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Simvastatin-induced cell cycle arrest through inhibition
of STAT3/SKP2 axis and activation of AMPK to promote
p27 and p21 accumulation in hepatocellular carcinoma
cells

Sin-Ting Wang'?, Hsiu J Ho?, Jaw-Town Lin®*, Jeng-Jer Shieh*'¢1* and Chun-Ying Wy*267:89.10

Hepatocellular carcinoma (HCC) is characterized by a poor prognosis and is one of the leading causes of cancer-related death
worldwide. Simvastatin, an HMG-CoA reductase inhibitor, which decreases cholesterol synthesis by inhibiting mevalonate
pathways and is widely used to treat cardiovascular diseases. Simvastatin exhibits anticancer effects against several
malignancies. However, the molecular mechanisms underlying the anticancer effects of simvastatin on HCC are still not well
understood. In this study, we demonstrated simvastatin-induced G0/G1 arrest by inducing p21 and p27 accumulation in HepG2 and
Hep3B cells. Simvastatin also promoted AMP-activated protein kinase (AMPK) activation, which induced p21 upregulation by
increasing its transcription. Consistent with this finding, we found genetic silencing of AMPK reduced p21 expression; however,
AMPK silencing had no effect on p27 expression in HCC cells. Simvastatin decreased Skp2 expression at the transcriptional level,
which resulted in p27 accumulation by preventing proteasomal degradation, an effect mediated by signal transducer and activator
of transcription 3 (STAT3) inhibition. Constitutive STAT3 activation maintained high-level Skp2 expression and lower level p27
expression and significantly prevented G0/G1 arrest in simvastatin-treated HCC cells. Mevalonate decreased simvastatin-induced
AMPK activation and rescued phospho-STAT3 and Skp2 expression in HCC cells, which resulted in the prevention of G0/G1 arrest
through inhibition of p21 and p27 accumulation. Moreover, simvastatin significantly decreased tumor growth in HepG2 xenograft
mice. Consistently, we found that simvastatin also increased p21 and p27 expression in tumor sections by reducing Skp2
expression and inducing AMPK activation and STAT3 suppression in the same tumor tissues. Taken together, these findings are
demonstrative of the existence of a novel pathway in which simvastatin induces GO/G1 arrest by upregulating p21 and p27 by
activating AMPK and inhibiting the STAT3-Skp2 axis, respectively. The results identify novel targets that explain the beneficial
anticancer effects of simvastatin treatment on HCC in vitro and in vivo.
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Hepatocellular carcinoma (HCC) is the fifth most common HCC. It does not eliminate the risk of the disease. Metabolic

cancer and the third leading cause of cancer-related mortality
worldwide."? HCC is induced by multiple conditions, including
hepatitis B virus (HBV) infection, hepatitis C virus (HCV)
infection, alcoholic liver disease and metabolic syndrome.3
Despite advances in HCC diagnosis and treatment, most HCC
patients still have a poor prognosis because of tumor
progression or tumor recurrence.* Therefore, it is essential to
develop chemopreventive strategies to improve HCC patient
outcomes. In a previous study of patients with HBV- and HCV-
related HCC, we reported that antiviral therapy reduced HCC
recurrence and mortality after liver resection or radiofrequency
ablation.>” However, antiviral therapy only reduces the risk of

syndrome seems to have important roles in HCC development
in the post-antiviral therapy era. We found that the risk of HCC
was significantly higher in diabetic patients than in the general
population and that metformin decreased the risk of HCC by
inhibiting hepatoma cell proliferation and inducing cell cycle
arrest.® Statins have been suggested to inhibit HCC progres-
sion and increase HCC survival in patients with hyperlipidemia.

Statins are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-
CoA) reductase inhibitors, which catalyze the rate-limiting step
in cholesterol biosynthesis and are widely used to treat
patients with hypercholesterolemia.® The chemopreventive
effects of statins have been reported in several cancers, such
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as gastric, breast, colon, liver and prostate cancer.'®"'2 Their
potential mechanisms of action involve the inhibition of tumor
cell proliferation, the promotion of cell cycle arrest, the
induction of apoptotic cell death, and the inhibition of cell
migration, invasion and metastasis.>'® In addition, statins
attenuate the production of isoprenoid units, which are critical
for the activation of Rho, Ras and Rab proteins.'>'® Statins
also affect cyclin-dependent kinase inhibitors'2 and have been
shown to inhibit PISK/AKT signaling and induce derepression
of PTEN expression to inhibit breast cancer cell growth.'*®
AMP-activated protein kinase (AMPK), a cellular energy
sensor that mediates metabolic homeostasis under environ-
mental stress conditions, was recently reported to be activated
by statins.'®2° Autophagy inhibition enhances the anticancer
effects of statins in digestive malignancies.'®?' AMPK
activation has been reported to suppress cell proliferation in
non-tumor and tumor cells by regulating cell cycle progression
or inhibiting protein synthesis.®222* |n addition, signal
transducer and activator of transcription 3 (STAT3), an
important signaling protein that contributes to HCC develop-
ment and progression, may be inhibited by statins in several
cellular systems.2>27 The findings of recent studies suggest
that simvastatin may inhibit cancer cell growth by inducing
apoptosis or cell cycle arrest at the GO/G1 phase, thereby
decreasing the risk of HCC.%*® However, whether AMPK and
STAT3 have roles in the anticancer effects of statins in HCC
remains unclear.

