invalidate predicted deletions from the CEU trio individuals. To minimize bias, 
two independent array designs were created (Harvard and Agilent). A common design 
strategy was set as follows: a minimum of 5 oligonucleotide probes was used for each SV, 
and further 5 probes were included in the 5 kb flanking region of each SV. Uniquely 
mapped probes were used, where possible, though the repetitive nature of some 
structural variants necessitated the use of sub-optimal probe sequences.  
 
The second stage of array-CGH validation made use of a high-resolution array set which 
was made available through a recent project from the Genome Structural Variation 
Consortium (Conrad, Pinto et al. 2010), whereby each trio individual was also analyzed 
with 20 custom 2.1M Nimblegen CGH microarrays. The design for this array set was such 
that oligonucleotide probes were placed approximately 50 bp apart across the entire 
human genome. Thus, this unbiased design would allow for the validation of many 
variants (known or novel) without the need for a design targeted to specific regions of the 
genome. These arrays were prepared using standard Agilent experimental procedures 
and those recently outlined (Conrad, Pinto et al. 2010), respectively. 
 

8.7.2.2. Analysis	  of	  Agilent	  and	  Nimblegen	  Array-‐CGH	  Data	  
 
The nature of both array-CGH designs described above necessitated the development of 
custom analytical approaches to validated the predicted SV regions. Two complementary 
approaches were constructed, both of which utilized probes in regions of known copy 
number states (McCarroll, Kuruvilla et al. 2008) to build models of expected probe 
behavior.  
 
The first method determined the extent the probes in each predicted structural variant 
region deviated from the expected null (i.e., from the homozygous reference allele, or the 
copy number ‘2’). This was done by building an empirical distribution of log2 ratio 
measurements in probes from regions with previously known ‘2:2’ (sample:reference) 
copy number states in both the samples and the reference and interrogating the probes 
from each region at both tails. A region observed as significantly deviating from this null 
distribution was deemed validated.  
 
The second method utilized empirical distributions of log2 ratio measurements in regions 
of previously known ‘2:2’, ‘2:1’, and ‘1:2’ (sample:reference) copy number states to 
construct and arbitrate between null and alternative distributions using the relative 
likelihood of the observed data. Unlike the first approach, this method is not only able to 
validate but can also invalidate a particular region.  
 
The sensitivity and specificity of both methods were determined through application and 
comparison using regions of known copy number state identified in a recent study 
(Conrad, Pinto et al. 2010). ROC curves were constructed for different structural variant 
size ranges to determine optimal thresholds for both methods. 
 

8.7.2.3. SuperArray	  Validation	  
 
In addition to analyzing hybridized Agilent and Nimblegen arrays, SuperArray Validation 
(SAV) was used on array-based intensity data to validate deletion and duplication events 
and to estimate the false-discovery rate (FDR) of call sets. The "SuperArray" integrated 
available data from three array platforms (Affymetrix 6.0, Illumina 1M, and a custom 
Nimblegen aCGH array with 4,938,838 probes) into a high-density virtual array. Because 
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array platforms differ in their quantitative response to underlying copy number, we 
developed a non-parametric test based on the simple assumption that, for any probe, 
samples with lower underlying copy number will, on average, tend to have a lower 
intensity measurement than samples with greater underlying copy number. Each structural 
variant call to be evaluated consisted of a genomic segment (chr, start, end) and a list of 
samples predicted to carry the putative deletion or duplication (copy-number different from 
‘2’). Putative structural variants were evaluated by comparing the intensity measurements 
in duplications or deletions between the sample in which the event was predicted to the 
intensity measurements of all other samples, using the Wilcox rank sum test. For each 
probe falling into a putative structural variant, samples were ranked in intensity space, 
then the ranks of all probes for samples with inferred copy-number of ‘2’ samples were 
compared to the ranks of all other samples. Rank data across all the probes within the 
putative deletion or duplication were then combined. For putative deletions, the expected 
intensity ranks for samples displaying a copy-number smaller than ‘2’ are expected to be 
lower than for other samples; similarly, for putative duplications, the expected intensity 
ranks for samples displaying a copy-number larger than ‘2’ are expected to be higher than 
for other samples. Putative deletions and duplications were considered validated if a 
significant Wilcox rank sum P-value of P < 0.01 was measured. The FDR for a call set 
was estimated as two times the fraction of putative calls for which we measured a Wilcox 
rank sum P-value of P > 0.5. 
 

8.7.3. Validation	  of	  the	  Breakpoints	  of	  SVs	  by	  Array	  Capture	  

8.7.3.1. Microarray	  Design	  and	  Experimental	  Procedure	  
 
We attempted to validate 2,414 regions, for which deletions were predicted in NA12878, 
using a microarray-based sequence capture approach. For this purpose a custom 
Nimblegen microarray with probes covering 2 kb flanking regions of deletion breakpoints 
was designed at Yale. Array design was optimized to maximize the uniform coverage over 
target regions by using probes of ~75 bp in length containing unambiguously mappable 
sequence (i.e., the probe sequences have a single hit in build36/hg18 of the human 
reference genome). Overall, 65-82% of target regions were covered by probes. Genomic 
DNA from three samples corresponding to a parent offspring trio with European ancestry 
(daughter NA12878, mother NA12892, and father NA12891) was hybridized to the array. 
Captured DNA was sequenced using the 454 GS FLX Titanium platform, yielding 
approximately ~1x coverage per haplotype per sample. 
 

8.7.3.2. Analysis	  of	  Array	  Capture	  Data	  
 
Reads were aligned to the human reference genome using Megablast and those mapped 
to the target regions were subsequently realigned using the Needleman-Wunsch algorithm 
with zero gap extension penalty (in order to allow for alignment extension across large 
gaps). Needleman-Wunsch alignments were post-processed by merging alignment 
fragments separated by less than 5 bp gaps and by removing fragments shorter than 20 
bp. The breakpoints flanking the largest gap were compared to the predicted deletion 
breakpoints to validate the deletion. A deletion was considered as validated if: (1) the 
deletion and the largest gap displayed a reciprocal overlap of 50%, and (2) the sum of the 
discrepancies in breakpoint coordinate assignment was smaller than 5 kb (i.e., 
approximately twice the insert size used for 454 paired-end sequencing of NA12878).  
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8.7.4. Inference	  of	  the	  FDR	  and	  Construction	  of	  the	  SV	  Discovery	  Set	  

8.7.4.1. FDR	  Inference	  
 
The estimates of false discovery rate (FDR) for each algorithm showed generally a high 
concordance between PCR and array-based analysis, with the best concordances 
achieved on SVs discovered by algorithms estimating SV breakpoints at sufficient 
resolution for PCR and array-based validation approaches. The array- and PCR-based 
validation approaches had complementary strengths: since array-based copy number data 
was available on all samples (on 2-3 independent array platforms) and on a genome-wide 
scale, a very large number of putative SVs could be evaluated. Smaller SVs (<1 kb), 
which frequently did not have probes on array-based platforms, could generally be 
evaluated by PCR, but practical considerations limited the PCR validation to about 100 
calls per call set. To integrate these FDR estimates into a single overall estimate of FDR 
for each algorithm, we calculated FDR hierarchically, using the array-based results to 
estimate FDR for all putative SVs that contained array probes, and extrapolating from the 
PCR-based FDR to estimate FDR for the remaining events in each call set. These overall 
FDR estimates for each call set are shown in Supplementary Tables 4A and 4B. 
 

8.7.4.2. Selection	  of	  SV	  Calls	  for	  Constructing	  an	  Integrated	  Call	  Set	  
 
In creating an SV data release for the 1000 Genomes Project, we sought to realize the 
following two goals: (1) a global false-discovery rate less than 10%, such that more than 
90% of SVs in the data release would correspond to real SVs; and (2) inclusion of the 
largest and most diverse set of SV calls possible. We therefore developed the following 
framework for identifying SV calls eligible for release: 
 

(1) From the SV discovery algorithms that yielded call sets with an FDR less than 10% 
(Genome STRiP and SPANNER), we included all SV calls. 

(2) From the SV discovery algorithms that yielded call sets with FDR greater than 10% 
(10 algorithms for low-coverage population data yielding FDR of 22-69%, and 14 
algorithms for high-coverage trio data yielding FDR of 12-89%), we included the 
subset of SV calls that had been independently, explicitly validated by PCR or 
array-based experiments.  

 

8.7.4.3. Integration	  and	  Merging	  of	  SV	  Calls	  Across	  Algorithms	  
 
To determine which of the SV discovery calls from each algorithm corresponded to the 
same, underlying SV, we first estimated a “confidence interval” for the bounds of each SV 
genomic segment identified by each algorithm. The size of these confidence intervals 
varied from algorithm to algorithm – extremely tight (single-base-pair) for algorithms based 
on split reads, fairly tight (mostly 2-40 bp) for algorithms based on paired-end mapping, 
and wider (about 1 kb) for algorithms based on read depth only. We “merged” SV calls for 
which the confidence intervals for both the left and right breakpoints overlapped, and 
estimated a revised confidence interval for the breakpoints of merged calls, from the 
overlap of the confidence intervals of all calls contributing to the merged call. 28,339 
algorithm-level calls from the high-coverage trio data (across 14 algorithms) were merged 
into 11,321 independent SV discovery calls for the 1000 Genomes data release 
(Supplementary Table 4A); 34,085 algorithm-level calls from the low-coverage population 
data (across 10 algorithms) were merged into 15,947 independent SV discovery calls 
(Supplementary Table 4B). 
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8.8. Analysis	  of	  Breakpoint	  Junctions	  of	  SVs	  
 
We compiled a library containing the breakpoint junctions of approximately 14,000 SVs, 
i.e., all SVs from the project for which breakpoint coordinated have been mapped at 
single-nucleotide resolution (a full list is available on the project FTP site). The library was 
derived from seven individual SV call sets, which were partially derived through 
experiments (648 SVs) and through split-read or assembly-based algorithms (53,352 
SVs). The experiments included PCR experiments and subsequent Sanger sequencing at 
WTSI, and array-capture experiments at Yale University. Split-read analysis was carried 
out with Pindel as well as with the Yale split-reads approach, whereas assemblies were 
generated with Cortex, TIGRA, and based on novel sequence insertions identified from 
orphan and one-end anchored inserts, respectively. In order to create a breakpoint 
junction library, the SVs were subjected to the following filtering steps:  
- only SVs >=50 bp in size were retained;  
- only validated calls were retained, i.e., we required either validation by PCR (based on 
amplicons size-scoring), array-CGH, array-capture or local breakpoint assembly;  
- SVs with homology, or microhomology, at the breakpoint junctions were standardized to 
the left-most breakpoints;  
- redundant SVs with the same chromosome, start- and end-coordinates were made non-
redundant.  
 
