Supplementary Information

Supplementary Table 1. Data processing and refinement statistics.

Structure	$\begin{aligned} & \text { PLpro WT } \\ & 100 K \\ & 1.79 \AA \end{aligned}$	$\begin{aligned} & \hline \text { PLpro C111S } \\ & \text { mutant } 100 \mathrm{~K} \\ & 1.60 \AA \end{aligned}$	$\begin{aligned} & \hline \text { PLpro C111S } \\ & \text { mutant RT } 2.50 \\ & \AA \\ & \hline \end{aligned}$	PLpro C111S mutant - 1 $100 \mathrm{~K}, 2.09 \AA$	$\begin{aligned} & \hline \text { PLpro C111S } \\ & \text { mutant - } 2 \\ & 100 K, 1.95 \AA \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { PLpro C111S } \\ & \text { mutant }-3 \\ & 100 K, 2.05 \AA \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PLpro } \quad \text { WT } \\ & -3 \\ & 100 K, 2.30 \AA \end{aligned}$
Data processing							
Space group	P3221	P3221	P3221	I4122	I4,22	I4122	I4,22
$\begin{gathered} \hline \text { Cell dimensions } \\ a=b, c(\AA) \\ \alpha=\beta, \gamma\left({ }^{\circ}\right) \\ \hline \end{gathered}$	$\begin{array}{r} 82,134 \\ 90,120 \\ \hline \end{array}$	$\begin{gathered} 82,135 \\ 90,120 \\ \hline \end{gathered}$	$\begin{gathered} 82,135 \\ 90,120 \\ \hline \end{gathered}$	$\begin{array}{r} 114,220 \\ 90,90 \\ \hline \end{array}$	$\begin{array}{r} 114,219 \\ 90,90 \\ \hline \end{array}$	$\begin{array}{r} 114,220 \\ 90,90 \\ \hline \end{array}$	$\begin{array}{r} 114,220 \\ 90,90 \\ \hline \end{array}$
Resolution range $(\AA)^{\mathrm{a}}$	1.79 (1.84-1.79)	1.60 (1.64-1.60)	2.50 (2.54-2.50)	2.09 (2.13-2.09)	1.95 (1.98-195)	2.05 (2.09-2.05)	2.3 (2.34-2.30)
Unique reflections ${ }^{\text {a }}$	49,598 (2,456)	69,708 (3,105)	19,357 (942)	42,950 (2,097)	52,219 (2,368)	45,458 (2,245)	32,308 (1,576)
R-merge ${ }^{\text {b }}$	0.137 (1.78)	0.095 (0.871)	0.167 (1.61)	0.145 (1.94)	0.097 (1.23)	0.101 (1.71)	0.095 (1.73)
Mean I/sigma(I)	27.2 (1.72)	34.8 (1.71)	17.2 (1.4)	21.0 (1.07)	35.2 (1.08)	42.4 (1.03)	44.3 (0.97)
$\mathrm{CC1} / 2^{\text {c }}$	0.991 (0.632)	0.996 (0.741)	0.987 (0.514)	0.995 (0.512)	1.00 (0.559)	1.00 (0.566)	1.01 (0.605)
Completeness (\%)	100 (100)	99.1 (89.5)	100 (100)	99.8 (99.3)	99.5 (91.6)	99.9 (99.6)	99.9 (99.0)
Redundancy	14.2 (12.4)	13.7 (8.3)	9.8 (8.9)	12.6 (11.5)	16.6 (9.5)	21.0 (15.2)	20.9 (14.6)
Wilson B-factor (\AA^{2})	23.0	33.6	54.4	51.8	36.3	49.2	66.3
Refinement							
Resolution range (\AA)	48.8-1.79	49.0-1.60	49.3-2.50	49.7-2.09	49.7-1.95	45.4-2.05	45.5-2.30
Reflections work/test	47,056 (2,498)	66,140 (3,516)	18,320 (1,004)	40,785 (2,153)	$49.570(2,620)$	43,228 (2,194)	30,715 (1,564)
$\mathrm{R}_{\text {work }} / \mathrm{R}_{\text {free }}$	$0.160 / 0.174$	$0.123 / 0.164$	$0.151 / 0.193$	0.186 / 0.300	0.175 / 0.190	$0.188 / 0.201$	0.212 / 0.239
Number atoms							

Protein	2575	2599	2539	2495	2561	2496	2426
Ligand / ion	25	30	7	48	57	51	47
Water	223	380	41	127	210	135	32
Protein residues	318	318	318	318	318	318	318
RMSD (bonds) (\AA)	0.010	0.009	0.010	0.010	0.011	0.010	0.006
$\begin{aligned} & \text { RMSD (angles) } \\ & \left({ }^{\circ}\right) \end{aligned}$	1.49	1.43	1.58	1.62	1.65	1.68	1.49
Rotamer outliers (\%) ${ }^{\text {d }}$	1.38	0.34	2.47	1.82	1.40	2.18	1.50
Clashscore ${ }^{\text {d }}$	2.71	1.72	2.18	2.20	2.7	3.59	2.27
Average B-factor (A2)	39.3	31.4	59.7	67.7	49.1	66.0	89.9
Protein	38.6	29.6	59.8	68.1	48.8	66.3	90.2
Ligand / ion	57.9	41.1	63.2	72.3	50.5	67.5	85.9
Water	45.1	42.6	50.0	59.6	51.4	59.1	71.7
Number of TLS groups	1	1	1	1	1	1	1
PDB ID	6WZU	6WRH	6XG3	7JIR	7JIT	7JIV	7JIW

