Understanding the prebiotic potential of different dietary fibers using an *in vitro* continuous adult fermentation model (PolyFermS)

Sophie A. Poeker¹, Annelies Geirnaert¹, Laura Berchtold¹, Anna Greppi¹, Lukasz Krych², Robert E.

Steinert³, Tomas de Wouters¹ and Christophe Lacroix^{1*}

Dietary fiber	Trade name, Supplier	Full name	Sugar moieties	Linkage	Degree of polymerization	Structure	Source	Purity
Inulin-type fructan	Fibrulose F97 (Cosucra Group, Warcoing, Belgium)	Fructo- oligosaccharide	fructose, glucose	β-(2,1) terminal Glc: α–(1,2)	2-20		chicory roots	DM: 96 ± 1 % DP≤ 10: 70 ± 5% on DM DP≤ 20: 94 ± 5% on DM DP >20: 5 ± 5% on DM
α-GOS	Cravingz'Gone [®] P (Olygose, Compiégne Cedex, France)	α-galacto- oligosaccharide	galactose, glucose	<i>α</i> –(1,6)	2 (melibiose) 3 (manninotriose)	HO OH HO OH HO OH HO OH HO OH HO OH	peas	99%
β-glucan	Beta Glucan Powder (CEPARO, Edmonton, Canada)	β-(1,3)-(1,4)-D- glucan	glucose	β-(1,3) β-(1,4)	fiber	$\left[\begin{matrix} OH_{OH} \\ OH \\ OH \\ OH \end{matrix} \right]_{n} \begin{matrix} OH_{OH} \\ OH \\ OH \\ OH \end{matrix} \right]_{n} \begin{matrix} OH_{OH} \\ OH \\ OH$	oats	90%
XOS	XOS 95P (Longlive, Shandong, China)	Xylo- oligosaccharide	D-xylose	β-(1,4)	2-7	HOOH OH .	ligno- cellulosic wastes	≥95% DP 2-7

Supplementary Table S1: Characteristics of the dietary fibers used for medium supplementation during treatment periods.

			в	Phylum	Family	D3	D4
				Firmicutes	Ruminococcaceae	20.9%	19.79
				Firmicutes	Lachnospiraceae	7.3%	13.49
				Bacteroidetes	Bacteroidaceae	16.9%	8.49
				Bacteroidetes	Prevotellaceae	0.1%	17.29
				Euryarchaeota	Methanobacteriaceae	8.7%	1.69
				Firmicutes	Oscillospiraceae	6.8%	4.09
				Bacteroidetes	Rikenellaceae	6.0%	3.49
			-	Verrucomicrobia	Verrucomicrobiaceae	6.2%	0.09
Phylum	D3	D4		Firmicutes	Unclassified Clostridiales	2.7%	5.39
Firmicutes	51%	57%		Firmicutes	Eubacteriaceae	4.3%	7.19
Bacteroidetes	25%	32%		Actinobacteria	Bifidobacteriaceae	3.6%	4.19
Euryarchaeota	9%	2%		Firmicutes	Clostridiaceae	2.9%	1.59
Actinobacteria	6%	6%		Firmicutes	unclassified	0.2%	2.49
Verrucomicrobia	6%	-		Proteobacteria	RF32; unclassified	0.1%	
Proteobacteria	3%	1%		Bacteroidetes	Porphyromonadaceae	2.3%	3.69
Tenericutes	-	3%		Firmicutes	Peptostreptococcaceae	2.2%	1.29
				Firmicutes	Erysipelotrichaceae	0.8%	2.19
				Proteobacteria	Desulfovibrionaceae	2.0%	0.29
				Bacteroidetes	Odoribacteriaceae	-	
				Actinobacteria	Coriobacteriaceae	1.5%	1.39
				Bacteroidetes	Paraprevotellaceae	-	
				Firmicutes	Acidaminococcaceae	0.3%	
				Firmicutes	Christenellaceae	0.9%	0.39
				Firmicutes	Erysipelotrichaceae	0.8%	2.19
				Firmicutes	Veillonellaceae	0.7%	0.69
					1		

Α

Supplementary Table S2: Taxonomic summary of fecal microbiota of selected healthy human donors for PolyFermS experiments. Abundance of phyla (Table 2. A) and families (Table 2. B) obtained by 16S amplicon sequencing of V4 region.