The breakpoint library was then analyzed by the BreakSeq pipeline (Lam, Mu et al. 2010) 
(downloadable at http://sv.gersteinlab.org/breakseq/). Using BreakSeq, SVs were 
classified according to their likely mechanism of formation, as previously described (Lam, 
Mu et al. 2010). In particular, SVs were classified into the following formation 
mechanisms: (1) Non-allelic homologous recombination (NAHR); (2) nonhomologous 
recombination (NHR), including nonhomologous end-joining (NHEJ) and fork stalling and 
template switching (FoSTeS/MMBIR); (3) variable number of tandem repeats (VNTRs); 
and (4) transposable element insertions (TEIs). Furthermore, the ancestral states of the 
SVs were inferred by aligning breakpoint junction sequences to the primate genomes as 
described previously (Lam, Mu et al. 2010). The results were converted to a standardized 
GFF format.  
 

9. Genotype	  Accuracy	  as	  a	  Function	  of	  Depth	  in	  the	  Low-‐Coverage	  and	  
Exon	  Projects	  

 
Forty-one CEU samples shared by both the exon and low-coverage projects were first 
identified. Both call sets were limited to the exon project target region (~1.43 Mb). Then, 
for each call, the genotype accuracy was computed using the following procedure: For 
every variant site, those non-reference SNP genotype calls that were greater and equal to 
the specific genotype depth threshold were tallied. Genotypes were compared with valid 
genotypes at HapMap II sites not in HapMap 3, and the total number of erroneous calls 
(i.e., non-variant genotypes according to HapMap) was counted. The procedure was 
repeated for various required genotype depth thresholds. Finally, the ROC curves of the 
required genotype depth thresholds for both projects were generated as shown in Figure 
2d.  
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10. De	  Novo	  Assembly	  
 
A de novo genome assembly of the low-coverage project Illumina data (1.9Tb) was 
carried out with Cortex, a de Bruijn graph assembler (Caccamo, Iqbal et al. 2010). Each 
individual was first assembled separately, applying a base quality filter of 10, and 
removing PCR duplicates. A k-mer value of 29 was chosen which provides a good 
balance between sensitivity and disambiguation of repeat content. All individuals in a 
population (CEU, YRI or CHB+JPT) were then merged into a single graph. Finally an 
error-removal step was applied, of removing all k-mers that occurred only once within the 
population. The three populations were then loaded into a single multicolour graph that 
also contained the human reference autosome, and X and Y chromosomes (from build 
NCBI36) in three further colours. Novel sequence from this assembly was then 
determined by comparing contigs in the graph with the human reference genome. A contig 
was considered to be novel if every 29-mer within it was absent from the human reference 
genome. Contigs longer than 100 bp were blasted against the NCBI nucleotide and HuRef 
databases, and contaminants were removed (anything matching any non-primate 
species). 
 
Given the short read-length (mostly 36 bp) and the choice of a relatively long k-mer (29 
bp), this assembly is expected to have comparatively low polymorphism sensitivity. Of the 
15 million SNPs called by the low-coverage project, we estimated the expected SNP 
sensitivity to be ~31% (Caccamo, Iqbal et al. 2010). In a graph with k = 29, 15 million 
SNPs would generate 15 million * 59 bp = 885 Mb of novel sequence in alternative alleles. 
Thus we expect to find 0.31*885 = 274 Mb. In fact a total of 261 Mb of novel sequence 
was found in SNP alternative alleles, close to expectations. 
 
A total of 3.7 Mb of novel sequence longer than 100 bp were found, of which 87% 
matched known human or primate clone sequence in Genbank, and 79% matched the 
Venter (HuRef) genome. All of the contigs were validated by one or other of these two 
methods. 
 

11. Imputation	  Analyses	  

11.1. Accuracy	  of	  Imputation	  Using	  1000	  Genomes	  Data	  as	  a	  Reference	  Panel	  	  
 
We investigated the performance of using the low-coverage project haplotype sets as 
reference panels for imputation. This was achieved by taking the HapMap 3 genotypes of 
the CEU and YRI trio fathers, and using these to impute the unobserved genotypes from 
the low-coverage project CEU and YRI haplotype sets respectively with IMPUTE (Howie, 
Donnelly et al. 2009). These unobserved genotypes were then compared to genotype 
calls from the trio project. The trio project genotypes are likely to be very accurate due to 
the high coverage sequencing used and so constitute a good benchmark dataset for 
comparing imputed genotypes. When imputing genotypes, it is much easier to impute 
homozygous genotypes for the common allele at each SNP, and so when comparing the 
imputed genotypes to the trio project genotypes we only considered those genotypes that 
had at least one copy of the minor allele. The minor allele was identified based on the 
allele frequencies in the low-coverage project haplotype sets and the results were 
stratified by minor allele frequency. The same analysis was repeated using the HapMap II 
CEU and YRI reference panels. The results are shown in Figure 4a. 
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11.2. eQTL	  Imputation	  
 
To evaluate the power of 1000 Genomes based analyses in genetic association studies, 
we re-analyzed two previous datasets (Dixon, Liang et al. 2007; Stranger, Nica et al. 
2007). First, we used previously described methods (Stegle, Parts et al. 2010) to re-
analyze microarray expression data available for a subset of the 1000 Genomes samples 
(Stranger, Nica et al. 2007). In this analysis, gene expression values were preprocessed 
using factor analysis to partially remove shared variation between transcripts, which can 
be due to experimental artifacts and features of the cell state. Then, we used the Mann-
Whitney U test, which is robust to outliers, to test for correlation between adjusted 
transcript levels and genetic markers within 50 kb of the transcript. Empirical significance 
thresholds were derived through 1,000 permutations of the data. Second, we re-analyzed 
the microarray expression data of Dixon et al (Dixon, Liang et al. 2007). In this analysis, 
gene expression values were quantile normalized, to remove outliers, and then 
preprocessed using principal component analysis to remove shared variation between 
transcripts. The genotype data of Dixon et al (Dixon, Liang et al. 2007), which included 
genotypes from the Illumina 317K chip, was augmented using genotype imputation to also 
include markers present in the 1000 Genome Project CEU samples and which could be 
imputed with estimated r2 > 0.50 (Li, Willer et al. 2009). Genotypes were imputed using 
MACH (Li, Willer et al. 2009) and the final association analysis was carried using the 
FASTASSOC procedure in Merlin (Chen and Abecasis 2007), which accounts for family 
correlations using a variance component model. As with the analysis of 1000 Genome 
samples, empirical thresholds were derived through 1,000 permutations of the data. 
 

12. Evaluation	  of	  Mutation	  Rates	  
 
In this section, we outline our strategy for identifying and interpreting de novo mutations 
(DNMs) in the trios. Full details of the experiments and analyses can be found in a 
companion paper. Three groups (Broad Institute, Sanger Institute, and University of 
Montreal) generated a list of candidate DNMs from the trio project data using different 
methods (described below). These call sets were merged to create a single list of putative 
DNMs in each trio, and all calls in each merged set were taken forward to a validation 
stage. As the sequencing data are generated from lymphoblastoid cell lines (LCLs) and 
not primary cells, it was necessary to devise additional experiments to separate 
constitutional DNMs (that is, germline mutations present in either the egg or sperm that 
produced the trio child) from DNMs that are either somatic or cell-line in origin. We 
addressed this need during the validation stage, by sequencing additional samples that 
were informative about the germline status of each candidate DNM. 
 

12.1. Discovery	  of	  De	  Novo	  Mutations	  with	  Trio	  Project	  Data	  
 
Broad. Broad Institute’s discovery process was based on the same set of Broad SNP 
genotype calls that were used to create the release dataset for the trio project. Their 
genotyping process is described elsewhere in this supplementary material. A metric was 
created to summarize the support for a de novo mutation at each site by adding together 
three “lod scores”. A lod score for each parent was defined as log10(L(homozygous 
reference | D)/ L(next best genotype |  D)). The lod score for the child was log10(L(best 
fitting heterozygous genotype | D)/ L(homozygous reference |  D)). This confidence metric 
was used to rank candidates for inclusion in the validation stage described below. 
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Sanger. The Sanger Institute group used a likelihood-based approach to assess the 
evidence of a DNM at each locus. This method provides the joint likelihood of the read-
level data for all three trio members given a particular genotype configuration and the 
base at the reference sequence. A likelihood is assigned for all 1000 possible unordered, 
labeled genotype configurations that the trio may assume at a single site. This provides a 
natural way of accommodating triallelic SNPs. The method is Bayesian, as the 
calculations incorporate the prior probabilities of observing a de novo mutation, observing 
an inherited variant, and of the observed sampling configuration of derived alleles among 
parental chromosomes.  
 
The ultimate output of this DNM caller is a posterior probability that a site contains a DNM, 
using the following approach. Let M, D, and C be 10-element vectors containing the 
likelihoods of all 10 possible genotypes given the mapping qualities and base qualities of 
the reads at the locus, for the mother, father, and child, respectively. In practice these 
likelihoods were generated by SAMtools 0.1.7 using the trio project BAM files created from 
Illumina data and released by the 1000 Genomes Project. Then a rescaled version of the 
joint trio likelihood surface is obtained with the following steps: 
 
P = M ⊗ D 
F = P ⊗ C 
T = F o R 
X = T o Y 
 
Where ‘⊗’ is the Kronecker product operation, ‘o’ is the Schur product operation, R is the 
matrix of transmission probabilities corresponding to each trio configuration, and Y is the 
matrix of priors corresponding to each trio configuration. The maximum likelihood trio 
configuration compatible with DNM, xi-max,j-max,  is identified, and the posterior probability  is 
calculated as: 

    

! 

Pr de novo( ) =
xi "max, j "max

xi, j
i, j

#
 

UdeM. The University of Montreal (UdeM) group developed a probabilistic method to 
identify candidate de novo mutations. The approach considers each genomic site 
separately and uses the aligned reads for each individual within a trio to simultaneously 
infer all three genotypes. The parameters of the UdeM model include: (1) the population 
mutation rate θ, which controls the expected heterozygosity of parental genotypes; (2) the 
germ-line mutation rate µ, which defines the rate at which the events of interest occur; (3) 
the somatic mutation rate µS, which models mutations arising anywhere between the 
germ-line and the cell line; and (4) the sequencing error rate ε, which quantifies the 
frequency with which a read differs from the sequenced genotype. The generative model 
is depicted in Supplementary Figure 16.  Maternal and paternal genotypes are sampled 
from the population according to θ, and gametes are transmitted randomly and subject to 
mutation according to µ. Mutations in each individual that distinguish the sequenced 
genetic material (i.e., cell-line DNA) from its germ-line counterpart accumulate according 
to µS. Reads are modeled as random samples from the cell-line DNA, with error 
introduced according to ε. The model thus specifies Pr(RM,RF,RO | θ, µ, µS, ε), where the 
sequencing reads are observed (Supplementary Figure 16, shown as ovals) and the 
parameters can either be estimated by maximum likelihood (e.g., via expectation-
maximization) or given a priori values. Bayes’ Rule is used to make joint inference on the 
missing trio genotypes (Supplementary Figure 16, shown as rectangles), and the site-
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specific posterior probability that an offspring mutation (somatic or germ-line) has occurred 
can be calculated. (Note that in this trio design, the two mutational events cannot be 
disentangled.) Mapping and base quality scores thresholds were set at 20 and 10, 
respectively, based on the values reported within the trio project BAM files. 
 