In this study, we showed that simvastatin can induce cell
cycle arrest and increase cyclin-dependent kinase inhibitor
expression in HCC cells. We demonstrated that simvastatin-
induced cell cycle arrest was regulated by AMPK activation and
STAT3 inactivation to transcriptionally increase p21 expression
and stabilize p27 protein expression by inhibiting Skp2
expression, respectively. Moreover, we established a HepG2
tumor-bearing xenograft animal model to examine the antitumor
effects of simvastatin in vivo. Our results showed that
simvastatin inhibited tumor growth and that the expression
patterns of p21, p27, Skp2, AMPK and STAT3 were similar to
those of the in vitro study. Overall, our findings provide evidence
of the existence of a novel molecular mechanism by which
simvastatin exerts its anticancer effects in HCC.

Results

Simvastatin induces p21 and p27 expression-dependent
GO0/G1 cell cycle arrest in HCC cell lines. To determine
whether simvastatin influences cell growth in hepatoma, we
investigated the effect of simvastatin on cell viability in the
HepG2 and Hep3B hepatoma cell lines. Simvastatin had
significant dose- and time-dependent inhibitory effects on
hepatoma cell growth in HepG2 and Hep3B cells, as
demonstrated by CCK-8 assay (Figure 1a). To evaluate
whether simvastatin induces cell death in hepatoma, we
performed a viable cell count assay by Trypan blue staining in
HepG2 and Hep3B cells. The results showed that the
decrease in HepG2 and Hep3B cell viability elicited by
5-20 pug/ml simvastatin treatment (Figure 1a) did not corre-
spond to the cell death rate of both cells subjected to the
same dosage of simvastatin treatment (Figure 1b). Thus,
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simvastatin mainly inhibited HepG2 and Hep3B cell growth
but did not cause cell death at doses <40 ug/ml. In addition,
simvastatin treatment at a dose of 40ug/ml induced
higher apoptosis in HepG2 cells than in Hep3B cells
(Supplementary Figure S1). The mechanism underlying
statin-induced p53-dependent apoptosis has been clearly
elucidated.?® Here, we focused on how simvastatin inhibits
hepatoma cell growth. To investigate the mechanism
underlying simvastatin-induced hepatoma cell growth inhibi-
tion, we analyzed the effect of simvastatin on cell cycle
distribution using flow cytometry. We observed that after 48 h
of incubation, simvastatin arrested cell cycle progression at
the GO/G1 phase in HepG2 cells in a dose-dependent
manner. The sizes of the sub-G1 populations of HepG2 cells
were not significantly increased in the control and
simvastatin-treated groups (Figure 1c). Simvastatin had a
similar effect on cell cycle distribution in Hep3B cells
(Figure 1d). As shown in Figure 1c, various doses of
simvastatin arrested the cell cycle at the GO/G1 phase. The
cell populations increased from 54.5% in control cells to
70.7% (20 ug/ml simvastatin) in HepG2 cells and from
42.74% in control cells to 59.2% (20 ug/ml simvastatin) in
Hep3B cells. In addition, we observed that simvastatin
treatment decreased cyclin D1 expression and increased
p21 and p27 expression but had no significant modulatory
effects on cyclin E1 expression in either HepG2 or Hep3B
cells (Figure 1e). To determine whether simvastatin
treatment-induced GO/G1 cell cycle arrest was dependent
on p21 or p27 expression in HCC cells, we genetically
silenced p21 and p27 in HepG2 cells and confirmed the
decline of p21 and p27 expression by immunoblotting
(Figure 1f). These p21 and p27 knockdown cells
rescued the GO/G1 cell population under simvastatin
treatment (Figure 1g). These results indicated that simvas-
tatin treatment-induced GO/G1 cell cycle arrest that was
dependent on p21 and p27 accumulation in HepG2 cells.

Simvastatin induces p21 and p27 accumulation by
increasing p21 transcription and preventing p27 degra-
dation in HepG2 cells. To evaluate whether simvastatin
increased p21 and p27 levels at the transcriptional, transla-
tional or degradation level, we first analyzed p21 and p27
mRNA levels by RT-PCR and real-time PCR after simvastatin
treatment. We observed that p21 mRNA levels were upregu-
lated and that p27 mRNA levels were not significantly affected
by simvastatin stimulation (Figure 2a). We then examined
whether simvastatin stabilized p21 and p27 protein expres-
sion. Compared with non-treated cells, simvastatin-treated
cells exhibited a slower decrease in p27 expression than in
p21 expression following treatment with the translation inhibitor
cycloheximide (CHX) (Figure 2b). One of the mechanisms that
controls p21 and p27 levels is proteasomal degradation.3%"
We used MG132 to clarify whether simvastatin inhibits p21
and p27 protein degradation by blocking the ubiquitin
proteasome pathway. We surmised that if simvastatin inhibits
p21 and p27 proteasomal degradation, the protein levels of
p21 and p27 will not change in the presence of MG132,
irrespective of simvastatin administration. We thus also
surmised that if simvastatin does not inhibit proteasomal
degradation, the protein levels of p21 and p27 will increase
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Figure 1 Simvastatin induces p21 and p27-dependent GO/G1 cell cycle arrest in HCC cell lines. Simvastatin suppressed cell growth in HCC cells. HepG2 and Hep3B cells
were treated with various concentrations of simvastatin for 24 and 48 h. (a) Cell growth inhibition was measured by CCK-8 assay. (b) Cell death rates were determined by viable
cell counting. These data are presented as percentages of vehicle-treated cells (*un-treated versus treated of HepG2 or Hep3B cells for 24 h or 48 h). (c and d) Simvastatin-
induced HCC cell GO/G1 phase arrest. HepG2 and Hep3B cells were treated with simvastatin (0, 5, 10 or 20 .g/ml) for 48 h, and then cell cycle distributions were analyzed by
Pl staining and flow cytometry. (e) Simvastatin-induced GO/G1 phase-related protein expression in HCC cells. The cells were treated with simvastatin (0, 5, 10 or 20 p.g/ml) for
24 h, and then the cell lysates were harvested for analysis of the expression of the cell cycle-related proteins p21, p27, cyclin D1, cyclin E1 and $-actin by immunoblotting.
(f and g) Simvastatin-induced p21- and p27-dependent GO/G1 cell cycle arrest in HCC cells. HepG2 cells were transfected with p21, p27 or control siRNA for 24 h and then
treated with 10 ng/ml simvastatin for 48 h. The cells were then harvested, and their DNA content and protein expression were analyzed by flow cytometry and immunoblotting
using p21, p27 and p-actin antibodies. Data are expressed as the mean + S.E.M. of three independent experiments. Statistically significant differences between the un-treated