${ }^{a}$ Values in parentheses correspond to the highest resolution shell.
${ }^{b}$ Rmerge $=\Sigma \mathrm{h} \Sigma \mathrm{j}|\mathrm{Ihj}-<\mathrm{Ih}>| / \mathrm{h} \Sigma \mathrm{j} \mathrm{Ihj}$, where Ihj is the intensity of observation j of reflection h .
${ }^{c}$ As defined by Karplus and Diederichs ${ }^{1}$.
${ }^{\mathrm{d}}$ As defined by Molprobity

Supplementary Table 2. Sequence of PLpro synthetic gene used for expression of protein in E. coli and list of primers for cloning PLpro gene into pMCSG53 plasmid and generation of C111S mutant.

Sequence of synthetic gene for PLpro
GAAGTTCGTACCATCAAAGTTTTCACCACCGTTGACAACATCAACCTGCACACCCAGGTTGTTGACATGT CCATGACCTACGGTCAGCAGTTCGGTCCGACCTACCTGGATGGTGCTGATGTTACCAAAATTAAACCGCA СААСТСТСАСGAAGGTAAAACCTTCTACGTTCTGCCGAACGATGACACCCTGCGTGTTGAAGCGTTCGAA TACTACCACACCACCGATCCGTCTTTCCTGGGTCGTTATATGAGCGCTCTGAACCACACCAAAAAATGGA AATACCCGCAGGTTAACGGTCTCACCTCTATCAAATGGGCTGATAACAACTGCTACCTGGCGACCGCGCT GCTGACCCTGCAGCAGATCGAACTGAAATTCAACCCGCCGGCACTGCAGGATGCTTACTACCGTGCTCGT GCTGGTGAAGCGGCTAACTTCTGTGCGCTGATCCTGGCTTATTGCAACAAAACCGTTGGTGAACTGGGTG ATGTTCGTGAAACCATGTCTTACCTGTTCCAGCACGCTAACCTGGACTCCTGTAAACGTGTACTGAACGT TGTTTGTAAAACCTGCGGTCAGCAGCAGACCACCCTGAAAGGTGTTGAAGCTGTTATGTACATGGGCACC CTGAGCTACGAACAGTTCAAAAAAGGCGTTCAGATCCCGTGTACCTGCGGTAAACAGGCGACCAAATACC TGGTTCAGCAGGAATCTCCGTTCGTTATGATGTCTGCTCCGCCGGCGCAGTATGAACTGAAACACGGCAC СTTCACCTGCGCGTCTGAATATACCGGTAACTACCAGTGCGGTCACTACAAACACATCACCTCTAAAGAA AСССTGTACTGCATCGATAAAGGCCCGATCACCGACGTTTTCTACAAAGAAAACTCTTACACCACCACCA TTAAATAA

Primers for cloning PLpro gene into PMCSG53 plasmid

Nsp3_pMCSG53_F_	TACTTCCAATCCAATGCCGAAGTTCGTACCATCAAAGTTTTCACCA
Nsp3_pMCSG53_R_	TTATCCACTTCCAATGTTATTTAATGGTGGTGGTGTAAGAGTTTTCTTTGTA

Primers for cloning C111S mutant

PLpro, C111S-F	CTGATAACAACAGCTACCTGGCGACCGCGCT
PLpro, C111S-R	CCAGGTAGCTGTTGTTATCAGCCCATTTGATAGAGGTGA

Supplementary Methods

Synthesis of Compound 1 (GRL0617)