12.2. Filtering	  and	  Merging	  of	  Calls	  to	  Create	  Validation	  Lists	  
 
Our validation philosophy was to identify as many DNMs as possible, thus we used a 
permissive threshold for calling, generated a long list of variants for each trio, and 
attempted to validate all of these experimentally. After generating the candidate variant 
list, we anticipated that some filtering would be necessary; we know that our models do 
not capture all features of the data necessary to avoid convincing false positives. In order 
to assess the impact of our assumptions about what filters were necessary, we decided to 
leave the Broad set of candidates sites unfiltered in designing the study.  
 
The Sanger and UdeM groups applied a common set of filters to their callsets. These 
filters fell into three broad categories: (1) proximity to other known variants, (2) overlap 
with primary genome sequence known to be problematic for mapping and assembly, and 
(3) other properties of the read-level data.  
 
In each trio we included all post-filtered sites assigned a posterior probability greater than 
10% by either the UdeM or Sanger method, as well as the top 500 unfiltered Broad calls 
not present in the union of the UdeM and Sanger sets. This led to 2750 candidate calls in 
the YRI trio and 3236 in the CEU trio. 
 

12.3. Validation	  Experiments	  
 
We attempted to validate all 2750 candidate DNMs in YRI and all 3236 in CEU using two 
parallel approaches based on next-generation sequencing. 
 
Samples. During validation, we sequenced genomic DNA from all 6 LCLs that were used 
to generate the trio data (but note, perhaps different lots). In order to separate germline 
from somatic (or cell-line) mutations, we screened additional DNA samples with the same 
validation assays. The CEU trio is part of a larger, 15 member CEPH/UTAH pedigree 
(1463, which includes the partner of NA12878 and 11 of her children). We included DNA 
from the 11 grandchildren to confirm germline status by inheritance. For the YRI trio 
(Y117), the Coriell Institute provided genomic DNA extracted from the same primary blood 
samples that were used to generate their LCLs.  
 
Validation Experiment I. The Sanger Institute designed a pipeline to independently 
amplify DNM loci by nested PCR, pool these PCR products, and sequence the pools with 
a single lane of Illumina GA2 each. Pooled PCR products were sequenced separately for 
each DNA sample, except the 11 CEU grandchildren were pooled together post-PCR, and 
the PCRs from blood-derived DNA of the 2 YRI parents were pooled as well. Reads were 
aligned with BWA, sorted and indexed with SAMtools, and then post-processed with base 
quality recalibration and cleaning of small indels (via multiple sequence realignment) using 
the Broad Institute Genome Analysis Toolkit (GATK). 
 
Validation Experiment II. UdeM resequenced all candidate de novo mutations using 
Agilent’s SureSelect Target Enrichment System and ABI SOLID3 Plus sequencing. The 
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SOLiD3 Plus reads were aligned using ABI’s Bioscope v1.2 software, and the resulting 
alignments were recalibrated using the GATK Base Recalibration tool.  
 
Results. We created a unified analysis approach that jointly models the UdeM and 
Sanger validation data. The outcome of this analysis was to categorize each candidate 
DNM as one of the following: de novo germline mutation, de novo mutation only observed 
in the cell line, inherited variant present in the parents, and a false positive call (i.e., no 
variation observed in any sample). We require that the difference in log likelihood between 
the best fitting model and next-best fitting model be greater than some threshold, 
otherwise we consider the data uninformative and categorize the locus a “no call”.  
 

12.4. Calculation	  of	  Mutation	  Rate	  
 
The overall mutation rate provided in the main text is based on only for the portion of the 
genome analyzed by all 3 centres (i.e., not filtered by the UdeM/Sanger-specific filters).  
 
This rate was calculated with the following equation: 
 
Rate = [True Positives – False Positives + False Negatives] / Bases interrogated. 
 
The total number of bases interrogated by all three algorithms was 2,555 Mb in CEU and 
2,549 Mb in YRI, and in this fraction of the genome were 45/49 validated DNMs in CEU 
and 35/35 validated DNMs in YRI. 
 
Based on our validation results the number of true positives in CEU is estimated to be  
 
45 observed validated DNMs * [2802 attempted sites / 2197 called sites] = 57.39 DNMs 
 
and for YRI 
 
35 observed validated DNMs * [2332 attempted sites / 1782 called sites] = 45.80 NMs. 
 
We estimated the experiment-wide false negative rate in two ways, by simulation and 
empirically (by comparing sensitivity of the different centres to the set of validated 
germline DNMs). Conservatively assuming complete dependence in the sensitivity of 
callers, both approaches suggest that we have missed 4% of the true DNMs in the portion 
of the CEU genome analyzed by all three groups, and 7% in the analogous section of the 
YRI genome.  We believe that we have eliminated all false positives in the validation 
stage. These numbers then yield the following estimates of mutation rate:  
 
CEU: 1.17 x 10-8 (95% CI: 0.94 x 10-8 - 1.73 x 10-8)  
YRI: 0.97 x 10-8 (95% CI: 0.72 x 10-8 - 1.44 x 10-8) 
 
 

13. Annotation	  of	  SNP	  Variants	  
 
Variants are annotated using the GENCODE gene models (Harrow, Denoeud et al. 2006) 
and the Human Genome Mutation Database (HGMD Professional, version 
2009.4;Stenson, Mort et al. 2009). For the exon project, extrapolations to the whole 
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genome are made assuming that the 1.4 Mb coding sequence in the target region 
represents a random sample from the total of 35.2 Mb in GENCODE. 
 

13.1. Annotation	  of	  SNP	  Calls	  with	  Ancestral	  Allele	  
 
The human (NCBI36), chimpanzee (CHIMP2.1), orangutan (PPYG2) and rhesus macaque 
(MMUL_1) genomes were aligned using Enredo and Pecan (Paten, Herrero et al. 2008). 
In short, this method uses a set of conserved sequences to detect genomic point anchors 
(GPAs) in all four genomes. GPAs appearing too many times or in one genome only are 
filtered out. The resulting set is used to build the initial Enredo graph. Enredo proceeds 
through a series of graph transformations and simplification, resulting in a modified graph 
where the edges represent sets of co-linear segments. Duplications in one of the 
genomes appear as an edge where the same genome is represented two (or more) times. 
 
Enredo's segments are then aligned with Pecan, a consistency-based multiple aligner 
optimized for genomic sequences. For segments not representing any duplication, Pecan 
can use the standard species tree. In the other cases, a sequence tree must be inferred. 
To do so, an initial quick alignment is built using a random tree and Pecan in pre-align 
mode. The resulting alignment is used to refine the tree, which in turn is used to refine the 
alignment. This process is run iteratively until convergence. 
 
The ancestral alleles were derived from the Pecan alignments using Ortheus (Paten, 
Herrero et al. 2008). Ortheus uses a branch-transducer model - a type of Hidden Markov 
Model (HMM) - to infer insertion and deletion events. Substitutions are handled using a 
Tamura-Nei evolutionary model (Tamura and Nei 1993). Ortheus works progressively. 
During the initial phase, ancestral sequences are inferred from the extant sequences up to 
the root of the tree. However, uncertainties at this stage are modeled using sequence 
graphs, which allows Ortheus to defer choices until more information from other 
sequences is available. 
 
Ancestral alleles are called using the immediate ancestor of the human sequence. In the 
vast majority of the alignments, this will be the human-chimpanzee ancestral sequence. In 
other cases, the ancestral sequence can correspond to the human-orangutan ancestral 
sequence or to other combinations, depending on the history of duplication and deletion 
events. A confidence level is assigned to each ancestral allele by analysing the 
neighbouring sequences in the tree, typically the chimpanzee sequence and the human-
chimpanzee-orangutan ancestral sequence. A high confidence call is made when these 
other two bases match the ancestral one. If only one of the other two bases matches the 
ancestral allele, then the call is considered low confidence. In the cases where both 
disagree with the ancestral allele, the call is ignored. 
 

13.2. HGMD	  Disease	  Variants	  Detected	  in	  the	  1000	  Genomes	  Data	  
 
The intersection between the 1000 Genomes data and HGMD Professional release 
2009.4 missense and nonsense SNPs (Stenson, Mort et al. 2009) was identified for each 
of the projects separately based on the chromosome coordinates. Entries were retained 
when the HGMD disease allele was present in the 1000 Genomes calls and was tagged 
by HGMD as DM (damaging mutation, the most severe classification). We excluded sites 
where the disease allele in HGMD differs from both reference allele and alternative allele 
in the 1000 Genomes Project data. Note that although the disease allele is usually the 
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derived allele, it is in some cases the ancestral allele. Intersections are listed for each 
project in Supplementary Table 5. The HGMD annotation in the column “disease” carries a 
question mark in a minority of entries; such entries were filtered out in some analyses. 
 
In order to search for categories of disease that were under- or over-represented in the 
1000 Genomes data, the following analyses were performed. The disease terms for 83% 
(83,648 mutations out of 100,023) of HGMD disease-causing mutations (Stenson, Mort et 
al. 2009) were mapped to disease concept identifiers (CUI) from the Unified Medical 
Language System (UMLS; 2010AA release; www.nlm.nih.gov/research/umls/ ), using a 
Java implementation of a simple word permutation-based method developed and tested 
by Shah et al. (Shah, Rubin et al. 2006; Shah and Muse 2008)  
 
Using all disease concepts from HGMD as a control dataset (background), we compared 
the distribution of disease concepts in the HGMD - 1000 Genomes overlap subset (both 
heterozygous and homozygous 1000 Genomes calls) against the HGMD background 
dataset (Supplementary Figure 12) To allow for multiple testing, the significance of any 
difference noted was then assessed by means of Fisher’s Exact test with Bonferroni 
correction. Only p-values < 0.00278 (0.05/18, to allow for 18 tests) were considered 
significant. 
 

13.3. Loss	  of	  Function	  Annotation	  
 
Functional annotation of SNPs, short indels and large structural variants was determined 
with reference to the GENCODE v3b annotation release (Harrow, Denoeud et al. 2006). 
Coding SNPs were mapped on to transcripts annotated as “protein_coding” and 
containing an annotated START codon, and classified as synonymous, non-synonymous, 
nonsense (stop codon-introducing), stop codon-disrupting or splice site-disrupting 
(canonical splice sites). Transcripts labeled as NMD (predicted to be subject to nonsense-
mediated decay) were not used.  Small deletions predicted to cause a frame-shift and 
large deletions predicted to disrupt gene function were also analysed. 
 