and treated groups are indicated. *P<0.05, **P<0.01, ***P<0.001

upon simvastatin treatment in the presence of MG132, which
would indicate that simvastatin either inhibits protein degrada-
tion by blocking another pathway, such as the lysosomal
pathway, or induces protein synthesis at the transcriptional
and/or translational level. Based on the results of this
experiment, we determined that p21 levels increased sig-
nificantly in the presence of MG132 following simvastatin
treatment, but p27 levels were not affected by simvastatin
treatment (Figure 2c). Taken together, our results suggested
that simvastatin-induced p21 protein expression mainly at the
transcription level and upregulated p27 protein expression pre-
dominantly by preventing protein degradation in HepG2 cells.

Simvastatin-induced p21 transcriptional upregulation is
AMPK dependent in HepG2 cells. Simvastatin has been
reported to activate the AMPK pathway.'®'® To investigate

whether AMPK has a role in influencing GO/G1 phase arrest
in HepG2 cells after simvastatin treatment, we detected
AMPK expression levels by immunoblotting analysis. Similar
to the above results pertaining to the expression patterns of
p21 and p27, these results showed that simvastatin treatment
increased the level of phosphorylated AMPK (Figure 3a). To
further examine whether AMPK-mediated simvastatin-
induced GO/G1 phase arrest, we genetically knocked down
AMPK expression in HepG2 cells using small interfering RNA
(siRNA). AMPK knockdown cells displayed a partially but
significantly decreased GO/G1 cell population under simvas-
tatin treatment (Figure 3b). We also found that AMPK
knockdown reduced p21 expression, but not p27 expression,
in simvastatin-treated HepG2 cells (Figure 3c). These results
provided evidence that AMPK activation by simvastatin-
induced p21 expression at the transcriptional level and that
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p21 expression may be involved in simvastatin-induced cell
cycle GO/G1 arrest in hepatoma cells.

Simvastatin transcriptionally inhibits Skp2 expression
and promotes p27 accumulation in HepG2 cells. Recent
studies have shown that Skp2 E3 ligase activity can promote
p27 degradation to prevent p27-induced cell cycle
arrest.3%3233 Therefore, we hypothesized that simvastatin
may inhibit Skp2 to promote p27 accumulation and GO/G1 cell
cycle arrest in HCC cells. As shown in Figure 4a, simvastatin
decreased Skp2 protein expression in a dose-dependent
manner. To evaluate the mechanism underlying simvastatin-
induced decreases in Skp2 expression in HepG2 cells, we first
analyzed Skp2 mRNA expression after simvastatin treatment
using RT-PCR and real-time PCR. Our data showed that Skp2
mRNA expression decreased during simvastatin treatment

a HepG2, Simvastatin, 24hrs [
pa/mi

0 5 10 20

367bp
197bp

454bp

Relative p21 and p27
mRNA expression

(Figure 4b). We also confirmed that simvastatin inhibited Skp2
transcription in HepG2 cells by Skp2 promoter-driven lucifer-
ase assay (Figure 4c). Consistent with these findings, we
found that Skp2 overexpression significantly prevented
simvastatin-induced GO/G1 cell cycle arrest and p27 accumu-
lation (Figures 4d and €). In addition, compared with control
HepG2 cells, Skp2-overexpressing HepG2 cells did not
maintain the simvastatin-enhanced p27 protein stability after
treatment with CHX (Supplementary Figure S2). These results
indicated that simvastatin treatment downregulated Skp2
expression at the transcriptional level and then promoted
p27 accumulation to induce GO/G1 cell cycle arrest.