To a suspension of the 5 -nitro-o-toluic acid $\left(0.362 \mathrm{~g}, 2.00 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10.0 $\mathrm{mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $(\mathrm{COCl})_{2}(0.206 \mathrm{~mL}, 2.40 \mathrm{mmol}, 1.2$ equiv) dropwise before catalytic DMF (8 drops from a 1.00 mL syringe) was added dropwise. This mixture was then stirred at $0^{\circ} \mathrm{C}$ for 30 min before being concentrated directly. The resultant residue was then redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20.0 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$ before the sequential addition of $(R)-(+)-1-(1-$ naphthyl $)$ ethylamine $(0.417 \mathrm{~mL}$, $2.60 \mathrm{mmol}, 1.3$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.558 \mathrm{~mL}, 4.00 \mathrm{mmol}, 2.0$ equiv). The reaction mixture was then stirred at $23{ }^{\circ} \mathrm{C}$ for 30 min . Upon completion, the reaction contents were quenched by the addition of $1 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and poured into a separatory funnel. The two phases were separated, and the organic layer was washed with $1 \mathrm{M} \mathrm{NaOH}(3 \times 30 \mathrm{~mL})$. The organic extract was then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Purification of the resultant residue by flash column chromatography (silica gel, hexanes:EtOAc, 2:1) afforded the desired amide intermediate $(0.440 \mathrm{~g}, 66 \%$ yield $)$ as a white solid. $\mathrm{Pd} / \mathrm{C}(0.200 \mathrm{~g}, 10 \%$ by weight, 0.19 mmol, 0.15 equiv) was then carefully added to a suspension of the newly formed amide intermediate ($0.430 \mathrm{~g}, 1.29 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(30.0 \mathrm{~mL})$ at $23{ }^{\circ} \mathrm{C}$. The resultant suspension was then purged by direct bubbling with a balloon of H_{2} gas for 2 h at $23{ }^{\circ} \mathrm{C}$. Upon completion, the reaction contents were filtered through a short pad of Celite, washed with EtOAc $(200 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ to directly provide inhibitor $1(0.328 \mathrm{~g}, 84 \%$ yield) as a white solid. 1 (GRL0617): $\mathrm{R}_{f}=0.20$ (silica gel, hexanes:EtOAc, 1:1); IR (film) $v_{\max } 3339,3049,2976,2927$, $1639,1511,1339,1244,1121,817,800,755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.46$ (dd, $J=$ $8.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.60-6.54(\mathrm{~m}, 2 \mathrm{H}), 6.16-6.07(\mathrm{~m}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=$
$8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.2,144.2,138.2,137.1,134.1,131.9,131.3,128.9,128.6,126.7,126.1,125.5,125.3,123.7$, $122.7,116.8,113.5,44.9,20.8,18.9 ;[\alpha]_{\mathrm{D}}{ }^{22}=-75.8^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)\left[\right.$ lit. $[\alpha]_{\mathrm{D}}{ }^{20}=-76.8^{\circ}(c=$ $1.0, \mathrm{CHCl}_{3}$) from J. Med. Chem. 2009, 52, 5228].

Synthesis of Compound 2

To a solution of amine $\mathbf{1}\left(30.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(1: 1)(1.2 \mathrm{~mL})$ was added $\mathrm{NaOCN}\left(51.3 \mathrm{mg}, 0.80 \mathrm{mmol}, 8.0\right.$ equiv) and the mixture was heated at $90^{\circ} \mathrm{C}$ for 15 min . Then, $\mathrm{AcOH}(23.2 \mu \mathrm{~L}, 24.2 \mathrm{mg}, 0.40 \mathrm{mmol}, 4.0$ equiv) was added dropwise, and the stirring was continued for additional 1 h at $90^{\circ} \mathrm{C}$. Then, the second portion of $\mathrm{AcOH}(23.2 \mu \mathrm{~L}, 24.2 \mathrm{mg}, 0.40$ mmol, 4.0 equiv) was introduced, and the resulting solution was stirred for 3 h at $90{ }^{\circ} \mathrm{C}$. Upon completion, the mixture was cooled to $23^{\circ} \mathrm{C}$, the precipitate filtered, washed with $\mathrm{H}_{2} \mathrm{O}(5 \times 2 \mathrm{~mL})$ and dried (using air) to afford compound $2\left(10.6 \mathrm{mg}, 26 \%\right.$ yield) as a white solid. 2: $\mathrm{R}_{f}=0.20$ (silica gel, EtOAc). IR (film) $v_{\max } 3284,2975,2928,1704,1640,1548,1496,1408,1228,1201$, 801, $779 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.97$ ($\mathrm{s}, 1 \mathrm{H}$), 8.90 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.86$8.84(\mathrm{~m}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.49(\mathrm{~m}, 4$ H), 7.43-7.35 (m, 2 H), 7.15 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.71(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{p}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.22 (s, 3 H), $1.57(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}): $\delta 167.8,155.5,152.0$, $140.2,137.6,135.6,133.4,130.8,130.4,129.5,128.7,127.3,126.2,125.6,125.5,123.2,122.5$, 119.8, 117.7, 44.3, 21.5, 18.6; HRMS (ESI) calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 391.1765$, found 391.1761; $[\alpha]_{\mathrm{D}}{ }^{22}=-102.3^{\circ}(c=0.2$, acetone $)$.

1

Synthesis of Compound 3

To a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}\left(18.2 \mathrm{mg}, 0.132 \mathrm{mmol}, 2.0\right.$ equiv) in $\mathrm{H}_{2} \mathrm{O}(0.12 \mathrm{~mL})$ and acetone (0.48 mL) at $0^{\circ} \mathrm{C}$ was added acryloyl chloride ($0.011 \mathrm{~mL}, 0.132 \mathrm{mmol}, 2.0$ equiv). Amine $1(20.0 \mathrm{mg}$, $0.066 \mathrm{mmol}, 1.0$ equiv) was then added dropwise at $0^{\circ} \mathrm{C}$ as a solution in acetone $(0.2 \mathrm{~mL})$ and the reaction mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 10 min . Upon completion, the reaction contents were quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and poured into a separatory funnel. The two phases were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Purification of the resultant residue by flash column chromatography (silica gel, hexanes:EtOAc, 1:1) afforded the desired acrylamide $\mathbf{3}(21.0 \mathrm{mg}, 89 \%$ yield) as a white solid. 3: $\mathrm{R}_{f}=0.27$ (silica gel, hexanes:EtOAc, 1:1); IR (film) $v_{\max } 3276,3052$, 2977, 1707, 1611, 1596, 1541, 1496, 1411, 1244, 1202, 982, 799, $778 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.45$ (m, 3 H), $7.44-7.37$ (m, 2 H), 7.32 ($\mathrm{s}, 1 \mathrm{H}$), 6.99 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.34(\mathrm{dd}, J=16.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=16.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.12-6.02(\mathrm{~m}, 1 \mathrm{H}), 5.66(\mathrm{dd}, J$ $=10.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($110 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.0$, $163.9,138.2,136.5,135.5,134.1,132.1,131.6,131.2,131.1,129.0,128.6,127.9,126.7,126.0$, $125.4,123.5,122.8,122.0,118.8,45.2,21.0,19.3$; HRMS (ESI) calculated for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+$ H^{+}] 359.1754, found 359.1754; [$\left.\alpha\right]_{\mathrm{D}} \mathrm{D}^{22}=-110.7^{\circ}(c=1.0$, acetone). [Note: a slight concentration dependence was observed for NMR spectra of this compound].