Nonsense and splice-disrupting SNPs were flagged as likely representing reference error 
or annotation artefacts if the inferred loss-of-function (LOF) allele was also the ancestral 
state, or if the reference (non-LOF) allele was not observed in any individual in that 
population, and were excluded from the per-individual counts in Table 2. Splice-disrupting 
SNPs in non-canonical splice sites were also discarded. We did not consider the frame-
shift status of splice-disrupting SNPs due to the challenges of inferring the effects of 
removal of splice-donor and acceptor sites on exon structure, but rather treated all such 
SNPs as likely to affect gene function. 
 
We classified large deletions as gene-disrupting if they fulfilled the following criteria: 
 

1. Removal of >50% of the coding sequence; or 

2. Removal of the gene’s transcriptional start site or start codon; or 

3. Removal of an odd number of internal splice sites; or 

4. Removal of one or more internal coding exons that would be predicted to generate 
a frameshift. 
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For large deletions with imprecise breakpoints, we conservatively required that the 
deletions defined by both the inner and outer confidence intervals would have the same 
predicted effect on gene function. For cases with microhomology at the break-point we 
treated the breakpoint as falling to the right-hand side of the region of microhomology. 
 
We did not perform functional annotation for large duplications due to the challenges of 
inferring functional consequences. The numbers stated in the text should thus be 
regarded as a lower bound for the number of observed loss-of-function variants per 
individual genome.  
 
However, it should also be noted that the proportion of false positive calls in the LOF class 
due to sequencing and annotation errors is expected to be substantially higher than the 
genome-wide average. This effect is expected as LOF sites show a low level of true 
polymorphism due to selective constraint, meaning that a uniform error rate across the 
genome will result in a higher proportion of false positive calls compared to other (more 
variable) sites. 
 
Enrichment of false positive calls in LOF variants is most evident in the CHB+JPT 
samples, which showed a higher per-individual number of LOF SNPs than other 
populations despite a comparable number of synonymous variants (Supplementary Table 
11), as well as an unusual peak in the derived allele frequency spectrum (Supplementary 
Figure 13). This is likely due to a mild elevation in genome-wide false positive rates for 
SNPs in this population compared to other samples, which is then highly enriched at 
functionally constrained sites. 
 
To lower the number of false positive indel calls we applied more stringent filters to the 
subset of indels that were called in the genome-wide set and were predicted to fall into the 
LOF class. The stringent filter requires that the range of positions where an indel would 
yield the same alternative haplotype sequence as the original called indel (for instance, in 
a repeat, the deletion of any repeat unit would give the same alternative haplotype), plus 4 
bases of reference sequence on both sides of this region, was covered by at least one 
read on the forward strand, and at least one read on the reverse strand, with at most one 
mismatch between the read and the alternative haplotype sequence resulting from the 
indel (regardless of base-qualities). This filter removed an excess of 1 bp frameshift 
insertions seen in CHB+JPT with respect to CEU in the less stringently filtered genome-
wide indel call set, although it is expected to remove a significant number of true positive 
calls as well. The indels that pass these stringent filters have been annotated in the 
project’s VCF files. 
 
Experimental validation and manual reannotation of identified LOF variants is currently 
ongoing (manuscript in preparation). 
 
For extrapolating the functional variants identified per individual in the exon project to the 
whole genome (Table 2) we used the ratio of the total coding sequence and splice sites in 
the exon-capture target regions (1,423,559 bp and 7,513, respectively) to the 
corresponding numbers for the GENCODE v3b annotation set as a whole (35,676,620 bp 
and 384,439, respectively). 
 
The coordinates and predicted functional consequences of all of the LOF variants 
identified in the project are available on the 1000 Genomes FTP site.  
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14. Population	  Genetics	  

14.1. Detection	  of	  Selection	  

14.1.1. Identification	  of	  SNPs	  with	  Large	  Frequency	  Differences	  between	  Populations	  
 
The genotype calls for the low-coverage project were generated separately for each 
population. This makes comparison between populations challenging, as a SNP may be 
called only in one population, leaving an ambiguous frequency of the SNP in the other 
populations. Therefore, in order to accurately assess the evidence for frequency 
differentiation between the populations we used an alternative method that works directly 
from genotype likelihoods generated, as described above, by SAMtools.  Specifically, 
using the dynamic programming algorithm outlined above that is used in the non-LD stage 
of the Sanger low-coverage genotype calls, we calculate (a) L0, the maximum log 
likelihood of the data as a function of variant frequency assuming Hardy-Weinberg 
equilibrium across all samples from the analysis panels analysed and (b) L1; the sum of 
the maximized log likelihoods for each analysis panel treated separately (and assuming 
Hardy-Weinberg equilibrium in each).  The key feature of this approach is that it directly 
interrogates the evidence for differential allele frequencies between populations rather 
than relying on call sets.  We use a Likelihood Ratio Test (LRT) to identify sites with strong 
evidence of frequency differences between the populations.  Under the null hypothesis of 
no differentiation 2(L1-L0) should be approximately chi-squared distributed with degrees of 
freedom equal to the number of analysis panels considered minus one.  To reduce the 
effects of differential mapping we only considered genotype likelihoods computed from 
Illumina data.  Estimates of the allele frequency difference between populations were also 
obtained by this approach and are presented in Supplementary Tables 7 and 8. 
 
We performed the LRT on each of the pairwise population comparisons and selected all 
sites with a LRT statistic > 30. This provided a set of filtered SNPs with strong evidence of 
differentiation between the populations (Figure 5c). We selected sites with an absolute 
frequency difference greater than 0.8, and refer to these SNPs as highly differentiated. In 
total, there are 5,660 such SNPs in the CEU vs YRI comparison, 861 SNPs in the CEU vs 
CHB+JPT comparison, and 14,401 SNPs in the CHB+JPT vs YRI comparison. 
 

14.1.2. Composite	  Likelihood	  Selection	  Statistic	  
 
To localize signals of selection, we implemented a method that combines multiple tests for 
selection, the Composite of Multiple Signals (CMS; Grossman, Shylakhter et al. 2010). 
Five statistics were used as inputs to composite: 1) FST, 2) ∆DAF, and three metrics of 
haplotype length, 3) iHS, 4) ΔiHH, and 5) XP-EHH (Voight, Kudaravalli et al. 2006; Sabeti, 
Varilly et al. 2007; Grossman, Shylakhter et al. 2010). Statistics were computed as 
described previously with the following modification for full sequence data. EHH was 
defined as the probability two randomly chosen chromosomes carrying the core allele are 
identical at polymorphisms greater than or equal to 5% for the interval from the core to 
point x (instead of all polymorphisms for the entire interval from the core to the point x) 
(Sabeti, Reich et al. 2002). Ancestral information was taken from the project’s 4-way EPO 
alignments. 
 
The CMS values in the plots represent the within-region localization scores, the probability 
that each SNP is the causal SNP conditional on being within 1 Mb of a selective event. 
These scores are optimal for fine-mapping signals of selection, but do not necessarily 
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represent the strength of the selective event. We assess the strength of selection at each 
locus by calculating the probability each SNP is selected, without assuming that it is near 
a selected variant. We then calculate empirical p-values by comparing the value at each 
SNP to the background genomic distribution. At the EDAR locus shown in the main text, 
the within region localisation scores for the Asian population and CEU are similar, 
however the genome-wide strength of the selective signals are quite different. The highest 
scoring SNPs in the Asian populations have empirical p-values around 10-6, among the 
highest in the genome, suggesting strong selection at the EDAR locus in the Asian 
populations. In the CEU population, the most extreme p-values are around 10-4, possibly 
suggesting weaker selection. 
 
To further analyze whether the pattern of scores at the EDAR locus is consistent with 
selection upon the V370A mutation, we used cosi to generate 1200 coalescent 
simulations of the 1 Mb regions with the recombination map from the EDAR locus. We 
used a calibrated demographic model of European, East Asian, and West African 
populations (Schaffner, Foo et al. 2005). Each replica contained a single positively 
selected allele at the position of the V370A mutation in the Asian population. To 
characterize the most distribution of scores resulting from selection at this position with 
this recombination map, we recorded the position of the highest scoring variant by CMS in 
each replica. 
 

14.1.3. Neutrality	  Tests	  Based	  on	  Allele	  Frequency	  Spectra	  
 
The summary statistics, Tajima’s D (Tajima 1989) and Fay and Wu’s H (Fay and Wu 
2000) reflecting aspects of the allele frequency spectrum, were calculated using a custom 
Java script for each non-overlapping ~10 kb window across the genome. The start and 
end chromosomal coordinates of each window are the first and last SNP positions in that 
window. For the few positions where the ancestral state of a segregating site was 
unknown, the major allele in YRI was used; this is a conservative assumption for the H 
test. For both tests, p-values were calculated using ms incorporating the best-fit 
demographic model (Hudson 2002; Schaffner, Foo et al. 2005), conditioning on the 
number of the segregating sites in each window, as well as empirical p values from the 
genomic distribution. 
 
Two composite likelihood-ratio (CLR) analyses were performed on the same ~10 kb 
windows as the above summary statistics. The CLR analysis of Kim and Stephan (Kim 
and Stephan 2002) uses information contained in the frequency spectrum to calculate the 
likelihood ratios of a selection model versus the neutral model. The more significant the 
local reduction of genetic variation is, the higher the CLR value will be. An average 
recombination rate of 10-8 per base per generation was used, and local mutation rates 
were estimated by the program itself. The other CLR analysis, from Nielsen and 
colleagues (Nielsen, Williamson et al. 2005), is similar to the Kim and Stephan test but 
differs in that a neutral population model is not used; instead, a null distribution is derived 
from the general pattern of variation in the data itself. In our application, the frequency 
spectrum of each chromosome was used as the background spectrum in the analysis. 
Again, a high CLR value indicates a candidate for selection. For both tests, empirical p-
values were calculated based on whole genome data. 
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14.2. Diversity	  in	  Genic	  Regions	  

14.2.1. SNP	  Diversity	  and	  Divergence	  in	  Genic	  Regions	  
 
The plot of average diversity levels across genic annotations (Figure 5a – upper panel) 
was generated by collating the longest protein-coding transcript for each autosomal 
protein-coding gene in GENCODE v3b with annotated start and stop codons. Genes with 
only a single exon are included in the "1st Exon" annotation. Genes with two exons are 
included in the "1st Exon" and "Last Exon" annotations, with the intron included with "1st 
Intron". Genes with at least three exons are included in all annotations. Note that "Other 
Introns" corresponds to a single intron being chosen from each gene (excluding the first 
intron). Diversity levels at a given distance were calculated as the average heterozygosity 
(2pq) across genes. Within an annotation, there are 200 points, corresponding to diversity 
in the first and last 25 base pairs, and with the remaining 150 positions sampled with 
uniform spacing across the element. Elements shorter than 150 base pairs were not 
considered. The “middle exon” corresponds to a single exon in the middle of the transcript, 
and “other introns” to a single intron chosen at random (but not including the first intron). 
The red curve was obtained by loess, with a smoothing parameter of 0.7 and polynomial 
degree 2. Plots for the two other population samples look very similar. 
 