Sum

98.2%

0.6%

	Shannon index													
Ferme	entation 1	Ferme	entation 2	Fermentation 3										
D3	5.77 ± 0.92	D4	5.82 ± 0.89	D3	3.84 ± 0.39									
IR_D12	4.52 ± 0.01	IR_D8	3.58 ± 0.41	IR_D8	4.07 ± 0.01									
IR_D19	4.33 ± 0.52	IR_D14	3.35 ± 0.38	IR_D14	4.02 ± 0.01									
IR_D24	4.39 ± 0.51	IR_D19	3.37 ± 0.31	CR_D8	3.89 ± 0.43									
TR_D31	4.32 ± 0.54	IR_D25	3.37 ± 0.36	CR_D14	3.83 ± 0.39									
CR_D12	4.08 ± 0.53	IR_D31	3.91 ± 0.41											
CR_D19	4.30 ± 0.45	IR_D37	3.86 ± 0.49											
CR_D24	4.15 ± 0.47	CR_D8	3.61 ± 0.39											
CR_D31	4.35 ± 0.52	CR_D14	3.60 ± 0.39											
		CR_D14	3.49 ± 0.39											
		CR_D25	3.34 ± 0.40											
		CR_D31	3.77 ± 0.37											
		CR_D37	3.73 ± 0.42											

Supplementary Table S3: Mean Shannon diversity index of inoculum reactor (IR) and control reactor (CR) samples for different time points along the fermentation periods. Data shown are means ± SD obtained of 11 replicates per sample.

Phylum		Fermentation 1													
Thylan	IR_d12	IR_d19	IR_d24	IR_d31	CR_d12	CR_d19	CR_d24	CR_d31							
Firmicutes	58%	56%	54%	62%	65%	55%	42%	57%							
Bacteroidetes	27%	25%	22%	16%	24%	28%	37%	28%							
Proteobacteria	14%	18%	22%	15%	11%	15%	21%	13%							
Euryarchaeota	1%	1%	1%	2%	0%	2%	0%	2%							
Actinobacteria	0%	0%	0%	5%	0%	0%	0%	0%							
Verrucomicrobia	0%	0%	0%	0%	0%	0%	0%	0%							

Phylum	Fermentation 2													
. ny iani	IR_d8	IR_d14	IR_d19	IR_d25	IR_d31	IR_d37	CR_d8	CR_d14	CR_d19	CR_d25	CR_d31	CR_d37		
Bacteroidetes	56%	60%	60%	61%	50%	52%	61%	62%	62%	62%	52%	56%		
Firmicutes	40%	34%	34%	35%	41%	33%	35%	33%	32%	34%	40%	36%		
Proteobacteria	4%	6%	6%	3%	9%	14%	4%	5%	5%	3%	7%	7%		
Actinobacteria	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		
Euryarchaeota	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		
Verrucomicrobia	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		

Supplementary Table S4: Summary microbial phyla obtained by V4 region 16S amplicon sequencing within non-treated PolyFermS reactors. Inoculum reactor (IR) and control reactor (CR) with donor 3 microbiota (Fermentation 1) on day 12, day 19, day 24 and day 31. Inoculum reactor (IR) and control reactor (CR) with donor 4 microbiota (Fermentation 2) on day 8, day 14, day 19, day 25, day 31 and day 37.