Synthesis of Compound 4

3-nitro-5-(trifluoromethyl)benzoic acid ($0.752 \mathrm{~g}, 3.20 \mathrm{mmol}, 1.0$ equiv) was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (14 mL) under an argon atmosphere at $23^{\circ} \mathrm{C}$. Then, DMF (2 drops) was added, followed by slow addition of oxalyl chloride ($0.300 \mathrm{~mL}, 0.444 \mathrm{~g}, 3.50 \mathrm{mmol}, 1.1$ equiv). The resulting solution was stirred at $23{ }^{\circ} \mathrm{C}$ for 1 h before complete dissolution of the starting material was observed. The mixture was then concentrated to dryness, back-filled with argon, redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. Then, naphthylamine ($0.500 \mathrm{~g}, 3.49 \mathrm{mmol}, 1.1$ equiv) was added in a single portion and the solution was warmed to $23{ }^{\circ} \mathrm{C}$ and stirred vigorously at this temperature for 2 h . The resulting precipitate was filtered and washed with cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10$ mL). The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-containing filtrate was discarded, and the filter cake was then thoroughly washed with warm $\left(50^{\circ} \mathrm{C}\right) \mathrm{EtOAc}(4 \times 20 \mathrm{~mL})$. The filtrate was concentrated to afford the desired amide $\left(0.460 \mathrm{~g}, 40 \%\right.$ yield) as a white solid. $\mathrm{R}_{f}=0.36$ (silica gel, hexanes:EtOAc $\left.=5: 1\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.00$ ($\mathrm{s}, 1 \mathrm{H}$), 9.19-9.12 (m, 1 H), 8.88 ($\mathrm{s}, 1 \mathrm{H}$), $8.78-8.73$ (m, 1 H), 8.09$7.99(\mathrm{~m}, 2 \mathrm{H}), 7.96-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.53(\mathrm{~m}, 4 \mathrm{H})$. Next, to a suspension of the newly formed amide ($0.050 \mathrm{~g}, 0.14 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH} / \mathrm{EtOAc}(2 \mathrm{~mL}, 1: 1)$ at $23^{\circ} \mathrm{C}$ was flushed several times with nitrogen and then charged with $\mathrm{Pd} / \mathrm{C}(10 \mathrm{wt} \%, 20 \mathrm{mg})$. After flushing the resulting solution several times with H_{2}, the reactions contents were left to stir at $23{ }^{\circ} \mathrm{C}$ under a H_{2} atmosphere for 12 h . Upon completion, the resulting solution was filtered through Celite ${ }^{\circledR}$ (washing with MeOH) and concentrated. The resulting crude product was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ followed by addition of methanol (with stirring) until a clear solution was obtained. The resulting mixture was placed in the freezer $\left(-20^{\circ} \mathrm{C}\right)$ overnight. The precipitate was then collected by filtration, rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried on high vacuum to afford compound $4(20.0 \mathrm{mg}, 44 \%$ yield) as a white solid. 4: $\mathrm{R}_{f}=0.30$ (silica gel, hexanes:EtOAc, 1:1); IR (film) $v_{\max } 3355,3229$, 3053, 1627, 1605, 1526, 1504, 1371, 1264, 1168, 1122, 998, 867, $691 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 10.47$ ($\mathrm{s}, 1 \mathrm{H}$), 8.03-7.92 (m, 2 H), 7.91-7.84 (m, 1 H), 7.61-7.45 (m, 6 H), 7.117.00 (m, 1 H), 5.93-5.82 (br s, 2 H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 165.7,149.8,136.3,133.8$, 129.9 ($\mathrm{q}, ~ J=31.3 \mathrm{~Hz}$), 129.2, 128.1, 126.4, 126.1, 126.0, 125.7, 125.6, 124.0, 123.3, 123.0, 116.7, $112.1(\mathrm{q}, J=4.0 \mathrm{~Hz}), 110.6(\mathrm{q}, J=3.9 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR (470 MHz, DMSO- d_{6}) $\delta-61.34$; HRMS (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$331.1053, found 331.1052.