Simvastatin inhibits the STAT3/Skp2 axis to induce G0/G1
cell cycle arrest in HepG2 cells. It has been reported that
STAT3 inactivation induces Skp2 downregulation and p27
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Figure 2 Simvastatin-induced p21 and p27 protein upregulation was associated with transcriptional activation and protein degradation inhibition, respectively. (a) Simvastatin
modulated p21 mRNA expression. HepG2 cells were treated with simvastatin (0, 5, 10 or 20 ug/ml) for 24 h, and p21, p27 and GAPDH mRNA expression levels were detected by
RT-PCR and real-time PCR. (b) The effects of p21 and p27 protein stability in simvastatin-treated HCC cells. HepG2 cells were treated with 10 pg/ml CHX alone for 1,2, 4,6 0r12 h
or 10 ug/ml simvastatin for 12 h. After 12 h, simvastatin-treated cells were co-treated with 10 .g/ml CHX for 1,2, 4, 6 or 12 h. The cell lysates were harvested to detect p21, p27 and
p-actin protein expression by immunoblotting. The intensity of each protein signal was determined by ImageJ software (downloaded from the NIH website (http:/rsb.info.nih.goviij)).
(c) Inhibition of proteasomal degradation promoted p21 accumulation, but not p27 accumulation, in simvastatin-treated HCC cells. HepG2 cells were treated with 20 zg/ml
simvastatin with or without 10 M MG132 for 24 h and then subjected to immunoblotting for the detection of p21, p27 and f-actin expression levels. Data are expressed as the
mean + S.E.M. of three independent experiments. Statistically significant differences between the un-treated and treated groups are indicated. **P<0.01, ***P<0.001
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Figure 3 Simvastatin-induced AMPK activation and p21 upregulation partially induced GO/G1 arrest in HepG2 cells. (a) Simvastatin-induced AMPK activation was
associated with p21 and p27 upregulation. HepG2 cells were treated with simvastatin (0, 5, 10 or 20 ng/ml) for 12 h, and then immunoblotting was used to detect p-AMPK, AMPK,
p21, p27 and g-actin protein expression levels. (b and ¢) Genetic silencing of AMPK reduced G0/G1 phase arrest and p21 expression in simvastatin-treated HCC cells. HepG2
cells were transfected with AMPK or control siRNA for 24 h and then treated with 10 n.g/ml simvastatin for 48 h. (b) Cells were collected for analysis of their DNA content by flow
cytometry. (c) Cell lysates were harvested to detect protein expression levels by immunoblotting using p-AMPK, AMPK, p21, p27 and f-actin antibodies. The results were
obtained from three independent experiments. Data are expressed as the mean + S.E.M. of three independent experiments. **P<0.01, ***P<0.001

upregulation in cervical and gastric cancer.3**® We investi-
gated the molecular mechanisms underlying this phenomenon
to determine whether STAT3 interacts with the Skp2/p27
pathway in simvastatin-treated HepG2 cells. We found that
simvastatin decreased phospho-STATS3 levels, as well as those
of its upstream regulators, Jak1 and Jak2, in HepG2 cells, as
shown in Figure 5a. Next, we attempted to evaluate whether
constitutive STAT3 activation facilitated by the expression of a
constitutively activate mutant of STAT3 (STAT3C) could
reverse the above simvastatin-induced effects. We transfected
HepG2 cells with the STAT3C expression vector and selected
cells that stably expressed STAT3C. We observed that the
GO0/G1 cell population in STAT3C-transfected cells was lower
than that in mock cells after simvastatin treatment (Figure 5b).
As shown in Figure 5c, the mRNA expression levels of
Skp2 increased significantly in STAT3C-transfected cells
compared with those in mock cells, confirming the existence

of a relationship between STAT3 and Skp2. To further
investigate whether cell cycle-related molecule expression
levels were affected in the mock and STAT3C-transfected
groups after simvastatin treatment, we detected p-STATS3,
STATS3, Skp2 and p27 expression levels by immunoblotting
analysis. We found that STAT3C-transfected cells treated
with simvastatin maintained higher Skp2 protein expression
levels but displayed severely decreased p27 expression
compared with mock cells (Figure 5d). Thus, our results
indicated that simvastatin-induced p27 upregulation is Skp2
dependent and occurs through inhibition of the STAT3/Skp2
activation axis.

Mevalonate reverses the activation of AMPK and the
inhibition of STAT3 facilitated by simvastatin treatment in
HepG2 cells. Many studies have demonstrated that
statins decrease cholesterol biosynthesis by inhibiting the
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Figure 4 Simvastatin-induced p27 upregulation was Skp2-dependent and promoted GO/G1 phase cell cycle arrest in HepG2 cells. (a) Simvastatin decreased Skp2 protein
expression in HepG2 cells. HepG2 cells were treated with simvastatin (0, 5, 10 or 20 pg/ml) for 24 h, and then cell lysates were harvested to detect the protein expression levels of
Skp2 and p-actin by immunoblotting. (b) Simvastatin inhibited Skp2 mRNA expression in HepG2 cells. After the same treatment, cells were collected for analysis of Skp2 and
GAPDH mRNA expression levels by RT-PCR and real-time PCR. (c) Simvastatin reduced Skp2 promoter activity. HepG2 cells were transfected with a pGL4.18-Skp2 promoter
plasmid for 24 h and were then treated with simvastatin (0 or 20 z.g/ml) for 24 h. The cell lysates were harvested to assay luciferase activity using a dual-luciferase assay kit. Data
were normalized to Renilla luciferase activity and expressed as fold inductions of the control. (d) Skp2 overexpression rescued cells from simvastatin-induced GO/G1 cell cycle
arrest. Control and Skp2-overexpressing HepG2 cells were treated with simvastatin (0, 10 or 20 xg/ml) for 48 h, and then the cells were collected for DNA content assay by flow
cytometry. (e) Simvastatin was unable to change Skp2 and p27 protein expression levels in Skp2-overexpressing HepG2 cells. Control and Skp2-overexpressing HepG2 cells
were treated with simvastatin (0 or 20 ug/ml) for 24 h, and then the cell lysates were collected for protein expression detection by immunoblotting using Skp2, p27 and g-actin
antibodies. The results were obtained from three independent experiments. Data are expressed as the mean =+ S.E.M. of three independent experiments. **P<0.01,
**P<0.001