Phylum	Family	Fermentation 1											
Thylam	ranny	IR_d12	IR_d19	IR_d24	IR_d31	CR_d12	CR_d19	CR_d24	CR_d31				
Bacteroidetes	Bacteroidaceae	27.0%	25.4%	22.3%	16.2%	23.4%	28.3%	37.1%	27.7%				
Firmicutes	Lachnospiraceae	13.4%	13.1%	12.0%	8.4%	14.0%	14.8%	9.8%	19.3%				
Firmicutes	Acidaminococcaceae	12.6%	10.5%	11.6%	11.2%	15.1%	11.8%	10.4%	11.5%				
Firmicutes	Ruminococcaceae	18.4%	19.4%	13.8%	21.8%	20.7%	6.7%	5.6%	11.4%				
Proteobacteria	Enterobacteriaceae	9.6%	14.9%	19.6%	14.4%	5.5%	8.8%	14.0%	9.9%				
Firmicutes	Eubacteriaceae	8.6%	7.6%	10.5%	15.1%	4.9%	16.3%	12.7%	8.2%				

Phylum	Family	Fermentation 2													
. ny rann		IR_d8	IR_d14	IR_d19	IR_d25	IR_d31	IR_d37	CR_d8	CR_d14	CR_d19	CR_d25	CR_d31	CR_d37		
Bacteroidetes	Prevotellaceae	52.8%	58.4%	58.2%	58.1%	44.3%	48.6%	50.6%	52.7%	57.9%	58.2%	48.4%	52.3%		
Firmicutes	Ruminococcaceae	19.7%	19.6%	18.0%	18.9%	25.0%	14.0%	17.1%	17.0%	14.3%	20.1%	21.0%	18.9%		
Firmicutes	Lachnospiraceae	8.5%	5.9%	6.8%	8.1%	6.6%	9.8%	8.0%	7.3%	5.5%	5.9%	5.5%	6.8%		
Firmicutes	un classified Lactobacillales	3.6%	2.9%	3.8%	3.3%	4.0%	3.7%	3.6%	3.5%	7.1%	4.0%	7.1%	4.4%		
Bacteroidetes	Bacteroidaceae	2.6%	1.8%	1.8%	2.5%	4.8%	2.5%	10.1%	9.2%	3.7%	3.4%	3.6%	2.8%		

Supplementary Table S5: Summary of most abundant (>5%) microbial families obtained by 16S V4 region amplicon sequencing within non-treated PolyFermS reactors. Inoculum reactor (IR) and control reactor (CR) with donor 3 microbiota (Fermentation 1) on day 12, day 19, day 24 and day 31. Inoculum reactor (IR) and control reactor (CR) with donor 4 microbiota (Fermentation 2) on day 8, day 14, day 19, day 25, day 31 and day 37.