1

Synthesis of Compound 6

To a solution of amine $\mathbf{1}\left(21.9 \mathrm{mg}, 0.072 \mathrm{mmol}, 1.0\right.$ equiv) in THF $(0.70 \mathrm{~mL})$ at $23{ }^{\circ} \mathrm{C}$ was added 4-nitrophenyl chloroformate ($21.8 \mathrm{mg}, 0.108 \mathrm{mmol}, 1.5$ equiv) and the reaction mixture was allowed to stir at $23{ }^{\circ} \mathrm{C}$ for 1 h . Upon completion, the solution was concentrated directly. Purification of the resultant residue by flash column chromatography (silica gel, hexanes:EtOAc, 2:1) afforded compound 6 ($32.4 \mathrm{mg}, 97 \%$ yield) as a white solid. 6: $\mathrm{R}_{f}=0.27$ (silica gel, hexanes:EtOAc, 1:1); IR (film) $v_{\max } 3254,3051,2051,1735,1638,1603,1523,1489,1345,1201$, $1011,858,778 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19-8.16(\mathrm{~m}, 1 \mathrm{H}), 8.15-8.12(\mathrm{~m}, 2 \mathrm{H}), 7.88-$ $7.83(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 2 \mathrm{H})$, $7.35-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.26-6.21(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{p}, J$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.7$, $155.3,150.5,148.4,145.0,137.8,137.0,134.9,134.1,131.8,131.2,129.0,128.7,126.7,126.1$, $125.3,125.2,123.4,122.7,122.2,120.7,117.7,45.2,20.8,19.2$; HRMS (ESI) calculated for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{5}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 470.1710$, found $\left.470.1703 ;[\alpha]\right]^{20}=-78.4^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

Synthesis of Compound 5

To a solution of $\mathbf{6}\left(8.5 \mathrm{mg}, 0.018 \mathrm{mmol}, 1.0\right.$ equiv) in THF $(0.20 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$ was added n butylamine ($0.01 \mathrm{~mL}, 0.036 \mathrm{mmol}, 2.0$ equiv) and the reaction mixture was allowed to stir for 5 min. Upon completion, the reaction contents were quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and poured into a separatory funnel. The two phases were separated, and the
aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic extract was then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Purification of the resultant residue by flash column chromatography (silica gel, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 40: 1\right)$ afforded compound $5(6.3 \mathrm{mg}, 89 \%$ yield) as a white solid. 5: $\mathrm{R}_{f}=0.41$ (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 40: 1$); IR (film) $v_{\max } 3276,2978,2946,2738$, 2603, 1633, 1548, 1445, 1236, 1172, 1037, $806 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21$ (d, $J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{dd}, J$ $=8.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 3.17(\mathrm{q}, ~ J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.77$ (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.47-$ $1.40(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{dd}, J=15.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 168.2,155.2,140.3,138.1,137.4,133.4,130.5,128.7,127.6,127.2,127.0,126.2$, $125.6,125.5,123.2,122.5,118.3,116.2,44.2,38.7,31.9,21.5,19.5,18.5,13.7$; HRMS (ESI) calculated for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 404.2333$, found 404.2337; $[\alpha]_{\mathrm{D}}{ }^{20}=-32.5^{\circ}(c=0.4$, acetone $)$.

Synthesis of Compound 7

To a solution of amine $\mathbf{1}\left(24.4 \mathrm{mg}, 0.080 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.800 \mathrm{~mL})$ at $23{ }^{\circ} \mathrm{C}$ was added valeroyl chloride ($0.010 \mathrm{~mL}, 0.083 \mathrm{mmol}, 1.0$ equiv) dropwise. Upon completion, the reaction contents were quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, and poured into a separatory funnel. The two phases were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 1 \mathrm{~mL})$. The combined organic extracts were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Purification of the resultant residue by flash column chromatography (silica gel, hexanes:EtOAc, 1:1) afforded compound $7(16.8 \mathrm{mg}, 54 \%$ yield) as a colorless oil. 7: $\mathrm{R}_{f}=0.50$ (silica gel, hexanes:EtOAc, 1:1); IR (film) $v_{\max } 3274,3051,2959,2929,2871,1638$, $1594,1541,1452,1338,1188,1091,823,799,777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.37(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\operatorname{app} \mathrm{p}, J$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{p}, J=7.6$
$\mathrm{Hz}, 2 \mathrm{H}), 1.36$ (hex, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.7, 168.7, 138.1, 136.8, 135.8, 134.1, 131.9, 131.6, 131.3, 129.0, 128.6, 126.7, 126.1, 125.4, 123.6, 122.8, 121.6, 118.4, 45.1, 37.5, 27.7, 22.5, 20.9, 19.4, 13.9.; HRMS (ESI) calculated for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 389.2224$, found 389.2220; $[\alpha]_{\mathrm{D}}{ }^{20}=-81.7^{\circ}\left(c=0.3, \mathrm{CHCl}_{3}\right)$.