endogenous mevalonate pathway.>6-2® Here, restoration of
mevalonate, the HMG-CoA reductase product, signif-
icantly reduced AMPK phosphorylation (Figure 6a) and
maintained higher phospho-STAT3 and Skp2 levels, with
decreased p21 and p27 accumulation, in simvastatin-
treated HepG2 cells (Figure 6b). Moreover, we also
observed that mevalonate treatment effectively prevented
simvastatin-induced GO/G1 cell cycle arrest in HepG2
cells (Figure 6c). Taken together, our findings demon-
strated that AMPK pathway activation and STAT3/Skp2
pathway inhibition in HepG2 cells are dependent on inhibition
of the conversion of HMG-CoA reductase to mevalonate
by simvastatin.

Cell Death and Disease

Simvastatin inhibits tumor growth in xenograft animal
models. To examine the antitumor effect of simvastatin
in vivo, we injected HepG2 cells subcutaneously into the
flanks of BALB/c nude mice to establish a HepG2 tumor-
bearing animal model. As shown in Figure 7a, we demon-
strated that simvastatin significantly suppressed tumor
growth (Figure 7b) and reduced tumor weight (Figure 7c) in
nude mice. Consistent with these findings, we found that p21
and p27 expression levels were increased by simvastatin
treatment in mice compared with saline treatment (Figure 7d).
In addition, using immunohistochemistry (IHC), we also
observed that simvastatin treatment increased AMPK phos-
phorylation, reduced STAT3 phosphorylation and decreased
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Figure 5 STAT3C mutants maintained Skp2 expression to prevent p27 accumulation and GO/G1 cell cycle arrest in simvastatin-treated HepG2 cells. (a) Simvastatin inhibited
the Jak1/Jak2-STAT3 pathway in HCC cells. HepG2 cells were treated with simvastatin (0, 5, 10 or 20 pg/ml) for 24 h, and then the cell lysates were harvested for the detection of
protein levels by immunoblotting using p-Jak1, Jak1, p-Jak2, Jak2, p-STAT3, STAT3 and f-actin antibodies. (b) STAT3C mutants prevented simvastatin-induced GO/G1 cell cycle
arrest in HepG2 cells. HepG2 cells were stably transfected with control vectors or STAT3C mutants and were then treated with simvastatin (0, 10 or 20 xg/ml) for 48 h. Then, the
cells were collected for DNA content assay by flow cytometry. (c) Constitutive STAT3 activation in HepG2 cells upregulated Skp2 expression at the transcriptional level. Control
and constitutive STAT3 activity levels in HepG2 cells were analyzed by RT-PCR to determine HepG2 Skp2 mRNA expression levels. (d) HepG2 cells stably expressing STAT3C
maintained higher Skp2 levels and lower p27 levels. Control and STAT3C-expressing HepG2 cells were treated with simvastatin (0 or 20 xg/ml). Twenty-four hours later, the cell
lysates were collected to detect protein expression by immunoblotting using p-STAT3, STAT3, Skp2, p27 and f-actin antibodies. The results were obtained from three independent
experiments. Data are expressed as the mean + S.E.M. of three independent experiments. ***P< 0.001
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Skp2 expression in tumor tissues (Figure 7d). Taken together,
these results indicated that simvastatin repressed tumor
growth by increasing p21 and p27 expression through AMPK
activation and STAT3/Skp2 axis inhibition in vivo.

Discussion

In this study, we investigated the molecular mechanisms by
which simvastatin induces cell growth arrest in HCC cells and
found that simvastatin treatment results in suppression of the
oncoproteins STAT3 and Skp2 and activation of the energy
sensor protein AMPK. We demonstrated that simvastatin-
induced GO/G1 cell cycle arrest was regulated by AMPK
activation and STAT3 inactivation to transcriptionally increase
p21 expression and stabilize p27 protein expression by
inhibiting Skp2 expression. In addition, we also showed that
this effect could be recovered by treatment with mevalonate,

Cell Death and Disease

the product of HMG-CoA reductase. In contrast, in a xenograft
animal model, we found that simvastatin treatment signifi-
cantly suppressed HepG2 tumor growth and tumor weight.
The results of our tumor section evaluations by IHC showed
that simvastatin treatment increased p21 and p27 expression
and AMPK activation and decreased Skp2 expression and
STAT3 phosphorylation. These data provide evidence of a
novel mechanism explaining the beneficial anticancer effects
of simvastatin. These results are summarized in Figure 7e.
AMPK has been shown to promote accumulation of p53,
which upregulates the protein expression of p21 at the
transcriptional level and phosphorylates p27 at T198 to
increase protein stability, thereby causing GO0/G1 phase
arrest.9~*2 |n our experiments, we observed that simvastatin
activated AMPK and induced p21 and p27 expression to
cause GO/G1 phase arrest in HepG2 (p53 wild-type) and
Hep3B (p53 mutant) cells (Figures 1a-d). We also found that
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Figure 7  Simvastatin inhibited HepG2 tumor growth in xenograft mice. HepG2 tumor-bearing BALB/c nude mice were divided into control and simvastatin treatment groups.
The mice were treated with saline or 20 mg/kg body weight simvastatin twice a day by intraperitoneal (i.p.) injection. (a) Tumor tissues from the saline and simvastatin treatment
groups were harvested at 14 days after injection. These tissues were isolated from each mouse after killing. (b) Tumor growth curves derived from nude mice in the saline- and
simvastatin-treated groups. The tumor volumes of the nude mice were calculated twice a day for 2 weeks. (¢) The tumor weights of the nude mice were measured after killing.
Results are shown as the mean + S.E.M (n=12). Saline-treated mice compared with simvastatin-treated mice. ***P<0.001 (d) IHC analysis using antibodies against human
p21, p27, Skp2, p-AMPK and p-STAT3 in the tumor tissues of the saline- and simvastatin-treated groups. All scale bars are 50 um. (e) To summarize the in vitro and in vivo results
of this study, we found that simvastatin promoted GO/G1 cell cycle arrest by increasing p21 and p27 expression via AMPK pathway activation and STAT3/Skp2 pathway
suppression, respectively. These phenomena were dependent on inhibiting the production of mevalonate by simvastatin treatment in the HCC model