Α	

Ferm					
1 chill	Total SCFAs	Inulin	b-glucan	XOS	α-GOS
	Stabilization I	138.54 ± 3.35	131.24 ± 2.84	136.82 ± 2.75	113.93 ± 6.39
1	Treatment I	143.68 ± 6.11	133.91 ± 6.53	161.64 ± 7.13	167.79±5.54 ^C
1	Stabilization II	125.91 ± 13.84	120.94 ± 7.93	116.25±4.96	
	Treatment II	150.11 ± 6.35	157.71 ± 20.83	162.35±12.09 ^b	
	Stabilization I	133.67 ± 7.62	138.87 ± 10.12	133.77±3.63	142.38 ± 2.83
	Treatment I	154.40 ± 2.84 ^a	154.83 ± 12.85	160.48±5.29 ^b	175.48±9.37 ^b
2	Stabilization II	166.89 ± 3.17	145.75 ± 14.44	139.69 ± 7.05	138.92 ± 6.81
	Treatment II	175.84 ± 2.45 ^a	172.62 ± 1.88 ^a	178.03 ± 3.56 ^b	174.76±3.89 ^b
	Acetate	Inulin	b-glucan	XOS	α-GOS
	Stabilization I	68.56±0.59	56.37±1.96	56.37±1.76	56.88 ± 3.88
1	Treatment I	80.82 ± 3.37 ^b	54.90 ± 1.01	92.62 ± 1.76 ^b	85.10±6.30 ^b
1	Stabilization II	54.26±6.38	59.41 ± 4.60	66.32±0.28	
	Treatment II	57.02 ± 3.01	60.08±10.48	92.62 ± 2.15 ^C	
	Stabilization I	58.76±3.31	59.63 ± 2.77	57.88±0.55	65.44 ± 2.44
	Treatment I	56.56±2.11	64.38 ± 6.23	77.78±6.14 ^b	111.78±4.10 ^C
2	Stabilization II	82.31±0.87	70.48 ± 4.94	58.38±1.19	62.11 ± 1.67
	Treatment II	74.32 ± 1.52 ^a	75.74 ± 0.58	89.39 ± 4.87 ^C	91.43±6.82 ^b
	Propionate	Inulin	b-glucan	XOS	α-GOS
	Stabilization I	26.36 ± 2.10	24.51 ± 1.17	24.51 ± 0.93	21.96 ± 4.53
1	Treatment I	24.57 ± 2.47	18.78±2.16 ^a	22.10 ± 0.22	22.70 ± 1.20
1	Stabilization II	22.37 ± 3.47	42.22 ± 3.95	25.56 ± 2.02	
	Treatment II	22.47±2.73	61.12±1.00 ^b	22.10 ± 1.27	
	Stabilization I	43.17±1.88	39.66±2.18	38.92 ± 3.04	43.00 ± 1.94
2	Treatment I	54.62 ± 1.33 ^C	55.64±4.75 ^b	51.78±1.79 ^b	44.39±4.57
2	Stabilization II	48.20±0.46	43.66±3.66	44.28±1.33	45.67 ± 1.87
	Treatment II	57.34 ± 0.78 ^b	61.11 ± 10 ^a	55.72±0.75 ^c	50.37±1.73 ^a
	Butyrate	Inulin	b-glucan	XOS	α-GOS
	Stabilization I	33.20±1.10	39.82 ± 0.73	39.82 ± 0.05	29.63 ± 1.65
1	Treatment I	33.68±0.45	49.91 ± 4.87 ^b	37.62 ± 0.35 ^a	52.26 ± 2.26 ^C
1	Stabilization II	44.19±4.15	32.95 ± 1.37	35.12±1.00	
	Treatment II	62.49 ± 9.70 ^a	64.50±7.17 ^b	37.62 ± 1.00 ^b	
	Stabilization I	29.28±1.17	31.10±3.40	30.24 ± 2.69	27.56±0.42
2	Treatment I	38.59±0.91 ^C	33.58 ± 0.74	29.59 ± 2.48	$18.6 \pm 1.46^{\circ}$
2	Stabilization II	27.92 ± 0.95	26.71 ± 2.73	33.31 ± 1.35	28.43 ± 1.10
	Treatment II	38.76±0.27 ^b	29.30 ± 1.36	29.52 ± 1.00 ^a	30.18 ± 1.36
	الممقد محمد ممسم المدمامم	4 - 2)			

В

Fermentation 3												
Total SCFAs	α-GOS	Inulin										
Stabilization	134.21 ± 1.44	114.10 ± 4.25										
Treatment	154.97±5.93 ^a	138.98 ± 6.51 ^b										
Acetate	α-GOS	Inulin										
Stabilization	71.98 ± 2.73	60.51 ± 1.60										
Treatment	71.67 ± 3.65	66.33 ± 1.75 ^ª										
Propionate	α-GOS	Inulin										
Stabilization	22.36 ± 1.74	17.50 ± 3.06										
Treatment	28.60 ± 1.75 ^a	21.24 ± 1.69										
Butyrate	α-GOS	Inulin										
Stabilization	27.64 ± 1.52	29.79 ± 1.58										
Treatment	44.12 ± 0.79 ^c	41.03 ± 2.66 ^b										

a Significantly different from Stabilization (p < 0.05) b Significantly different from Stabilization (p < 0.01) c Significantly different from Stabilization (p < 0.001)

Mean and standard error reported (n = 3). a Significantly different from Stabilization (p < 0.05) b Significantly different from Stabilization (p < 0.01)

c Significantly different from Stabilization (p < 0.001)

Supplementary Table S6: Mean metabolite concentrations (mM) measured by HPLC in effluent samples of stable stabilization and treatment phases in test reactors. **(A)** Mean metabolite concentrations with standard error of effluent sample in Fermentation 1 (donor 3) and 2 (donor 4) during stable stabilization and fiber treatment phases (applying the stability criterion of 20 % variation on 3 consecutive days of a period). **(B)** Mean metabolite concentrations with standard error of effluent sample in Fermentation 3 (D3) (applying the stability criterion of 20 % variation of 20 % variation on 3 consecutive days of a period). Significant differences between mean concentration before and at end of treatment period on 0.05 (a), 0.01 (b) and 0.001 (c) level indicated.

