Skip to main content
Log in

Cometary Deuterium

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Deuterium fractionations in cometary ices provide important clues to the origin and evolution of comets. Mass spectrometers aboard spaceprobe Giotto revealed the first accurate D/H ratios in the water of Comet 1P/Halley. Ground-based observations of HDO in Comets C/1996 B2 (Hyakutake) and C/1995 O1 (Hale-Bopp), the detection of DCN in Comet Hale-Bopp, and upper limits for several other D-bearing molecules complement our limited sample of D/H measurements. On the basis of this data set all Oort cloud comets seem to exhibit a similar \(\left( {{{\text{D}} \mathord{\left/ {\vphantom {{\text{D}} {\text{H}}}} \right. \kern-\nulldelimiterspace} {\text{H}}}} \right)_{{\text{H}}_{\text{2}} {\text{O}}} \) ratio in H2O, enriched by about a factor of two relative to terrestrial water and approximately one order of magnitude relative to the protosolar value. Oort cloud comets, and by inference also classical short-period comets derived from the Kuiper Belt cannot be the only source for the Earth's oceans. The cometary O/C ratio and dynamical reasons make it difficult to defend an early influx of icy planetesimals from the Jupiter zone to the early Earth. D/H measurements of OH groups in phyllosilicate rich meteorites suggest a mixture of cometary water and water adsorbed from the nebula by the rocky grains that formed the bulk of the Earth may be responsible for the terrestrial D/H. The D/H ratio in cometary HCN is 7 times higher than the value in cometary H2O. Species-dependent D-fractionations occur at low temperatures and low gas densities via ion-molecule or grain-surface reactions and cannot be explained by a pure solar nebula chemistry. It is plausible that cometary volatiles preserved the interstellar D fractionation. The observed D abundances set a lower limit to the formation temperature of (30 ± 10) K. Similar numbers can be derived from the ortho-to-para ratio in cometary water, from the absence of neon in cometary ices and the presence of S2. Noble gases on Earth and Mars, and the relative abundance of cometary hydrocarbons place the comet formation temperature near 50 K. So far all cometary D/H measurements refer to bulk compositions, and it is conceivable that significant departures from the mean value could occur at the grain-size level. Strong isotope effects as a result of coma chemistry can be excluded for molecules H2O and HCN. A comparison of the cometary \(\left( {{{\text{D}} \mathord{\left/ {\vphantom {{\text{D}} {\text{H}}}} \right. \kern-\nulldelimiterspace} {\text{H}}}} \right)_{{\text{H}}_{\text{2}} {\text{O}}} \) ratio with values found in the atmospheres of the outer planets is consistent with the long-held idea that the gas planets formed around icy cores with a high cometary D/H ratio and subsequently accumulated significant amounts of H2 from the solar nebula with a low protosolar D/H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A'Hearn, MF, and Feldman, PD: 1985, In Ices in the Solar System(Klinger, J., Benest, D., and Smoluchowski, R., Eds.), pp. 463–471, D. Reidel Publishing Company, Dordrecht (USA).

  • A'Hearn, MF, Schleicher, DG, and West, RA: 1985, Astrophys. J. 297, 826–836.

    Article  ADS  Google Scholar 

  • Aikawa, Y., Umebayashi, T., Nakano, T., and Miyama, SM: 1997. Astrophys. J. Lett. 486, L51–L54.

    Article  ADS  Google Scholar 

  • Balsiger, H., Altwegg, K., and Geiss, J.: 1995, J. Geophys. Res. 100, 5827–5834.

    Article  ADS  Google Scholar 

  • Bockelée-Morvan, D., Gautier, D., Lis, DC, Young, K., Keene, J., Phillips, T., Owen, T., Crovisier, J., Goldsmith, PF, Bergin, EA, Despois, D., and Wootten, A.: 1998, Icarus 133, 147–162.

    Article  ADS  Google Scholar 

  • Brown, PD, and Millar, TJ: 1989, Mon. Not. R. Astron. Soc. 237, 661–671.

    ADS  Google Scholar 

  • Coustenis, A., Salama, A., Lellouch, E., Encrenaz, Th., de Graaw, Th., Bjoraker, GL, Samuelson, R.E., Gautier, D., Feuchgruber, H., Kessler, MF, and Orton, GS: 1998, Bul. Am. Astron. Soc. 30, 1060.