Synthesis of S1

A solution of Boc glycine ($507.8 \mathrm{mg}, 2.89 \mathrm{mmol}, 1.0$ equiv), oxyma
 ($0.540 \mathrm{~g}, 3.79 \mathrm{mmol}, 1.2$ equiv), DIC ($0.538 \mu \mathrm{~L}, 3.47 \mathrm{mmol}, 1.2 \mathrm{eq}$) and fluorophore amine ($0.389 \mathrm{~g}, 2.22 \mathrm{mmol}, 0.75 \mathrm{eq}$) in dry DMF (15 mL) was first stirred at $35^{\circ} \mathrm{C}$ for 1 h and then overnight at $45^{\circ} \mathrm{C}$. The reaction mixture was concentrated upon reduced pressure and purification by column chromatography (silica gel, $2-10 \% \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded $\mathbf{S 1}$ in 78% purity as analyzed by LCMS. For further purification, the impure mixture was dissolved in minimal $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water and brine. The organic layer was cooled to $0^{\circ} \mathrm{C}$ and the white precipitate was filtered to yield pure $\mathbf{S 1}\left(0.562 \mathrm{~g}, 76 \%\right.$ yield). S1: ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta 10.39(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.26(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H})$; LRMS (ESI) calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right] 333.14$, found 333.4. ${ }^{2}$

Synthesis of S2

$\mathrm{EDC} \cdot \mathrm{HCl}(5.68 \mathrm{~g}, 29.5 \mathrm{mmol}, 1.3$ equiv) was added to a solution of Fmoc-Lys(Boc)-OH ($10.02 \mathrm{~g}, 22.7 \mathrm{mmol}, 1.0$ equiv), $\operatorname{HOBt}(4.34 \mathrm{~g}, 23.8$ mmol, 1.05 equiv), $\mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{~N}-\mathrm{Gly}-\mathrm{OtBu}(3.80 \mathrm{~g}, 22.7 \mathrm{mmol}, 1.0$ equiv)
 and $i-\operatorname{Pr}_{2} \operatorname{NEt}\left(5.93 \mathrm{~mL}, 34.05 \mathrm{mmol}, 1.5\right.$ equiv) in DMF $(50 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred for 16 h at $23^{\circ} \mathrm{C}$ and then concentrated under reduced pressure. Purification by column chromatography (silica gel, 30-70\% EtOAc:hexane) yielded $\mathbf{S 2}$ ($11.3 \mathrm{~g}, 86 \%$ yield). S2: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.11(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.80(\mathrm{~m}, 1 \mathrm{H})$, 1.60-1.75 (m, 2 H), 1.30-1.55 (m, 21 H); LRMS (ESI) calculated for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{7}\left[\mathrm{M}+\mathrm{H}^{+}\right] 582.31$, found 582.6. ${ }^{3}$

Synthesis of S3

A solution of $\mathbf{S} 2(1.392 \mathrm{~g}, 2.39 \mathrm{mmol}, 1.0$ equiv) in 10% Piperidine: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred for 20 min at $23{ }^{\circ} \mathrm{C}$ and followed with evaporation by rotary evaporation. Dilution with
 DMF (20 mL) and evaporation by rotary evaporation was repeated two more times to remove residual piperidine. The resultant crude was resuspended in DMF (30 mL), Fmoc leucine (0.928 g , $2.62 \mathrm{mmol}, 1.1$ equiv), $\mathrm{HOBt}(80 \%, 0.445 \mathrm{~g}, 2.63 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{EDC} \cdot \mathrm{HCl}(0.596 \mathrm{~g}, 3.10$ mmol, 1.3 equiv) were added then added at $23^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min at $23{ }^{\circ} \mathrm{C}$ and concentrated under reduced pressure. Purification by column chromatography (silica gel, $10-50 \%$ EtOAc: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded $\mathbf{S 3}$ ($1.659 \mathrm{~g}, 85 \%$ yield). $\mathbf{S 3}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{dd}, J=7.5,3.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.62-4.48(\mathrm{~m}, 1 \mathrm{H})$, $4.42(\mathrm{dd}, J=10.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.99-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 1 \mathrm{H}), 1.87(\mathrm{~h}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.74-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.38-1.22(\mathrm{~m}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 172.72,171.60,168.84,156.56,143.96,143.82,141.39,127.84$, $127.19,125.24,120.10,82.41,77.48,76.84,67.20,53.76,52.89,47.24,42.11,41.52,32.06,29.50$, 28.56, 28.14, 24.81, 23.13, 22.62, 21.96; HRMS (ESI) calculated for $\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{8}\left[\mathrm{M}^{+}\right] 694.3942$, found 694.3945.

Synthesis of S4

A solution of $\mathbf{S 3}$ ($1.23 \mathrm{~g}, 1.77 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Et}_{3} \mathrm{SiH}(1.4$ $\mathrm{mL}, 8.76 \mathrm{mmol}$, 5 equiv) in $25 \% \mathrm{TFA}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(28 \mathrm{~mL})$ was stirred at $23{ }^{\circ} \mathrm{C}$ for 18 h , followed by dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and solvent
 removal by rotary evaporation. Dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and solvent evaporation by rotary evaporation was repeated two more times to remove residual TFA. The resultant crude material was resuspended in $\mathrm{MeOH}(15 \mathrm{~mL})$ followed by addition of $\mathrm{Boc}_{2} \mathrm{O}(0.511 \mathrm{~g}, 2.22 \mathrm{mmol}, 1.25$ equiv) and $i-\operatorname{Pr}_{2} \mathrm{NEt}(2.29 \mathrm{~mL}, 13.1 \mathrm{mmol}, 7.5$ equiv). The reaction mixture was stirred for 1 h at $23{ }^{\circ} \mathrm{C}$, diluted with EtOAc (100 mL), and washed with aqueous $\mathrm{HCl}(\mathrm{pH} \sim 2)$. The aqueous layer was further extracted by $\operatorname{EtOAc}(2 \times 30 \mathrm{~mL})$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then evaporated to give a crude product. Purification by column chromatography (silica gel,