simvastatin-induced p21 expression at the transcriptional level
and promoted p27 accumulation by preventing proteasomal
degradation (Figure 2). However, genetic knockdown of AMPK
did not reduce p27 protein expression levels in our study
(Figure 3c). These results suggested that simvastatin may
regulate p21 gene expression induced by AMPK activation via
other transcriptional machinery that functions independently
of p53 activity such as FoxO1- and/or FoxO3-mediated p21
mRNA transcription in neonatal cardiomyocytes.*® Moreover,
the above results suggest that simvastatin may not promote
p27 protein accumulation through AMPK-mediated p27
phosphorylation at T198.

The p27 stability could be regulated by Skp2 and certain
ubiquitin proteins.®® Previous studies have suggested that
targeting Skp2 results in p27-mediated GO/G1 phase arrest.*3

These findings indicate that Skp2 was crucial for regulating
p27 expression in our models. Consistent with this finding, we
observed that simvastatin decreased Skp2 expression at both
the mRNA and the protein level concurrently with increases in
p27 accumulation, resulting in GO/G1 phase arrest (Figures 4a
and b). Skp2 overexpression reduced p27 protein levels and
inhibited GO/G1 phase arrest in simvastatin-treated HepG2
cells (Figure 4d). The functions of Skp2 have been investi-
gated, and previous studies have demonstrated that its
expression can be regulated at the transcriptional level, as
can its cell cycle-dependent degradation.®**#® |n our study,
we found that simvastatin decreased Skp2 expression mainly
at the transcriptional level (Figure 4b) and that this effect may
be mediated by STAT3 inhibition in HepG2 cells. Constitutive
STATS3 activation maintained much higher levels of Skp2 and

Cell Death and Disease
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lower levels of p27 and reduced the GO/G1 phase cell
population in simvastatin-treated HepG2 cells (Figures 5b
and d). These results suggest that simvastatin inhibited the
STAT3/Skp2 axis to promote p27 accumulation, resulting in
GO0/G1 phase arrest. Previous studies have shown that several
mediators, including ERK1/2, E2F1, Akt, PPARy, FOXP3 and
STAT3, regulate Skp2 expression at the transcriptional
level.3546780 Recent studies have also reported that simvas-
tatin can inhibit ERK1/2, Akt and STAT3 expression to
suppress tumor cell growth and induce cell apoptosis.®'%?
However, no reports regarding STAT3 and Skp2 regulation in
simvastatin-induced growth arrestin HCC are available. In this
study, we demonstrated that simvastatin suppressed HCC cell
growth by reducing Skp2 expression to cause p27 accumula-
tion and induced GO/G1 phase arrest via STAT3 inhibition. It is
possible that simvastatin may act through other pathways,
such as ERK1/2 and Akt, to decrease Skp2 expression. These
ideas will be evaluated in the future.

Mevalonate is synthesized by HMG-CoA reductase, and
mevalonate pathway dysregulation promotes oncogenic
transformation.® Statins are well-known HMG-CoA reductase
inhibitors and have been reported to inhibit renal cancer cell
growth and metastasis.>® A recent report also suggested that
statins inhibit IL-6-induced STAT3 phosphorylation and that
this effect can be reversed by mevalonate in human
hepatocytes.®>* However, no studies demonstrating that
maintaining mevalonate levels can facilitate the maintenance
of much higher STAT3/Skp2 activity levels and lower p27
levels to prevent GO/G1 phase arrest in statins-treated cells
are available. In our study, we found that mevalonate treatment
could recover STAT3 and Skp2 expression, reduce AMPK
phosphorylation, and downregulate p27- and p21-mediated
GO0/G1 arrest in simvastatin-treated HepG2 cells (Figures 6a
and b). Studies focusing specifically on AMPK have shown
that some mevalonate downstream products are essential for
cell proliferation and survival. Moreover, these studies have
also indicated that the anticancer effects of statins on AMPK
activation may be mediated, at least in part, through inhibition
of this pathway.2®> The mechanisms by which mevalonate
abrogated statin-induced AMPK activation are important and
need to be evaluated in future studies.