    ADS  Google Scholar 

  • Crovisier, J., Bockelée-Morvan, D., Colom, P., Despois, D., and Paubert, G.: 1993, Astron. Astrophys. 269, 527–540.

    ADS  Google Scholar 

  • Crovisier, J., Leech, K., Bockelée-Morvan, D., Brooke, TY, Hanner, MS, Altieri, B., Keller, HU, and Lellouche, E.: 1997, Science 275, 1904–1907.

    Article  ADS  Google Scholar 

  • Crovisier, J.: 1998, Bul. Am. Astron. Soc. 30, 1059–1060.

    ADS  Google Scholar 

  • Delsemme, AH: 1998, Planet Space Sci., in press.

  • Deloule, E., Doukhan, J.-P., and Robert, F.: 1997, Proc. Lunar Planet. Sci. Conf. 28th, 291–292.

  • Duncan, M., Quinn, T., and Tremaine S.: 1987, Astron. J. 94, 1330–1338.

    Article  ADS  Google Scholar 

  • Eberhardt, P., Meier, R., Krankowsky, D., and Hodges, RR: 1994, Astron. Astrophys. 288, 315–329.

    ADS  Google Scholar 

  • Eberhardt P., Reber, M., Krankowsky, D., and Hodges, RR: 1995, Astron. Astrophys. 302, 301–316.

  • Eberhardt, P.: 1999, In Proc. IAU Colloq. 168, Cometary Nuclei in Space and Time(A'Hearn, MF, Ed.), Astron. Soc. Pacific Conf. Ser., in press.

  • Epstein, RI, Lattimer, JM, and Schramm, DN: 1976, Nature 263, 198–202.

    Article  ADS  Google Scholar 

  • Fegley, B., Jr., and Prinn, RG: 1989, In The formation and evolution of planetary systems(Weaver, H.A., and Danly, L., Eds.), pp. 171–211, Cambridge U. Press, Cambridge (UK).

    Google Scholar 

  • Feuchtgruber, H., Lellouch, E., Bézard, B., Encrenaz, Th., de Graaw, Th., and Davis, GR: 1999, Astron. Astrophys. 341, L17–L21.

    ADS  Google Scholar 

  • Gautier D. and Morel, P.: 1997, Astron. Astrophys. 323, L9–L12.

    ADS  Google Scholar 

  • Gautier, D.: 1999, In Planetary systems: The long view(Celnikier, L., Ed.), in press, Blois (France).

  • Geiss, J., and Reeves, H.: 1981, Astron. Astrophys. 93, 189–199.

    ADS  Google Scholar 

  • Geiss, J.: 1993, In Origin and evolution of the elements(Prantzos, N., Vangioni-Flam, E., and Cassé, M., Eds.), pp. 87–106, Cambridge Univ. Press, Cambridge (UK).

    Google Scholar 

  • Greenberg, M., and Li, A.: 1999, Space Sci. Rev., this volume.

  • Griffith, CA, and Zahnle, K.: 1995, J. Geophys. Res. 100, 16 907–16 922.

    Article  ADS  Google Scholar 

  • Griffin, MJ, et al.: 1996, Astron. Astrophys. 315, L389–L392.

    ADS  Google Scholar 

  • Grinspoon, DH and Lewis J.S.: 1988, Icarus 72, 430–436.

    Article  ADS  Google Scholar 

  • Hubbard, WB, and MacFarlane, JJ: 1980, Icarus 127, 307–318.

    Google Scholar 

  • Hubbard, WB, Podolak, M., and Stevenson, D.J: 1995, In Neptune and Triton(Cruikshank, DP, Ed.), pp. 109–140, U. of Arizona Press, Tucson (USA).

    Google Scholar 

  • Irvine, WM, Bergin, EA, Dickens, JE, Jewitt, D., Lovell, AJ, Matthews, HE, Schloerb, FP, and Senay, M.: 1998, Nature 393, 547–550.

    Article  ADS  Google Scholar 

  • Jessberger, E.: 1999, Space Sci. Rev., this volume.