For the plot of average diversity levels divided by average divergence for different genic 
annotations (Figure 5a – lower panel) the average diversity at a given position was divided 
by the average divergence between human and chimpanzee. Divergence was calculated 
based on comparing hg18 to panTro2 using alignments downloaded from the UCSC 
Genome Browser (http://genome.ucsc.edu/). Other details are as above. As can be seen, 
the diversity levels divided by divergence are remarkably similar across annotation.  
Additional details and interpretation are given in (Hernandez, Kelley et al. 2010).  
 

14.3. Recombination	  Analyses	  
 
Low-coverage project genotype calls were used to estimate recombination rates from 
patterns of linkage disequilibrium. We used the interval program of the LDhat package 
(McVean, Myers et al. 2004; Auton and McVean 2007), which implements a Bayesian 
reversible-jump Markov chain Monte Carlo scheme to fit a piecewise-constant model of 
recombination rate variation. To estimate recombination rates on the autosomes, we first 
split the data in to sections consisting of 4000 SNPs, with a 200 SNP overlap between 
sections. On each section, we ran the program interval for a total of 30,300,000 iterations, 
taking a sample from the Markov chain every 15,000 iterations. The first 20 samples 
(corresponding to 300,000 iterations) were discarded. The process was repeated for CEU, 
CHB+JPT and YRI separately. 
 
The samples consist of an estimate of the population recombination ρ=4Ner / kb between 
every consecutive pair of SNPs, where Ne is the effective population size, and r is the per-
generation recombination rate. Large gaps in the genome, such as the centromeres, were 
set to have a recombination rate of zero recombination, as no reliable estimate for these 
regions could be obtained. 
 
To convert our estimates into per-generation recombination rates, we need an estimate of 
the effective population size. This was achieved by comparison to the deCODE genetic 
map (Kong, Gudbjartsson et al. 2002), which provides an estimate of the per-generation 
recombination rate at the broad scale. We performed a linear regression (without 
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intercept) of the deCODE rate estimate against the LDhat estimates at the 5 Mb scale, the 
gradient of which provides an estimate of 4Ne. The Pearson correlation between the 
LDhat and deCODE estimates at this scale is approximately 0.90 for all populations 
(0.9151 CEU, 0.9059 CHB+JPT, 0.9150 YRI). The resulting estimates for Ne for each of 
the populations were: 11,603 for CEU, 13,002 for CHB+JPT and 20,163 for YRI. 
 
To determine the increased resolution to detect hotspot boundaries, we used the hotspots 
detected from HapMap II (2007). For each hotspot, we identified the peak rate within the 
hotspot boundaries from the 1000G rate estimates. New boundaries for these hotspots 
were determined by identifying the point at which the estimated recombination rate 
dropped below 50% of the peak rate. This procedure is similar to that used to originally 
determine the hotspot boundaries in HapMap (Simon Myers; personal communication). 
Hotspots for which no peak could be detected were excluded. Of the 32,990 hotspots from 
HapMap II, a peak in the 1000G rates could be identified in 32,062 cases. The mean width 
of hotspots was found to be 2,336 bp (95% C.I. 2316-2358 bp from 1000 bootstrap 
samples), compared to 5,505 bp (95% C.I. 5467-5543 bp from 1000 bootstrap samples) 
for the original HapMap hotspots. 
 
A potential positive correlation between meiotic recombination and diversity has been 
suggested by a number of previous studies (Nachman 2001; Lercher and Hurst 2002; 
Hellmann, Ebersberger et al. 2003; Spencer, Deloukas et al. 2006; Hellmann, Mang et al. 
2008). To investigate whether such an effect exists, we developed an approach robust to 
obvious potential biases introduced by the fact that recombination patterns are themselves 
typically inferred using patterns of LD at segregating sites in the genome. To achieve this, 
we examined diversity levels in the CEU and YRI populations, as measured by the 
number of identified SNPs per base, surrounding occurrences of a previously identified 
human hotspot motif (Myers, Freeman et al. 2008; Myers, Freeman et al. 2008), 
CCTCCCTNNCCAC. This approach removes the requirement to identify 
recombinationally active loci using variation patterns directly. Because positions at which 
this motif occurs have roughly a 3-fold increased average recombination rate relative to 
the average for the genome, any strong effect on diversity levels caused by recombination 
hotspots would be expected to manifest as unusual levels of diversity surrounding motif 
sites.  
 
We firstly obtained all genome-wide occurrences of the “hotspot motif” 
CCTCCCTNNCCAC in the human genome. To allow for potential sequencing biases 
caused by the genomic environment in which this motif is found, we also identified all 
positions of a control, “non-hotspot” motif CTTCCCTNNCCAC, differing by only one base 
from the hotspot motif, but showing no evidence in the low-coverage project data of an 
elevated recombination rate at motif sites (Figure 8c). In each case, we only considered 
occurrences outside masked repeats (identified using the RepeatMasker track 
downloaded from the UCSC database). The non-hotspot motif was chosen to have a 
similar frequency in the genome to the hotspot motif (3401 and 2735 occurrences 
respectively). 
 
We identified all SNPs that fall into non-overlapping 100 bp windows spanning 10 kb to 
the left and right of motifs. To account for differences in, for example, sequence 
uniqueness near motif sites, we used the “callability” score which for each base in the 
genome gives a 0-1 measure defining whether a SNP passing QC filters (based on 
average sequencing depth, and non-zero mapping score) could be identified at that base. 
Average callability profiles around the hotspot and non-hotspot motifs were very similar. 
We measure diversity in a population within a given bin as the proportion of callable bases 
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at which a SNP passing filters was found. Confidence intervals for the SNPs per base 
within each bin were calculated based on 1.96 standard errors of the mean diversity within 
the bin. Average recombination rates were estimated as described above in the 10 kb 
each side of occurrences of the motif and binned in the same way as for the diversity 
levels. The YRI diversity levels and recombination rates were used to construct Figure 8c, 
although the patterns observed in other populations are very similar. 
 

14.4. Y	  chromosome	  Haplogroups	  
 
A maximum likelihood haplogroup tree under a HKY model of evolution was produced 
using phyML, and bootstrap values were produced using 100 subsamplings. Trees were 
produced using both all 2870 filtered sites (Supplementary Figure 7), and the 1971 UYR 
sites; though there was very little difference between the two trees. The haplogroup tree 
classifies all the major haplogroups as monomorphic, and recovers the relationships 
between them, with high bootstrap confidence. It also shows evidence for a deep division 
between haplogroups DE and CT, previously identified only by a single marker (P143; 
Karafet, Mendez et al. 2008). New insights into recent human evolution can also be 
gained from the branch lengths; for example, the short internal branch lengths within the 
haplogroup R1b relative to the other haplogroups suggest a recent expansion of this 
European haplogroup (Balaresque, Bowden et al. 2010). 
 

15. Full	  Project	  Expectations	  

15.1. Increasing	  Read	  Lengths	  
 
We simulated paired-end reads from the human reference genome build 36 with 1% 
uniform sequencing error rate. The standard deviation of the insert size distribution is 10% 
of the average insert size. The simulated reads were then mapped to the genome with 
bwa-0.5.8 (Li and Durbin 2010). A read is considered to be mapped confidently if bwa 
assigns a mapping quality no less than 10. The left hand side of Supplementary Figure 15 
shows the percent mapping confidently as a function of read length. For paired-end reads, 
the average insert size is fixed at 400 bp. It is evident that increasing read length improves 
the accessibility of the genome, especially for single-end reads. The right hand side of 
Supplementary Figure 15 shows the percent mapping confidently as a function of insert 
size with read length fixed at 100 bp. Increasing insert size also helps the accessibility, but 
not as much as increasing read length. 
 

15.2. Predicting	  the	  Rate	  of	  Variant	  Discovery	  in	  the	  Full	  Project	  
 
To estimate the rate at which variants of different frequencies have been identified in the 
low-coverage project and to make predictions about the rate of discovery in the full project 
we use a simple, statistical model of population differentiation (Balding and Nichols 1995). 
In our model an ancestral population gives rise to a large (infinite) number of daughter 
populations, each related to each other to the same degree, described by a drift 
parameter, c. The allele frequency of a variant in a given subpopulation is described by a 
beta distribution with parameters x/c and (1-x)/c, where x is the frequency of the variant in 
the ancestral population. The average variant frequency across daughter populations is 
therefore x and the variance of the variant frequency across populations, divided by x(1-x) 
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is c/(1+c), leading to the equation of c/(1+c) with Wright’s Fst. To obtain the joint 
distribution of variant frequencies across populations conditioning on a given frequency in 
a given population we assume that variants are distributed with density proportional to 1/x 
in the ancestral population and use MCMC to estimate the conditional density distribution 
of variants in the ancestral population. 
 
To predict the rate at which variants of different frequencies are discovered we simulate 
the number of variants present in the sampled individuals by modeling the sample counts 
in each population through the binomial model with parameters ni and pi, where ni is the 
number of haploid genomes sampled from population i and pi is the frequency of the 
variant in population i (simulated from the ancestral allele frequency and the beta model 
described above). The distribution of sample counts is combined with empirical estimates 
of power at different allele counts from comparison of the low-coverage project data to 
HapMap II genotypes in overlapping individuals (Figure 2a and Supplementary Figure 8). 
The contribution of discovery from populations in a different geographical region is not 
considered (neither are local migration and the spatial relatedness of populations). 
 

16. Production	  Centre	  Protocols	  
 
Where methods differ from standard protocols, detailed methods are given below. 
 

16.1. Baylor	  College	  of	  Medicine	  	  

16.1.1. Whole	  Genome	  454	  Sequencing	  
 
A mix of fragment libraries and paired-end libraries were constructed for each of the 
assigned samples. GS FLX fragment libraries and GS FLX Titanium fragment libraries 
were generated using 5ug and 10ug of genomic DNA respectively following standard 
methods (Genome Sequencer FLX and Genome Sequencer FLX Titanium Methods 
Manual). For this process the DNA was fragmented by nebulization to an average size of 
500 or 700 bp, end repaired and specific adaptors added by ligation followed by 
purification and strand selection. 
 
Long Paired-end libraries were constructed using 5ug of genomic DNA following standard 
methods (GS FLX Paired End DNA Library Preparation Method Manual). Briefly, 
fragments of 2-3 kb were produced by HydroShearing and biotinylated hairpin adaptors 
added that when cleaved with EcoRI, provide ligatable, cohesive ends for circularization. 
The circularized fragments were nebulized to a few hundred base pairs, end repaired and 
immobilized using the biotinylated linker for the addition of platform specific adaptors. 
  
Each fragment and paired-end library was run on the Agilent Bioanalyzer 2100 to 
determine the library size, and the concentration determined by Ribo/PicoGreen assays. 
Libraries were then sequenced on the 454 FLX/Titanium platform using standard vendor 
emPCR, enrichment and sequencing methods. 
 