Α

								Ferme	entation 1						
Phylum	Family	Stab	Inulin_I	Stab	Inulin_II	Stab	β glucan_l	Stab	β glucan_ll	Stab	xos_i	Stab	xos_II	Stab	α GOS_I
Firmicutes	Ruminococcaceae	22%	28%	28%	20%	19%	26%	21%	10%	24%	22%	19%	22%	19%	9%
Bacteroidetes	Bacteroidaceae	20%	19%	20%	20%	18%	14%	22%	18%	22%	21%	27%	22%	22%	23%
Firmicutes	Eubacteriaceae	18%	8%	12%	11%	10%	23%	7%	20%	7%	8%	6%	6%	10%	14%
Firmicutes	Lachnospiraceae	13%	13%	14%	13%	19%	9%	16%	15%	19%	20%	14%	19%	18%	13%
Firmicutes	Acidaminococcaceae	18%	11%	12%	10%	19%	16%	10%	13%	13%	10%	13%	15%	12%	14%
Proteobacteria	Enterobacteriaceae	0%	10%	5%	12%	1%	2%	11%	7%	1%	7%	7%	3%	11%	11%
Proteobacteria	Alphaproteobacteria	1%	1%	0%	1%	2%	0%	3%	2%	2%	3%	7%	0%	2%	0%
Euryarchaeota	Methanobacteriaceae	2%	3%	2%	2%	2%	2%	2%	5%	2%	2%	1%	2%	1%	2%
Proteobacteria	Sutterellaceae	4%	1%	3%	2%	3%	3%	2%	0%	4%	3%	1%	2%	1%	0%
Firmicutes	Clostridiaceae	0%	2%	0%	1%	4%	0%	1%	4%	1%	0%	1%	0%	0%	5%
Firmicutes	Veillonellaceae	1%	1%	2%	1%	1%	1%	1%	2%	2%	1%	0%	2%	2%	1%
Firmicutes	Alphaproteobacteria	1%	0%	0%	0%	1%	1%	1%	1%	2%	1%	0%	0%	0%	1%
Firmicutes	Lactobacillales	0%	0%	0%	2%	0%	1%	1%	2%	0%	0%	1%	0%	0%	1%
Firmicutes	Lactobacillaceae	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	3%	0%	1%

Supplementary Table S7 A: Abundance on family level in fermentation samples before (stab) and at end of dietary fiber suplementation in fermentation 1 with donor 3 (D3) microbiota. For inulin, b glucan and XOS there are two repetitions performed.

									Fermen	tation 2							
Phylum	Family	Stab	Inulin_I	Stab	Inulin_II	Stab	β glucan_l	Stab	β glucan_II	Stab	xos_i	Stab	XOS_II	Stab	α GOS_I	Stab	α GOS_II
Bacteroidetes	Prevotellaceae	57%	52%	53%	58%	26%	61%	54%	58%	55%	57%	54%	52%	49%	49%	58%	55%
Firmicutes	Ruminococcaceae	13%	19%	16%	22%	22%	18%	22%	16%	16%	16%	13%	14%	13%	19%	17%	14%
Bacteroidetes	Bacteroidaceae	3%	1%	3%	2%	14%	2%	2%	4%	8%	1%	4%	3%	14%	4%	3%	2%
Firmicutes	Lachnospiraceae	7%	7%	4%	4%	9%	4%	6%	4%	6%	5%	6%	11%	6%	12%	5%	10%
Proteobacteria	Desulfovibrionaceae	2%	2%	4%	2%	6%	1%	2%	2%	3%	3%	3%	2%	3%	2%	2%	2%
Firmicutes	Eubacteriaceae	2%	1%	1%	1%	3%	5%	2%	3%	3%	6%	4%	3%	3%	2%	1%	7%
Firmicutes	Lactobacillales	3%	4%	6%	2%	6%	1%	2%	3%	2%	5%	6%	6%	3%	5%	6%	4%
Proteobacteria	Sutterellaceae	2%	1%	2%	3%	4%	3%	4%	3%	2%	3%	4%	3%	3%	2%	4%	2%
Firmicutes	Oscillospiraceae	1%	0%	3%	1%	3%	1%	2%	3%	2%	1%	2%	2%	2%	1%	2%	1%
Firmicutes	Clostridiales	0%	0%	1%	0%	3%	0%	0%	0%	1%	0%	1%	0%	1%	0%	0%	0%
Firmicutes	Veillonellaceae	1%	1%	1%	1%	1%	1%	2%	1%	1%	2%	1%	1%	1%	1%	1%	2%
Firmicutes	Lactobacillaceae	1%	1%	1%	1%	0%	0%	0%	1%	1%	1%	0%	0%	0%	0%	1%	0%
Proteobacteria	Enterobacteriaceae	4%	4%	3%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%
Proteobacteria	Moraxellaceae	1%	6%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Supplementary Table S7 B: Abundance on family level in fermentation samples before (stab) and at end of dietary fiber suplementation in fermentation 2 with donor 4 (D4) microbiota. For all dietary fibers there are two repetitions performed.