  • Klinger, J., Eich, G., Bischoff, A., Jo´o, F., Kochan, H., Roessler, K., Stichler, W., and St¨oeffler, D.: 1989, Adv. Space Res. 9, (3), 123–125.

    Article  ADS  Google Scholar 

  • Krasnopolsky, VA, Mumma, MJ, Abbott, M., Flynn, BC,Meech, KJ, Yeomans, DK, Feldman, P.D., and Cosmovici, CB: 1997, Science 277, 1488–1491.

    Article  ADS  Google Scholar 

  • Lécluse, C., and Robert, F.: 1994, Geochim. Cosmochim. Acta 58, 2927–2939.

    Article  ADS  Google Scholar 

  • Lunine, JI, Engle, S., Riszk, B., and Horanyi, M.: 1991, Icarus 94, 333–344.

    Article  ADS  Google Scholar 

  • Mahaffy, PR, Donahue, TM, Atreya, SK, Owen, TC, and Niemann, HB: 1998. Space Sci. Rev. 84, 251–263.

    Article  ADS  Google Scholar 

  • Meier, R., Owen, TC, Matthews, HE, Jewitt, DC, Bockelée-Morvan, D., Biver, N., Crovisier, J., and Gautier, D.: 1998a, Science 279, 842–844.

    Article  ADS  Google Scholar 

  • Meier, R., Owen, TC, Jewitt, DC, Matthews, HE, Senay, M., Biver, N., Bockelée-Morvan, D., Crovisier, J., and Gautier, D.: 1998b, Science 279, 1707–1710.

    Article  ADS  Google Scholar 

  • Meier, R., Wellnitz, D., Kim, SJ, and A'Hearn, MF: 1998c, Icarus 136, 268–279.

  • Millar, TJ, Bennett, A., and Herbst, E.: 1989, Astrophys. J. 340, 906–920.

    Article  ADS  Google Scholar 

  • Mumma, MJ, Weissman, PR, and Stern, SA: 1993, In Protostars and planets III, (Levy, E.H, and Lunine, JI, Eds.), pp. 1177–1252, U. of Arizona Press, Tucson (USA).

    Google Scholar 

  • Mumma, MJ, DiSanti, MA, Dello Russo, N., Fomenkova, M., Magee-Sauer, K, Kaminski, CD, and Xie, DX: 1996, Science 272, 1310–1314.

    ADS  Google Scholar 

  • Notesco, G., Laufen, G., and Bar-Nun, A.: 1997, Icarus 125, 471–473.

    Article  ADS  Google Scholar 

  • Owen, TC, and Bar-Nun, A.: 1995, Icarus 116, 215–226.

    Article  ADS  Google Scholar 

  • Owen, TC: 1997, In From stardust to planetesimals(Pendleton, YJ, and Tielens, AGG.M., Eds.), pp. 435–450, Astron. Sci. Pacific Public. 122, San Francisco (USA).

    Google Scholar 

  • Podolak, M., Weizman, A., and Marley, M.: 1995, Planet. Space Sci. 43, 1517–1522.

    Article  ADS  Google Scholar 

  • Pringle, JE: 1981, Ann. Rev. Astron. Astrophys. 19, 137–162.

    Article  ADS  Google Scholar 

  • Schleicher, DG, and A'Hearn, MF: 1986, In New insights in astrophysics. Eight years of UV astronomy with IUE(Rolfe, EJ, Ed.), pp. 31–33, ESA SP-263, ESA, Paris (France).

  • Wagoner, RV, Fowler, WA, and Hoyle, F.: 1967, Astrophys. J. 148, 3–49.

    Article  ADS  Google Scholar 

  • Willacy, K., Klahr, HH, Millar, TJ, and Henning, Th.: 1998, Astron. Astrophys. 338, 995–1005.

    ADS  Google Scholar 

  • Williams, TL, Adams, NG, Lucia, MB, Herd, Ch.R., and Geoghegan, M.: 1996. Mon. Not. R. Astron. Soc. 282, 413–420.

    ADS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier, R., Owen, T.C. Cometary Deuterium. Space Science Reviews 90, 33–43 (1999). https://doi.org/10.1023/A:1005269208310

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005269208310

Navigation