16.1.2. Whole	  Genome	  SOLiD	  Sequencing	  
 
A combination of fragment and mate-paired libraries were utilized for sequencing on the 
SOLiD System V2.0 platform. SOLiD fragment libraries were constructed with 30ug of 
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input DNA and an average insert size of 160 bp following standard vendor protocols 
(SOLiD System 2.0 Fragment Library Preparation) and sequenced as unidirectional reads 
of 25 bp. DNA input ranged from 30 to 50ug for mate-paired libraries to insure library 
complexity (SOLiD System 2.0 Mate-Paired Library Preparation). Insert sizes of 1.5 and 
2.5 kb were utilized for sequencing in the 2 X 25 bp format providing both sequence 
coverage and structural information. Each fragment and paired-end library was run on the 
Agilent Bioanalyzer 2100 to determine the library size, and the concentration determined 
by PicoGreen assays. Each fragment and mate-paired library was then sequenced on the 
SOLiD V2.0 platform following standard vendor methods for emPCR, enrichment, 3’ end 
modification and ligation sequencing (Applied Biosystems SOLiD System 2.0 User Guide). 
 

16.1.3. Exon	  Capture	  and	  Sequencing	  
 
NimbleGen 385K capture chips were designed to target the 1000 gene regions. Pre-
Capture libraries were constructed using 20 µg of genomic DNA following standard 
NimbleGen protocols (NimbleGen Sequence Capture: Short Library Construction Protocol 
and NimbleGen Arrays User’s Guide). For this process the DNA was fragmented by 
nebulization to an average size of 700 bp and then subjected to end repair. NimbleGen 
linkers (gsel3 and gsel4) were ligated and then amplified using LM-PCR methods. Each 
sample was hybridized to a NimbleGen 385K capture chip and eluted using 95oC H2O 
and then amplified again using LM-PCR methods. Quantitative PCR assays using SYBR 
Green were performed on a standardized set of 4 control loci present on all the arrays as 
a quality control measure. Final 454 platform sequencing libraries were constructed using 
5ug of the amplified captured material using standard vendor protocols (GS FLX General 
Library Preparation Method). Capture libraries were then sequenced on the 454 
FLX/Titanium platform using standard vendor emPCR, enrichment and sequencing 
methods (GS FLX Titanium Sample Preparation Manual). 
 

16.2. Beijing	  Genomics	  Institute	  	  

16.2.1. Whole	  Genome	  Illumina	  Sequencing	  
 
Genomic DNA-Seq Pair-End libraries were generated from 3-5 ug genomic DNA using the 
Paired-End Genomic Sample Prep Kit (Illumina), as the manufacturer’s instructions. 
Purified genomic DNA was sonicated and ligated to Illumina Pair-End DNA adapters 
(Illumina), after gel purification the adapter ligated DNA molecules around 500 bp ( ± 20 
bp) were enriched by 10 cycles of PCR with primers complementary to the adaptor 
sequences. The concentration of the DNA library is measured by qPCR by Sybrgreen 
(ABI) on StepOne (ABI) and the size distribution is measured by Agilent 2100 bio-
analyzer.  
 
The purified Genomic DNAs were sheared, polished and prepared using the Illumina 
Index Sample Preparation Kit (Illumina). DNA libraries were amplified independently using 
15-cycles of PCR amplification with PCR index primers. Amplified libraries were again size 
selected using agarose electrophoresis. After spin column extraction and quantitation, 
libraries were mixed at equimolar ratios to yield a multiplexing library. 
 
Cluster generation on the Cluster Station (Illumina) is a process by which a denatured 
DNA fragment (the template) is hybridized to the surface of a specially grafted flow cell 
and amplified (bridge PCR) to form a surface bound colony (the cluster). Millions of 
different DNA fragments can be generated simultaneously to seed the surface of a single 
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flowcell, leading to a heterogeneous cluster population, each cluster consisting of many 
identical copies of the original template molecule. It consists of a number of sequential 
sub-routines designed to seed, grow the clusters. We sequenced the cluster generated 
flow cell on GA/GA II/GA IIx following the manufacture’s protocol. 
 
After genome analyzer sequencing, Illumina GAPipeline was used for data analysis to get 
short reads (fastq), which includes 3 steps, image analysis, base calling and short reads 
alignment. In this pipeline, the image analysis module is Firecrest and the base caller is 
Bustard. Finally, Eland was used to map reads onto the human genome. 
 
Based on alignment, we counted several quality criteria for quality control, which includes 
DNA libraries and sequencing bases. For DNA libraries, we compute the duplication rate 
and insert size duplication. We also calculated error rate, GC content, mapped rate and 
the base quality. 
 

16.2.2. Whole	  Genome	  SOLiD	  Sequencing	  
 
For SOLiD Long Mate-Pair Library sequencing, 25 ug of DNA was sheared by 
HydroShear (Genomic Solutions) and end repaired with the Endit kit (Epicentre). Then the 
sheared DNA was ligated with EcoP15I cap adaptors size-selected to an average size of 
1500 bp. The EcoP15I cap adaptors were left dephosphorylated so that circularization of 
the target DNA left a nick on the 3’ ends of the internal adaptor. These nicks were bi-
directionally extended into the insert DNA using a timed nick translation reaction. Tags 
were liberated with S1 nuclease, end repaired with the Epicentre Endit kit and varied in 
size from 50-75 bp per tag. All libraries were ligated by P1 and P2 adaptors (Applied 
Biosystems SOLiD™ Mate-Paired Library Oligos Plus Kit #4425772) with T4 DNA ligase 
(New England Biolabs) and amplified for 10 cycles (Applied Biosystems SOLiD™ 3 
System Long Mate Pair Library Protocol). 
 
We sequenced the mate-paired libraries with the Applied Biosystems SOLiD™3.0 System 
analyzer according to the manufacturers’ instructions. For data analysis, we used 
SOLiDTM System Analysis Pipeline Tools (Corona Lite) to map the SOLiD reads (csfasta) 
onto the human genome. Based on the alignment, we calculated the mapped rate, error 
rate, base quality and GC content for base quality control and computed the distribution of 
insert size and duplication rate for DNA libraries quality control. 
 

16.3. Broad	  Institute	  	  

16.3.1. Whole	  Genome	  Illumina	  Sequencing	  
 
Genomic DNA was sheared to a range of 100-700 bp, end repaired and ligated to Illumina 
paired end adaptors. Fragments were purified and size selected (380 bp +/- 10%) using 
gel electrophoresis. Excised fragments were enriched over 10 cycles of PCR, denatured 
and normalized prior to cluster amplification and sequencing. 
 
Cluster amplification of denatured templates occurred according to manufacturer’s 
protocol (Illumina). Flowcells were sequenced on the Genome Analyzer II Instrument, 
using Sequencing-by-Synthesis kits and analyzed with the Illumina extraction pipeline. 
Standard quality control metrics including error rates, % passing filter (PF) reads, and total 
Gb produced were used to characterize process performance prior to downstream 
analysis. Each whole genome library was sequenced over several flowcells until an 
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average genome coverage of 4x (low-coverage project) or 12x (trio project) in passed filter 
(PF) bases was achieved. 
 

16.3.2. Exon	  Capture	  and	  Sequencing	  
 
Method I: Direct Sequencing of Hybrid Selected Pond Fragments 
DNA oligonucleotides, corresponding to 170 bp of target sequence (1000 genes) flanked 
by 15 bp of universal primer sequence, were synthesized in parallel on an Agilent 
microarray, then cleaved from the array. The oligonucleotides were PCR amplified, then 
transcribed in vitro in the presence of biotinylated UTP to generate single-stranded RNA 
“bait.” Genomic DNA was sheared, ligated to Illumina sequencing adapters, and selected 
for lengths between 200-350 bp. This “pond” of DNA was hybridized with an excess of bait 
in solution. The “catch” was pulled down by magnetic beads coated with streptavidin, then 
eluted. Hybrid selected libraries were denatured and normalized prior to cluster 
amplification and sequencing. Each library was sequenced on 1 - 2 lanes of an Illumina 
GA-II sequencer, using 76 bp paired-end reads. 
 
Method II: Sequencing of Concatenated and Sheared Hybrid Selection Libraries  
DNA oligonucleotides, corresponding to 170 bp of target sequence (1000 genes) flanked 
by 15 bp of universal primer sequence, were synthesized in parallel on an Agilent 
microarray, then cleaved from the array. The oligonucleotides were PCR amplified, then 
transcribed in vitro in the presence of biotinylated UTP to generate single-stranded RNA 
“bait.” Genomic DNA was sheared to a range of 50-700 bp and ligated to Illumina 
sequencing adapters (GFA). This “pond” of DNA was hybridized with an excess of bait in 
solution. The “catch” was pulled down by magnetic beads coated with streptavidin and 
then eluted. Resulting enriched fragment “catch” was digested with Not1 enzyme and 
ligated to create concatenated fragments of > 1 kb which were subsequently sheared to 
150 bp. Sheared and selected “catch” fragments were end repaired and ligated to Illumina 
sequencing adapters and enriched over 12 PCR cycles. Hybrid selected libraries were 
denatured and normalized prior to cluster amplification and sequencing. Each library was 
sequenced in 1-3 lanes of an Illumina GA-II sequencer, using 36 bp fragment reads. 
 

16.4. Illumina	  

16.4.1. Whole	  Genome	  Illumina	  Sequencing	  
 
Preparation of short-insert paired-end Illumina sequencing libraries, flow cell preparation 
and cluster generation have been described previously (Bentley, Balasubramanian et al. 
2008). Briefly, genomic DNA samples (5 µg) were randomly fragmented by nebulisation 
and used to prepare paired-end sequencing libraries with average insert sizes of 220 bp. 
Libraries were denatured using NaOH (0.1 N) and diluted in cold (4 °C) hybridisation 
buffer (5x SSC + 0.05 % Tween 20) to a working concentration of ~6 pM, prior to seeding 
clusters on the surface of the flow cell at a density of ~360,000 clusters per mm2. Cluster 
amplification, linearization, blocking and hybridisation to the Read 1 sequencing primer 
were carried out on a Cluster Station using the Illumina Cluster Generation kit v1. 
Following the first sequencing read, flow cells were held in situ and clusters were prepared 
for Read2 sequencing using the Illumina Paired-End Module with the Cluster Generation 
kit v1. Paired-end sequence reads of 50 bases were generated using the Genome 
Analyzer II with v2 SBS reagent kits, as described in the Illumina Genome Analyzer 
operating manual.  
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Image analysis, base calling and quality scoring were carried out using the Illumina 
analysis pipeline version 1.3. Sequence reads were filtered out from those clusters whose 
proximity to others resulted in mixed sequence data (purity-filtering). On average 10.6 Gb 
of purity-filtered sequence data were generated per sequencing run using the described 
configuration of chemistry, instrumentation and analysis pipeline, and averaged across all 
runs 82.5% of base calls were estimated to have an accuracy of at least 99.9% (Q30). 
Sequence reads were aligned to the human NCBI36.1 reference sequence using ELAND 
to provide quality control information about the sequencing run. 
 