3-15\% MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded $\mathbf{S 4}$ ($0.781 \mathrm{~g}, 87 \%$ purity by LCMS). S4: HRMS (ESI) calculated for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{8}\left[\mathrm{M}^{+}\right] 638.3316$, found 638.3312

Synthesis of S5

A solution of $\mathbf{S 1}(47.8 \mathrm{mg}, 0.143 \mathrm{mmol})$ in 20% TFA: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was stirred at $23{ }^{\circ} \mathrm{C}$ for 30 min , followed by dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and solvent
 removal by rotary evaporation. Dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and solvent removal by rotary evaporation was repeated two more times to remove residual TFA. The resultant crude was resuspended in DMF (5 mL) and deprotected amine intermediate ($2.7 \mathrm{~mL}, 77.4 \mu \mathrm{~mol}, 1.0$ equiv) was added to a flask containing $\mathbf{S 4}\left(49.7 \mathrm{mg}, 77.8 \mu \mathrm{~mol}, 1.0\right.$ equiv) and $i-\operatorname{Pr}_{2} \mathrm{NEt}(81.0 \mu \mathrm{~L}, 0.46$ mmol, 6.0 equiv) in DMF $(1 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$. After the addition of $\mathrm{EDC} \cdot \mathrm{HCl}(31.4 \mathrm{mg}, 0.15 \mathrm{mmol}$, 2.0 equiv) the reaction mixture was stirred for 16 h at $23^{\circ} \mathrm{C}$, diluted by EtOAc (20 mL), and then washed with aqueous $\mathrm{HCl}(\mathrm{pH} \sim 2-3)$. The aqueous layer was further extracted by $\mathrm{EtOAc}(2 \times 20$ mL), the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then evaporated to give a crude product. Purification by column chromatography (silica gel, $1-6 \% \mathrm{MeOH}$ in $1: 1 \mathrm{EtOAc}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded $\mathbf{S 5}$ ($22.7 \mathrm{mg}, 34 \%$ yield). S5: ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 10.15$ ($\mathrm{s}, 1 \mathrm{H}$), 8.50-8.38 $(\mathrm{m}, 1 \mathrm{H}), 8.26(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{tdd}, J=7.4$, $2.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.14(\mathrm{~m}, 4 \mathrm{H}), 4.13-$ 4.02 (m, 2 H), 3.95 (d, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.84-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.17$ (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.87$ (d, J $=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.55(\mathrm{td}, J=41.8,8.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H}), 0.79(\mathrm{dd}$, $J=10.8,6.6 \mathrm{~Hz}, 6 \mathrm{H}$); HRMS (ESI) calculated for $\mathrm{C}_{46} \mathrm{H}_{56} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 875.3956$, found 875.3944.

Synthesis of S6

A solution of $\mathbf{S 5}(22.7 \mathrm{mg}, 26.6 \mu \mathrm{~mol}, 1.0$ equiv) in 10% Piperidine: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was stirred for 15 min at $23{ }^{\circ} \mathrm{C}$ and followed with solvent removal by rotary evaporation. Dilution
 with DMF (5 mL) and solvent removal by rotary evaporation was repeated two more times to remove residual piperidine. The resultant crude was resuspended in DMF (2 mL), and $i-\operatorname{Pr}_{2} \mathrm{NEt}$
($18.5 \mu \mathrm{~L}, 0.11 \mathrm{mmol}, 4$ equiv) and acetic anhydride ($10.0 \mu \mathrm{~L}, 0.11 \mathrm{mmol}, 4$ equiv) were added at $23{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at $23^{\circ} \mathrm{C}$, diluted by EtOAc (20 mL), and then washed by aqueous $\mathrm{HCl}(\mathrm{pH} \sim 2-3)$. The aqueous layer was further extracted by $\mathrm{EtOAc}(2 \times 20$ mL), the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then evaporated to give a crude product. Purification by column chromatography (silica gel, $2-15 \% \mathrm{MeOH}$ in $1: 1 \mathrm{EtOAc}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded S6 ($9.7 \mathrm{mg}, 56 \%$ yield). S6: ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.18$ (s, 1 H), 8.39-8.30 $(\mathrm{m}, 1 \mathrm{H}), 8.26(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.68(\mathrm{~m}, 1 \mathrm{H}), 6.27$ $(\mathrm{d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 3.84-3.67$ $(\mathrm{m}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.45(\mathrm{~m}, 4 \mathrm{H})$, $1.36(\mathrm{~s}, 11 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{dd}, J=6.6,3.9 \mathrm{~Hz}, 6 \mathrm{H}) ;$ HRMS (ESI) calculated for $\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{O}_{9}$ $\left[\mathrm{M}^{+}\right] 672.3483$, found 672.3502 .