In this study, we demonstrated that simvastatin-induced
p27- and p21-mediated growth arrest by inhibiting STAT3/
Skp2 and activating AMPK in HCC cells. Consistent with this
finding, we also observed that simvastatin treatment inhibited
tumor growth and reduced tumor volume in a mouse xenograft
model of human HepG2 tumors. Tumor tissues evaluated
using IHC assay also showed that simvastatin treatment
increased p21 and p27 expression, increased AMPK activa-
tion, decreased Skp2 expression and reduced STAT3 phos-
phorylation. Furthermore, previous clinical studies have
reported that statin use is associated with relative reductions
in the risks of colorectal cancer, breast cancer and prostate
cancer.>>%6 These findings suggest that statins warrant further
investigation in chemoprevention and therapeutic clinical
trials. In our study population, patients were newly diagnosed
with HCC and had undergone liver resection as their initial
HCC therapy. In addition, these patients must have used
statins for >80 days (Supplementary Figure S4). Data
regarding the cumulative incidence of overall mortality are
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shown in Supplementary Figure S3. These data suggest that
statin use was associated with significantly lower overall
mortality in HCC patients after liver resection than statin non-
use. Therefore, statin use as a clinical therapy in HCC patients
may be warranted. The findings of this study serve as
evidence of the possible usefulness of statins in HCC patients
and suggest that statin use has clinical significance, as statins
can reduce the incidence of tumor recurrence, enhance
chemoprevention and increase overall survival.

Materials and Methods

Reagents and antibodies. Simvastatin was purchased from Cayman (Ann
Arbor, MI, USA) and propidium iodide (PI), CHX, MG132 and mevalonate were
obtained from Sigma (St. Louis, MO, USA). TRIzol reagent was obtained from
Invitrogen (Carlsbad, CA, USA). Antibodies specific to p21, p27, cyclin D1, cyclin
E1, phospho-AMPK, AMPK, phospho-STAT3 and STAT3 were purchased from Cell
Signaling Technology (Danvers, MA, USA), the antibody specific to p455<F? was
purchased from Invitrogen, and the antibody specific to f-actin was purchased from
Santa Cruz (Santa Cruz, CA, USA).

Cell culture. Human hepatoma cell lines, HepG2 and Hep3B were cultured in
Dulbecco’s modified Eagles’ medium (DMEM) supplemented with 10% fetal bovine
serum (FBS, Invitrogen) and 1% antibiotic solution (Invitrogen). Each cell line was
maintained at 37 °C in a 5% CO, incubator.

Cell viability and viable cell counts. Cell viability was determined using a
Cell Counting Kit-8 Assay Kit (Sigma). HepG2 and Hep3B cells were seeded into
96-well plates at a density of 1x10* cells per well and were treated with the
indicated concentrations (0-40 g/ml) of simvastatin for 24 or 48 h. After the cells
had incubated, we assessed their viability using the above assay kit, in accordance
with the manufacturer’s instructions. The absorbance was detected at 450 nm with
an ELISA Plate Reader (PerkinElmer, Waltham, MA, USA). To measure and
calculate the fractions of dead and live cells, we determined the counts of death
cells by Trypan blue exclusion in a hemocytometer. The results were expressed as a
percentage of the control.

DNA content assay. Cell cycle distributions were determined by DNA content
assay. HepG2 and Hep3B cells were seeded into six-well plates and treated with the
indicated concentrations (0-20 .g/ml) of simvastatin for 48 h. At incubation time, the
cells were harvested and fixed in 70% ethanol at 4 °C overnight, and then they were
washed with phosphate-buffered saline (PBS) and stained with 20 xg/ml Pl at 37 °C
for 30 min. The cell populations were analyzed by FAC Sort flow cytometry
(BD Biosciences, San Jose, CA, USA).

Reverse transcription polymerase chain reaction (RT-PCR) and
real-time PCR. In all, 14g of total RNA from the culture cells was extracted
using Trizol Reagent (Invitrogen). Complementary DNA (cDNA) synthesized with the
transcriptor first strand cDNA synthesis kit (Clontech, Mountain View, CA, USA)
according to the manufacturer's instructions. To amplify the target genes, PCR was
performed using specific primers: p21, forward 5'-GAGCGATGGAACTTCGACTT-3’
and reverse 5-GGCGTTTGGAGTGGTAGAAA-3'; p27, forward 5-TCTACTGCG
TGGCTTGTCAG-3' and reverse 5-CTGTATTTGGAGGCACAGCA-3; Skp2,
forward 5-TGAGCTGCTCTTGGGAATCT-3' and reverse 5-GTCTGGGACAGCT
GCTTAGG-3'; GAPDH as endogenous control, forward 5-ACCACA
GTCCATGCCATCAC-3' and reverse 5-TCCACCACCCTGTTGCTGTA-3'. PCR
amplification used TEMPase Hot Start DNA Polymerase (Ampligon, Hamburg,
Germany). Procedures were described as follows: 50 ng of cDNA was added to
20 ul of PCR mixture. The PCR mixture was performed after 15 min of denaturation
at 95 °C and then amplification for 25 cycles contained the 15 s of denaturation at
95 °C, 30's of annealing step at 60 °C, 60 s of extension at 72 °C, and another
10 min at 72 °C after the last cycle. The PCR products were separated on 2%
agarose gels. For real-time PCR analysis, the synthesized cDNAs were mixed with
2X SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA, USA) were
detected by the StepOnePlus Real-Time PCR System (Applied Biosystems). A pair
of gene-specific forward and reverse primers (p21: 5'-AGACTCTCAGGG
TCGAAAAC-3', 5'-TGGAGTGGTAGAAATCTGTCATG-3’; p27: 5'-TGCAACCG
ACGATTCTTCTAC-3', 5’-CTTCTGTTCTGTTGGCTCTTTTG-3'; Skp2: 5'-CTGTC