16.5. Life	  Technologies	  	  

16.5.1. Whole	  Genome	  SOLiD	  Sequencing	  
 
Samples were sequenced using a combination of mate-paired libraries and fragment 
libraries with the Applied Biosystems SOLiD™ System (Life Technologies, Carlsbad, CA) 
according to the manufacturers’ instructions. Mate-pair libraries were prepared with the 
TypeIII restriction endonuclease EcoP15I (Smith, Malek et al. 2004; Applied Biosystems 
SOLiD Library Preparation Guide). Additionally, sheared “fragment” libraries were 
generated and sequenced as unidirectional reads. Briefly, fragment libraries were 
generated by shearing genomic DNA to a 60-90 bp range using various shearing methods 
(DNaseI, Nebulization, and adaptive focused acoustic bombardment with a Covaris S2) 
and end repairing the DNA (McKernan, Peckham et al. 2009). 
 
Emulsion PCR was performed according to Dressman et al (Dressman, Yan et al. 2003) 
with a few minor modifications (Applied Biosystems SOLiD Library Preparation Guide). 
Since limited dilution of DNA is utilized to produce clonal bead amplification, 70-80% of 
the beads in any given emulsion are un-amplified beads. An enrichment step is performed 
to select for the templated beads and provide a higher number of sequence generating 
features per run. Enrichment of amplified beads was performed as previously described 
(Shendure, Porreca et al. 2005) with a few modifications. Once emulsions are broken the 
beads are enriched, end modified and deposited on a microscope slide ready for SOLiD 
sequencing (Applied Biosystems SOLiD Library Preparation Guide) (McKernan, Peckham 
et al. 2009). 
 
Ligation sequencing was performed in five different frames of sequencing as instructed by 
the manufacturer. As a result five different 5’phosphorylated primers that are each offset 
by 1 base with respect to each other are used. The detection probes have a cleavable 
phosphorothiolate linkage fixed between the 5th and 6th base such that sequencing with 1 
primer generates partial dinucleotide information in 5 base increments. Primer 1 will 
survey dinucleotides 1,2 and 6,7 and 11,12 and so on to bases 46 and 47. Primer 2 will 
survey dinucleotides 0,1 and 5,6 and 10, 11, … 45, 46. Primers 3, 4 and 5 will be nested 
more than 2 bases into the known adaptor sequence and thus do not require their 1st 
ligation cycle to imaged (McKernan, Peckham et al. 2009). 
 

16.6. Max	  Planck	  Institute	  for	  Molecular	  Genetics	  	  

16.6.1. Whole	  Genome	  Illumina	  Sequencing	  
 
Pilot project Illumina data were generated using the Genome Analyzer II (GAII, Illumina).  
Libraries were prepared from genomic DNA fragmented by ultrasound. 185-235 bp DNA 
fragments were gel purified and further processed into GAII paired-end (PE) libraries. 
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Libraries were prepared using Illumina PE library preparation kit. Several modifications 
were introduced in the original Illumina library preparation protocol (e.g., additional gel-
purification after library amplification, which helps to get rid of unspecific PCR products; 
real-time check of non-amplified libraries for determination of required number of 
amplification cycles and estimation of library complexity; real-time check of 10nM library 
stocks before loading them onto flowcell to reach optimal cluster density) to make the 
process more reproducible and predictable. Libraries were loaded onto PE sequencing 
flowcells (the average cluster density was ~12x104 per tile). 36 bp PE runs were 
performed for each flowcell, allowing recognition of 36 nucleotides from each side of the 
genomic DNA insert. 
 
Raw data were pipelined according to corresponding manufacturer’s instructions. Base 
calling was performed using Illumina’s Genome Analyzer Sequencing Control Software 
(SCS). Resulting sequencing reads were aligned to the human genome (hg18, NCBI build 
36.1). For each sample, HapMap genotype validation was performed. 
 

16.6.2. Whole	  Genome	  SOLiD	  Sequencing	  
 
For the SOLiD sequencing platform (version 2), fragment libraries (50 – 100 bp) were 
prepared using the ABI protocol with several modifications. End-repair reaction was 
performed according to the Illumina protocol. For test amplification and large scale 
amplification the Invitrogen mix was replaced by the 2x Phusion HF Master Mix (NEB, #F-
531L). Resulting beads with attached library molecules were loaded onto the flowcell 
(amount of usable beads varied from 200 to 300 mlns per single-frame flowcell). For each 
flowcell, 35 bp fragment run was performed.  
 
Raw data were pipelined according to corresponding manufacturer’s instructions. Base 
calling was performed using SOLiD Analysis Tools. Resulting sequencing reads were 
aligned to the human genome (hg18, NCBI build 36.1). For each sample, HapMap 
genotype validation was performed. 

 

16.7. Roche	  	  

16.7.1. Whole	  Genome	  454	  Sequencing	  
 
Genomic DNA for each sample was obtained from Coriell. Random shotgun libraries were 
generated by fragmentation of 6 mg human genomic DNA using the GS FLX Titanium 
General Library Preparation Kit following manufacturer’s recommendations (454 Life 
Sciences, A Roche Company, Branford, CT, USA). Briefly, DNA was randomly sheared 
via nebulization and double stranded DNA adaptors were blunt ligated to fragment ends 
following post-electrophoresis agarose gel excision of the 500-800 bp fraction. The final 
single stranded DNA library was isolated via streptavidin bead binding to biotinylated 
adaptors followed by alkaline treatment. The library was then quantitated via fluorometry 
using Quant-iT RiboGreen reagent (Invitrogen, Carlsbad, CA, USA) prior to emulsion PCR 
amplification. 
 
Genomic shotgun library molecules were clonally amplified via emulsion PCR following 
manufacturer’s recommendations employing the GS FLX Titanium LV emPCR Kit (454 
Life Sciences). Following amplification, emPCR reactions were collected and emulsions 
broken according to manufacturer’s protocols. Beads containing sufficient copies of 
clonally amplified library fragments were selected via the LV enrichment procedure and 
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counted with a Multisizer 3 Coulter Counter (Beckman Coulter, Fullerton, CA) prior to 
sequencing. 
 
Following emulsion PCR enrichment, beads were deposited into the wells of a Titanium 
Series PicoTiterPlate device and 454 Sequencing was performed using the GS FLX 
instrument according to manufacturer’s recommendations (454 Life Sciences). All 
sequencing employed the 2-region gasket format with 2 million enriched beads loaded per 
region. GS FLX Titanium Sequencing Kit XLR70 reagents were employed in all 
sequencing runs. Image analysis, signal processing and base calling were performed 
using a 2.0 pre-release version of the GS FLX Titanium Data Processing Software. 
 

16.8. Sanger	  Centre	  	  

16.8.1. Whole	  Genome	  Illumina	  Sequence	  
 
Libraries were prepared and sequenced essentially as described in elsewhere (Bentley, 
Balasubramanian et al. 2008). 5 µg of genomic DNA from each sample was fragmented 
using a disposable nebulizer (Invitrogen) and purified using a qiaquick column (Qiagen). 
DNA was end-repaired as described (Bentley, Balasubramanian et al. 2008) and an 
adaptor ligated to the ends of the DNA (adaptor sequences: 
5’ACACTCTTTCCCTACACGACGCTCTTCCGATCxT (x = phosphorothioate bond) and 
5’-phosphate-GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG). Fragments of 
approximately 200 bp were gel-purified and PCR amplified. Flow cells were prepared, 
clusters generated, and processed flowcells were paired-end sequenced with 36-37 
cycles each end on an Illumina Genome Analyzer and data processed using standard 
methods. 
 

16.8.2. Exon	  Sequence	  Capture	  
 
20 ug of DNA were sheared to 100 – 400 bp using a Covaris S2 following manufacturer’s 
protocols and the settings Duty Cycle, 20%; Intensity, 5.0; Cycles / burst, 200; Duration, 
90; Mode, Freq Sweeping. Sheared samples were quantitated on a Bioanalyzer (Agilent, 
Santa Clara, USA). 10 – 15 ug of sheared DNA were end-repaired, A-tailed and Illumina 
sequencing adapters ligated to the resulting fragments using the Illumina Paired-End DNA 
Sample Prep protocol with the slight modification that the gel size selection step was 
replaced with a SPRI bead purification (following manufacturer’s protocol). 5 ug of each 
library were hybridised to a custom Nimblegen 385-K array following manufacturer’s 
protocols (Roche/Nimblegen) with the modification that no pre-hybridisation PCR was 
performed. Captured samples were washed and eluted in 50 ul of PCR-Grade water 
following manufacturer’s protocols. Eluted samples were amplified using a master-mix 
containing 2 mM MgCl2, 0.2 mM dNTPs, 0.5 uM PE.1. 0.5 uM PE.2 and 3 units of 
Platinum® Pfx DNA Polymerase per sample. Samples were aliquoted into 3 individual 
wells of a plate and amplified using the following conditions: 94°C for 5 minutes followed 
by 20 cycles of 94°C for 15 seconds, 58°C for 30 seconds, 72°C for 30 seconds and a 
final extension of 72°C for 5 minutes. PCR products were purified using SPRI beads prior 
to sequencing. 
 
Captured libraries were sequenced on the Illumina GA platform as paired-end 37-bp 
reads.  
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16.9. Washington	  University	  in	  St.	  Louis	  	  

16.9.1. Whole	  Genome	  Sequencing	  
 
Illumina fragment libraries were prepared using 1 ug of high molecular weight genomic 
DNA according to manufacturer’s instructions, and the resulting libraries were sequenced 
on Illumina GA sequencers to produce approximately 2X coverage in fragment end reads 
of 36-50 bp for each genome. 
 

16.9.2. Exon	  Capture	  and	  Sequencing	  
 
Biotinylated capture probes were generated using a synthetic probe library constructed to 
selectively target the 1,000 genes. The probe set was combined with each whole genome 
shotgun Illumina library, hybridized, and the resulting probe:library hybrids isolated using 
streptavidin magnetic beads. The captured library fragments were reclaimed by 
denaturation and sequenced as fragment end reads on the Illumina GA sequencer.  
 