Synthesis of CV-2

A solution of $\mathbf{S 6}$ ($11.2 \mathrm{mg}, 16.6 \mu \mathrm{~mol}, 1.0$ equiv) in 20% TFA: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was stirred at $23{ }^{\circ} \mathrm{C}$ for 30 min , followed by dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and solvent removal by rotary
 evaporation. Dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and solvent removal by rotary evaporation was repeated two more times to remove residual TFA. The crude was dissolved in DMSO to generate 20 mM stock of CV-2. Purity was assayed by LC/MS. CV-2: HRMS (ESI) calculated for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{7}\left[\mathrm{M}^{+}\right]$ 572.2958, found 572.2956.

Supplementary Data 1 file contains NMR spectra of compounds described in Supplementary Information.

Supplementary Figures

Supplementary Figure 1. Sequence alignment of PLpro homologues. Sequence alignment of SARS-CoV-2 PLpro homologues from CoV-2, SARS, MERS and SADS coronaviruses with structures available in the PDB: SARS CoV-2 (PDB id: 6WZU, this work), SARS CoV (PDB ids: $5 \mathrm{Y}^{2} \mathrm{E}^{4}$ and $3 \mathrm{MJ5}{ }^{5}$), MERS CoV (PDB ids: 5V69 ${ }^{6}$ and 4RNA ${ }^{7}$) and SADS CoV (PDB id: 6L5T ${ }^{8}$). The secondary-structure elements are labelled for SARS-CoV-2 PLpro.

Supplementary Figure 2A. Synthesis of PLpro inhibitors. Synthesis of inhibitors 1-7 starting from commercially available materials.

Supplementary Figure 2B. Synthesis of CV-2. Steps in the synthesis of CV-2 compound.

Supplementary Figure 3: Biochemical assay for PLpro. A) CV-2 features a PLpro peptide substrate tethered to a profluorescent molecule which is cleaved when enzymatic activity of PLpro releases a fluorescent product. B) CV-2 $(40 \mu \mathrm{M})$ incubated with varying amounts of PLpro and fluorescence quantified over time by plate reader. C) Comparison of wild-type to active site mutant (C111S) shows biochemical assays reports on active proteolysis of PLpro. D) PLpro assay performed in the presence and absence of EDTA.

C

Supplementary Figure 4. Whole cell assay for compound 1. Percent Spike positive cells, n=100 for 3 biological replicates each. Scale bar is $100 \mu \mathrm{M}$.

Supplementary Figure 5. Comparison of PLpro Palm domains. Comparison of Palm domains between SARS Cov2 (magenta) and MERS (dark blue) PLpro. Catalytic triad residues are shown in sticks. Large differences are indicated by black arrows.

Supplementary Figure 6. SARS-CoV-2 PLpro ligand binding. $\mathrm{F}_{\mathrm{o}}-\mathrm{F}_{\mathrm{c}}$ electron-density omit maps (green mesh) contoured at 2.2σ for the ligands (magenta sticks) binding to SARS-CoV-2 PLpro (in magenta). A) Compound $\mathbf{1}$ binding to C111S PLpro. B) Compound 2 binding to C111S PLpro. C) Compound $\mathbf{3}$ binding to C111S PLpro. D) Compound $\mathbf{3}$ binding to WT SARS-CoV-2 PLpro.

Supplementary Figure 7. PLpro ligand binding.

A) Superposition of PLpro ligand-binding sites of the unliganded WT protein structure (shown in blue, 6 WZU id: PDB) and the structure with compound 2 (in magenta with the ligand in green, PDB id: 7JIT).

B) Structure superposition of ligand-binding sites of PLpro compound 2 complex (in magenta with ligand in green, PDB id: 7JIT) and SARS-CoV PLpro C112S mutant in complex with ubiquitin (shown in blue with C-terminal part of ubiquitin shown as blue-navy blue sticks, PDB id: 4M0W).

Supplementary References

1 Karplus, P. A. \& Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030-1033, doi:10.1126/science. 1218231 (2012).
2 Laconde, G., Amblard, M. \& Martinez, J. Unexpected Reactivity of N-AcylBenzotriazoles with Aromatic Amines in Acidic Medium (ABAA Reaction). Eur J Org Chem 2019, 85-90, doi:10.1002/ejoc. 201801567 (2019).
3 van Herpt, J. T., Stuart, M. C., Browne, W. R. \& Feringa, B. L. A dithienylethene-based rewritable hydrogelator. Chemistry 20, 3077-3083, doi:10.1002/chem. 201304064 (2014).
4 Lin, M. H. et al. Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Res 150, 155-163, doi:10.1016/j.antiviral.2017.12.015 (2018).

5 Ghosh, A. K. et al. Severe acute respiratory syndrome coronavirus papain-like novel protease inhibitors: design, synthesis, protein-ligand X-ray structure and biological evaluation. J Med Chem 53, 4968-4979, doi:10.1021/jm1004489 (2010).
6 Zhang, W. et al. Potent and selective inhibition of pathogenic viruses by engineered ubiquitin variants. PLoS Pathog 13, e1006372, doi:10.1371/journal.ppat. 1006372 (2017).
7 Lee, H. et al. Inhibitor recognition specificity of MERS-CoV papain-like protease may differ from that of SARS-CoV. ACS Chem Biol 10, 1456-1465, doi:10.1021/cb500917m (2015).

8 Wang, L., Hu, W. \& Fan, C. Structural and biochemical characterization of SADS-CoV papain-like protease 2. Protein science : a publication of the Protein Society 29, 12281241, doi:10.1002/pro. 3857 (2020).