Α	Phylum	Fermentation 3					Fermentation 1						
		Feces_D3	IR_d8	IR_d14	CR_d8	CR_d14	Feces_D3	IR_d12	IR_d19	CR_d12	CR_d19		
	Firmicutes	50%	67%	68%	82%	84%	51%	58%	56%	65%	55%		
	Bacteroidetes	31%	29%	28%	10%	6%	25%	27%	26%	23%	28%		
	Proteobacteria	5%	1%	2%	7%	7%	3%	14%	18%	11%	15%		
	Euryarchaeota	6%	2%	1%	1%	1%	9%	1%	1%	0%	1%		
	Actinobacteria	4%	2%	1%	1%	1%	6%	0%	0%	0%	0%		
	Verrucomicrobia	4%	0%	0%	0%	0%	6%	0%	0%	0%	0%		

В

		Fe	rmentatio	n 3		Fermentation 1					
Phylum	Family	Feces_D3	IR_d8	IR_d14	CR_d8	CR_d14	Feces_D3	IR_d12	IR_d19	CR_d12	CR_d19
Firmicutes	Ruminococcaceae	16.4%	16.0%	22.5%	38.7%	43.2%	20.9%	18.8%	19.0%	20.8%	6.6%
Firmicutes	Acidaminococcaceae	0.6%	22.9%	15.7%	11.8%	18.8%	0.3%	12.6%	10.3%	15.4%	11.9%
Firmicutes	Eubacteriaceae	3.4%	14.1%	17.0%	19.1%	9.6%	4.3%	8.5%	7.7%	4.9%	16.2%
Proteobacteria	Enterobacteriaceae	0.3%	0.0%	0.0%	6.1%	7.1%	0.1%	9.7%	15.0%	5.3%	8.9%
Firmicutes	Lachnospiraceae	11.0%	8.7%	8.6%	8.7%	6.5%	7.3%	13.2%	13.0%	13.9%	14.6%
Bacteroidetes	Bacteroidaceae	21.7%	29.0%	28.3%	9.9%	6.4%	16.9%	26.9%	25.6%	23.3%	28.3%
Euryarchaeota	Methanobacteriaceae	6.0%	1.9%	0.6%	0.8%	1.3%	8.7%	0.7%	0.6%	0.1%	1.4%
Firmicutes	Oscillospiraceae	8.9%	1.0%	0.6%	0.6%	0.5%	6.8%	0.9%	0.7%	0.2%	0.6%
Verrucomicrobia	Verrucomicrobiaceae	4.2%	0.0%	0.0%	0.0%	0.0%	6.1%	0.0%	0.0%	0.0%	0.0%
Bacteroidetes	Rikenellaceae	4.4%	0.0%	0.0%	0.0%	0.0%	6.1%	0.0%	0.1%	0.0%	0.1%

Supplementary Table S8: Summary microbial phyla obtained by V4 region 16S amplicon sequencing within non-treated PolyFermS reactors and their respective fecal inoculum of donor 3. **B**:Summary of most abundant (>5%) microbial families obtained by 16S V4 region amplicon sequencing within non-treated PolyFermS reactors with donor 3 (D3) microbiota. Inoculum reactor (IR) and control reactor (CR) of fermentation 1 on day 12 and day 19 and of fermentation 3 on day 8 and day 14.