Capture oligonucleotides 190 bp in length (150 internal bases flanked by 20 bp PCR 
primers) were designed to tile end-to-end across target region. The resulting pool of 
synthetic oligos was amplified by PCR and incorporated with biotin-14-dCTP to produce a 
biotinylated capturing library (BCL). Genomic DNA was nebulized into 200-500 bp 
fragments, end-repaired, and then ligated with Illumina paired-end adapters to create a 
target library (TL) for each sample. Each target library was hybridized with the 500-gene 
BCL and then amplified by PCR. The resulting capture fragments were sequenced on the 
Illumina GAIIx platform. Sequence data were converted to FastQ format and mapped to 
the Hs36 reference sequence using MAQ v0.7.1. 
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18. Supplementary	  Figures	  
 

 
 
Supplementary Figure 1.  Average discordance between primary and consensus low 
coverage genotype calling methods and 1000G genotyping chip (see Section 6.6). 
Discordance at sites called on the chip as variant (i.e., not homozygous for the reference 
allele) was calculated in 46 overlapping CEU samples at 50,367 sites that were called by 
all three primary methods (Sanger, Michigan and Broad) and that were also polymorphic 
according to the genotyping chip. The consensus genotypes (2/3 set) have consistently 
lower discordance than any single call set. Overall, the consensus set makes between 
25% and 50% fewer errors than the individual call sets. 
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Supplementary Figure 2.  Amount of sequence coverage generated (mapped bases/2.85 
Gb) in the low-coverage project by sample and sequencing technology; blue = Illumina, 
green = SOLiD, red = 454.  Note that populations and samples differ considerably in 
coverage (CEU highest, CHB+JPT lowest, sample coverage from c. 2x to 18x) and the 
balance of technologies. Many samples have data from two technologies. 
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Supplementary Figure 3.  Variation across the genome. a, Genomic distribution of SNP 
density in the low-coverage analysis on the autosomes. The colours show the SNP 
density (SNPs / kb) in 1 Mb bins, with red indicating higher densities and blue indicating 
lower densities (Kin and Ono 2007). SNP densities were calculated as the number of 
SNPs divided by the number of callable bases in 1 Mb bins. Bins for which less than 75% 
of bases were callable are shown in grey. The colours cover the median SNP density +/- 
2.58 standard deviations. Note high rates of SNP variation at the HLA on 6p and sub-
telomeric regions and a 5 Mb region of very low diversity on 3p21. The regions of high 
SNP density on 8p and chromosome 16 coincide with regions of extensive structural 
variation. b, Distribution of variants on chromosome 6 in the low-coverage project. From 
the bottom upwards are shown GC content (blue), the density of small indels (red) and 
SNPs (black) in the CEU samples, and the 1017 structural variants (SV) on chromosome 
6 classified by type (NAHR: Non-Allelic Homologous Recombination, NHEJ/MMBIR: Non 
Homologous End-Joining/Microhomology Mediated Break Induced Replication, TEI: 
Transposable Element Insertion, or Other). The HLA region is inset with different axes to 
reflect the greatly increased diversity there. Bin sizes are 1 Mb in the whole chromosome 
region, and 100 kb in HLA. 
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Supplementary Figure 4.  Population origin of known and novel deletions in the SV 
discovery set. Top: Previously known deletions in the trio and low-coverage projects. 
Bottom: Novel deletions discovered in the trio and low-coverage projects.  

Trio Low coverage

Known

Novel CEU

1,695

YRI

3,0111,030

CEU

1,424

YRI

1,6442,444
CEU
424 CHB+JPT

107

325

4,129

YRI 986

235

168

CEU
644

CHB+JPT
586

540

5,201

YRI 1,558

546
418

WWW.NATURE.COM/NATURE | 77

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09534



  

 
 

 
Supplementary Figure 5.  Mitochondrial DNA (mtDNA) haplogroup distribution in the 
CEU, CHB+JPT and CEU samples in the low-coverage project. Each population sample 
was found to contain only previously described continent-specific haplogroups, for 
example haplogroup H for CEU, haplogroups D or B for the East Asian samples, and 
haplogroup L for YRI.   
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Supplementary Figure 6.  Heteroplasmy variation along the mtDNA molecule (A) 
Distribution of length heteroplasmy. (B) Distribution of point heteroplasmy.  
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Supplementary Figure 7.  The Y chromosome haplogroup tree, inferred by maximum 
likelihood from the 2870 variable sites identified. The leaf labels contain the population 
and the haplogroup assignment of each sample (also shown by colours) based on 
HapMap genotype data. For most haplogroups, the newly discovered SNPs gave 
additional resolution to the phylogenetic structure. 
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Supplementary Figure 8.  Estimated power to detect SNPs in the low-coverage project 
for the CHB+JPT and YRI analysis panels as a function of the expected number of non-
reference alleles in the sample. Crosses represent the average discovery fraction for all 
variants having more than 10 copies in the sample. The red lines show the proportion of 
HapMap II sites (excluding sites also in HapMap 3) found to be polymorphic in the low-
coverage project as a function of HapMap alternative allele count. The blue lines show the 
proportion of exon project sites found to be polymorphic in the low-coverage project as a 
function of the exon project alternative allele count.  For both comparisons, only samples 
that overlap are included. Error bars show 95% confidence intervals. Note that, as in 
Figure 2a, we plot power against expected allele count in the sequenced samples, e.g., a 
variant present in, say, 2 copies in an overlap of 30 samples is expected to be present 4 
times in 60 samples.  
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Supplementary Figure 9.  Formation mechanisms of single-nucleotide resolution SVs 
inferred by BreakSeq (Lam, Mu et al. 2010) (see Supplementary Information Section 8.8 
for details). NAHR: non-allelic homologous recombination; VNTR: variable number of 
tandem repeats; NHR: non-homologous end-joining (NHEJ) or replication fork 
collapse-‐associated (FoSTeS/MMBIR); STEI: single transposable element insertions; 
MTEI: multiple transposable element insertions. In NAHR (red) and MTEI/STEI (green), 
darker wedges represent high-confidence classification subsets, and lighter wedges are 
extended subsets. 
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Supplementary Figure 10.  Low-coverage project genotype accuracy at HapMap II sites, 
not found in HapMap 3, as a function of alternative allele count for the CHB+JPT (top) and 
YRI (bottom) analysis panels. Genotype accuracy is shown separately for homozygote 
reference calls (red), heterozygote calls (green), and homozygote alternative calls (blue). 
Also shown is the overall discordance rate in grey. The number of genotypes in each 
category as a function of alternative allele frequency is shown to the right of the main 
plots.  
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Supplementary Figure 11.  Deletion genotype concordance (Top) Bar plots show the 
concordance of deletion genotype calls with the genotypes of Conrad et al. for each 
sample in each low-coverage analysis panel. (Bottom) Deletion genotype concordance 
plotted versus the mapped coverage for each low-coverage sample by analysis panel. 
Note that genotype concordance is consistently over 95% and typically c. 99%.  
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Supplementary Figure 12.  (A) Disease class proportions in the HGMD - 1000 Genomes 
overlap subset (left) and HGMD background (right), labeled with class and proportion. (B) 
The ratio of observed to expected HGMD-DM variants found as a function of disease 
class, where the expected number is based on the distribution between classes in the 
entire HGMD--‐DM data set. A star marks classes for which the ratio is significantly 
different from one (p < 0.05 in a Fisher Exact test Bonferroni corrected for 18 tests). 
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Supplementary Figure 13.  Derived allele frequency spectra for different functional 
classes of variants, relative to putatively neutral (synonymous) coding variation. Lines 
indicate the relative proportion of each functional variant class in the specified frequency 
bin relative to the corresponding proportion for synonymous variants in the same project 
(i.e., low coverage or exon). In general, functional variant classes show enrichment in low-
frequency bins, although this tendency is most pronounced in CEU. The peak for stop and 
splice SNPs at a frequency of 0.20 in CHB+JPT is likely due to a higher rate of 
sequencing artifacts in this analysis panel, which disproportionately affect low-frequency 
putatively functional variation. Weaker enrichment of low-frequency putatively functional 
variants in YRI is likely due to a combination of lower coverage and weaker LD (leading to 
poorer ascertainment of low-frequency variants) and poorer HGMD ascertainment of 
disease variants in this population. Abbreviations: non-syn: non-synonymous; splice: 
splice-disrupting SNP; stop: stop codon-introducing SNP; HGMD-DM: variants from the 
Human Gene Mutation Database classified as "damaging mutations"; LC: low-coverage 
project; EX: exon project.  
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Supplementary Figure 14.  Localisation of the targets of selective sweeps around three 
genes previously shown to have strong signals of local adaptation and containing non-
synonymous variants as candidates for the target of selection; the pigmentation genes 
SLC45A2 (Sabeti, Varilly et al. 2007) (Phe374Leu at rs16891982) and SLC24A5 
(Lamason, Mohideen et al. 2005; The International HapMap Consortium 2005) 
(ALA111THR at rs1426654) and EDAR (Sabeti, Varilly et al. 2007) (VLA370ALA at 
rs3827760), variants in which are associated with hair and bone morphology (Mou, 
Thomason et al. 2008; Kimura, Yamaguchi et al. 2009). The plots show, from the top 
down, SNPs showing strong differentiation in allele frequency between populations, a 
composite likelihood ratio statistic (Nielsen, Williamson et al. 2005) calculating the 
evidence for a complete local sweep in each population, the CMS statistic (Grossman, 
Shylakhter et al. 2010), which aims to localize signals of adaptation, the location of genes 
and exons (light and dark blue bars respectively) and the fine--‐scale recombination rate 
(from HapMap II). For both SLC45A2 and SLC24A5 the CMS statistic localizes to the non-
synonymous variant, while the population differentiation signal is more diffuse and the 
CLR statistic peaks away from the variant. In line with previous reports, the strongest 
signal of selection is around EDAR in the CHB and JPT populations. However, two 
additional  features of the signal suggest that the history of selection in the region may be 
more complex than just a single sweep. First, the signal around the EDAR gene in CHB 
and JPT is focused 40 kb upstream of the coding variant, within the first, untranslated 
exon and introns and separated by a series of recombination hotspots from the coding 
variant. Second, there is evidence for two additional weaker selective events: one, as 
reported earlier (Xue, Zhang et al. 2009), in the same gene in the CEU where the 370A 
allele is absent, and another, again within the CEU population, focused on the 
sulfotransferase 1C subfamily gene cluster. Although simulations indicate that a single 
sweep at the site of the V370A variant can generate high-scoring variants 50 kb upstream 
(data not shown), these results suggest a complex history of selection across multiple 
positions and populations (Coop, Witonsky et al. 2010). 
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Supplementary Figure 15.  Expected genome accessibility as a function of read length 
with an average insert size of 400 bp (left), and as a function of insert size with an average 
read length of 100 bp (right). See Section 15.1 for details. 
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Supplementary Figure 16.  Graphical representation of the statistical model used by the 
U de Montreal group for detecting de novo mutations in the trio project data. Sequencing 
reads covering the site of interest in the mother, father and offspring (RM,RF,RO) are the 
observed data and are indicated by ovals. Neither individual genotypes nor their 
transmission pattern are observed; rectangles are used to identify these as “missing data”. 
Straight lines are used to indicate allelic lineage; for example, double lines denote that 
diploid maternal (ma,mb) and paternal (fa,fb) genotypes are sampled from the population, 
whereas single lines indicate that each parent contributes a haploid gamete (m*,f*) to their 
offspring. Wavy lines denote where sequencing takes place. Greek letters denote the 
parameters in the model and have been placed in proximity to the lineages that they 
affect. 
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