TCAAGGGGTGATTGC-3', 5'-TTCGATAGGTCCATGTGCTG-3'; GAPDH: 5'-ACC
ACAGTCCATGCATCAC-3'; 5’-TCCACCACCCTGTTGCTGT-3'). All reactions were
performed in triplicate. The relative amounts of mRNAs were calculated using the
comparative CT method. Human GAPDH mRNA was used as the internal control.

siRNA transfections. Human AMPK (siRNAs; Santa Cruz), p21, p27 and
control siRNAs (GE Dharmacon, Lafayette, CO, USA) were transiently transfected
into cells with INTERFERin transfection reagent according to the manufacturer's
instructions (Polyplus Transfection, New York, NY, USA). After 24 h, the cells were
treated with simvastatin (0 or 10 xg/ml) for 48 h and harvested for immunoblotting
or DNA content assay.

Plasmid DNA transfections. 293T cells were plated at a density of 1x10°
cells per well in six-well plates overnight. The cells were transfected using JetPEI
transfection reagent (Polyplus Transfection), according to the retrovirus manufac-
turer’s instructions, with a lenti- or retroviral vector encoding constitutively activated
STAT3-GFP (EF.STAT3C.Ubc.GFP, Addgene plasmid 24983, Addgene, Cambridge,
MA, USA)*” or p-Babe-N-tag-SKP2%® and expression vectors encoding the packing
proteins gag-pol and VSV-G. Viral supernatants were collected starting 48 and 96 h
after transfection and filtered through a 0.45-um filter. Then, for viral transduction
processing, we added HepG2 cells to infecting medium with 8 n.g/ml polybrene for
48 h. The HepG2 cells were subsequently treated with simvastatin (0 or 20 yg/ml)
for 48 h and harvested for immunoblotting or cell cycle analysis.

Luciferase assay. Cells were co-transfected with a pGL4.18-SKP2 promoter
reporter plasmid®® and a control Renilla luciferase reporter plasmid (Promega,
Madison, WI, USA) for 24 h. At the indicated time, the cells were treated with
simvastatin 20 ug/ml for 24 h and then harvested. Luciferase activity was
determined using a dual-luciferase reporter assay system (Promega). Light units
were normalized to Renilla luciferase activity.

Immunoblotting. After the indicated treatments, cells were harvested and
lysed in PRO-PREP protein extraction solution (iNtRON, Taipei, Taiwan) containing
a protease inhibitor cocktail. Cell lysates were centrifuged at 12 000 g for 15 min at
4°C, and the supernatants were collected. The protein concentration of the
samples was measured using a Bio-Rad protein assay kit (Bio-Rad, Hercules, CA,
USA). Then, 40-50 ug protein from each sample was separated on a 10% or 12%
SDS-polyacrylamide gel before being transferred onto equilibrated polyvinylidene
difluoride membranes. After being blocked, the membranes were incubated with the
appropriate primary antibodies at 4 °C overnight. Then, membranes were incubated
with the appropriate secondary antibodies at 4 °C for 2 h, and the signals were
detected using an Odyssey Imaging System (Odyssey, Lincoln, NE, USA). s-Actin
was used as a loading control in the immunoblotting analysis.

Tumor growth in the xenograft mouse model. Male BALB/c nude mice
(6-8 weeks old) were purchased from the National Laboratory Animal Center
(NLAC, Taipei, Taiwan). HepG2 cells were cultured with DMEM supplemented with
10% FBS. Viable HepG2 cells (1.0x 107 cells in 0.2 ml of serum-free DMEM) were
injected subcutaneously into the upper right flanks of the mice. Treatment was
initiated when tumor volumes reached a mean size of approximately 100 mm®. The
mice were subsequently subjected to intraperitoneal injections of saline or
simvastatin (20 mg/kg body weight) twice a day for 2 weeks. Tumor volumes were
measured every other day with calipers and calculated using the following formula:
largest diameter x (smallest diameter)? x 0.5. After being treated for 14 days, the
mice were killed. The tumors were collected, and the weight of each tumor was
measured. All animal care and experimental procedures were approved and
conducted by the Committee for Animal Experiments, National Chung Hsing
University, Taichung, Taiwan (approved document La-1051401).

Histological analysis and IHC. Tumor tissues from the HepG2 tumor-
bearing control mice and simvastatin treatment mice were harvested, fixed in 10%
formalin and embedded in paraffin. The paraffin sections were subsequently stained
with hematoxylin and eosin for morphological observation. For IHC, the paraffin
slides were deparaffinized and rehydrated in xylene and ethanol. Antigen retrieval
was performed in Tris/EDTA (pH 9.0) buffer by heating for 30 min, followed by
incubation in an enzymatic antigen retrieval solution for 10 mm for 20 min. The
slides were incubated with 0.3% H,O, in TBS for 15 min and washed with 0.025%
Triton X-100 in TBS and then blocked with 1% BSA in TBS for 2h at room
temperature before being incubated at 4 °C overnight with the appropriate primary
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antibody. Then, the slides were incubated with the appropriate HRP-conjugated
secondary antbody for 1h at room temperature and visualized using
3,3" diaminobenzidine substrate and counterstaining with hematoxylin. Images of
the slides were acquired using inverted microscopy.

Statistical analysis. All assays were performed as three independent
experiments in duplicate or triplicate. Data were analyzed using Student's ttest,
and significant differences were inferred at a P-value of 0.05.
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