в

			Fermen	tation 3		Fermentation 1					
Phylum	Family	Stab	Inulin_I	Stab	a GOS_I	Stab	Inulin_I	Stab	Inulin_II	Stab	a GOS_I
Firmicutes	Ruminococcaceae	41%	48%	24%	31%	22%	29%	28%	19%	19%	9%
Bacteroidetes	Bacteroidaceae	6%	6%	22%	26%	20%	19%	21%	21%	21%	23%
Firmicutes	Acidaminococcaceae	16%	15%	17%	16%	17%	11%	12%	10%	13%	13%
Firmicutes	Lachnospiraceae	14%	12%	9%	10%	14%	14%	14%	13%	18%	13%
Firmicutes	Eubacteriaceae	15%	9%	17%	10%	18%	8%	12%	11%	10%	14%
Firmicutes	Veillonellaceae	2%	2%	2%	1%	1%	2%	2%	1%	2%	1%
Firmicutes	Oscillospiraceae	1%	1%	1%	1%	0%	0%	1%	0%	0%	0%
Firmicutes	Lactobacillaceae	1%	2%	1%	1%	0%	0%	0%	4%	0%	1%
Euryarchaeota	Methanobacteriaceae	1%	1%	2%	1%	2%	3%	2%	2%	1%	2%
Actinobacteria	Bifidobacteriaceae	1%	1%	0%	0%	0%	0%	0%	0%	0%	3%
Firmicutes	Clostridiaceae	1%	1%	1%	0%	0%	2%	0%	1%	0%	5%
Firmicutes	Other	0%	2%	0%	0%	0%	0%	0%	2%	0%	1%
Proteobacteria	unclassified	0%	0%	0%	0%	1%	1%	0%	1%	2%	0%
Proteobacteria	Sutterellaceae	0%	0%	1%	0%	4%	1%	3%	2%	1%	0%
Proteobacteria	Enterobacteriaceae	0%	0%	0%	0%	0%	10%	4%	12%	11%	11%

Supplementary Table S9 Abundance on family level in fermentation samples before (stab) and at end of dietary fiber suplementation in fermentation 1 and 3 (donor 3).

Supplementary figures

Supplementary Figure S1: Heatmap depicting the most abundant OTUs (> 1 %) at order level in the fecal (donor 3 and donor 4) and PolyFermS microbiota of inoculum reactor (IR) and control reactor (CR) along both fermentations. Heatmap was constructed using normalized abundance of each OTU.

Supplementary Figure S2: Daily SCFA concentrations in fermentation effluents of inoculum reactor (IR) (**A & C**) of both PolyFermS fermentations measured by HPLC. Colonization: three consecutive batch fermentations for bead colonization. IR stabilization: stabilization period in continuous mode to reach steady-state

Α

Supplementary Figure S3: Treatments with dietary fibers result in higher Total SCFA productions. Mean (black horizontal line) from three consecutive measurements of total SCFAs (mM) in the respective reactor at end of stabilization and treatment phase for fermentation 1 (Donor 3) and fermentation 2 (Donor 4). Two replicates are shown for each dietary fiber treatment, except α -GOS in fermentation

Supplementary Figure S4: Daily SCFA concentrations in fermentation effluents of inoculum reactor (IR) in Fermentation 3 (donor 3) measured by HPLC.

Inoculum reactor - Fermentation 3

Supplementary Figure S5: Heatmap depicting abundance of the most abundant OTUs (> 1 %) on family level in fermentation microbiota at end of stabilization and treatment periods. Heatmap was constructed using normalized abundance of each OTU. **A**: F1 (D3), **B**: F2 (D4), **C**: F1+F3 (D3); F, fermentation; D, donor.