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Diverse microbial communities of bacteria, archaea, viruses and single-celled eukaryotes have crucial 

roles in the environment and human health.  However, microbes are frequently difficult to culture in the 

laboratory, which can confound cataloging members and understanding how communities function.  

Cheap, high-throughput sequencing technologies and a suite of computational pipelines have been 

combined into shotgun metagenomics methods that have transformed microbiology. Still, computational 

approaches to overcome challenges that affect both assembly-based and mapping-based metagenomic 

profiling, particularly of high-complexity samples, or environments containing organisms with limited 

similarity to sequenced genomes, are needed. Understanding the functions and characterizing specific 

strains of these communities offer biotechnological promise in therapeutic discovery, or innovative ways 

to synthesize products using microbial factories, but can also pinpoint the contributions of 

microorganisms to planetary, animal and human health.  

Introduction 

High throughput sequencing approaches enable genomic analyses of ideally all microbes in a sample, not 

just those that are more amenable to cultivation. One such method, shotgun metagenomics, is the 

untargeted (“shotgun”) sequencing of all (“meta”) of the microbial genomes (“genomics”) present in a 

sample. Shotgun sequencing can be used to profile taxonomic composition and functional potential of 

microbial communities, and to recover whole genome sequences. Approaches such as high-throughput 16S 

rRNA gene sequencing 1, which profile selected organisms or single marker genes are sometimes mistakenly 

referred to as metagenomics but are not metagenomic methods, because they do not target the entire 

genomic content of a sample. 

In the past 15 years since it was first used, metagenomics has enabled large-scale investigations of complex 

microbiomes2-7. Discoveries enabled by this technology include the identification of previously unknown 

environmental bacterial phyla with endosymbiotic behavior 8, and species that can carry out complete 

nitrification of ammonia 9,10. Other striking findings include the widespread presence of antibiotic genes in 

commensal gut bacteria 11, tracking of human outbreak pathogens 4, the strong association of both the viral 
12 and bacterial 13 fraction of the microbiome with inflammatory bowel diseases, and the ability to monitor 

strain-level changes in the gut microbiota after perturbations such as those induced by faecal microbiome 

transplantation 14.  

In this Review we discuss best-practice for shotgun metagenomics studies, including identifying and tackling 

limitations, and provide an outlook for metagenomics in the future. 
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Figure 1. Summary of a metagenomics workflow. Step 1: Study design and experimental protocol, the importance of this step is 

often underestimated in metagenomics.  Step 2: Computational pre-processing. Computational quality control steps minimize 

fundamental sequence biases or artefacts e.g. removal of sequencing adaptors, quality trimming, removal of sequencing duplicates 

(using e.g. fastqc, trimmomatic 122, and Picard tools). Foreign or non-target DNA sequences are also filtered and samples are sub-

sampled to normalize read numbers, if the diversity of taxa or functions is compared. Step 3: Sequence analysis. This should comprise 

a combination of ‘read-based’ and ‘assembly-based’ approaches depending on the experimental objectives. Both approaches have 

advantages and limitations (See Table 4 for a detailed discussion). Step 4: Post-processing. Various multivariate statistical 

techniques can be used to interpret the data. Step 5: Validation. Conclusions from high dimensional biological data are susceptible 

to study driven biases so follow-up analyses are vital. 
 

Shotgun metagenomics study design 

A typical shotgun metagenomics study comprises five steps following the initial study design; (i) the 

collection, processing, and sequencing of the samples, (ii) the preprocessing of the sequencing reads, (iii) 

the sequence analysis to profile taxonomic, functional, and genomic features of the microbiome, (iv) the 

postprocessing statistical and biological analysis, and (v) the validation (Figure 1). Numerous experimental 

and computational approaches are available to carry out each step, which means that researchers are faced 

with a daunting choice. And, despite its apparent simplicity, shotgun metagenomics has limitations, owing 

to potential experimental biases and the complexity of computational analysis and their interpretation. We 

assess the choices that need to be made at each step and how to overcome common problems. 



The steps involved in the design of hypothesis-based studies are outlined in Supplementary Figure 1 with 

specific recommendations summarized in Supplementary Box 1. Individual samples from the same 

environment can be variable in microbial content, which makes it challenging to detect statistically 

significant, and biologically meaningful, differences among small sets of samples. It is therefore important 

to establish that studies are sufficiently powered to detect differences, especially if the effect size is small 
15. One useful strategy may be to generate pilot data to inform power calculations 16,17. Alternatively,  a two-

tier approach in which shotgun metagenomics is carried out on a subset of samples that have been pre-

screened with less expensive microbial surveys such as 16S rRNA gene sequencing, may be adopted 18. 

Controls are also important but it can be difficult to obtain representative samples from a suitable control 

group, particularly when studying environments such as humans, in which the resident microbial 

communities are influenced, to a different extent, by factors such as host genotype 19, age, diet and 

environmental surroundings 20. Where feasible, we recommend longitudinal studies that incorporate 

samples from the same habitat over time rather than simple cross-sectional studies that compare 

“snapshots” of two sample sets 21. Importantly, longitudinal studies do not rely on results from a single 

sample that might be a non-representative outlier. Exclusion of samples that may be confounded by an 

unwanted variable is also prudent. For example, in studies of human subjects, exclusion criteria might 

include exposure to drugs that are known to impact the microbiome, e.g. antibiotics. If this is not feasible, 

then potential confounders should be factored into comparative analyses (see Supplementary Box 1). 

If samples originate in animal models, particularly those involving co-housed rodents, the roles of animal 

age and housing environment 22,23, and the sex of the person handling the animals 24, may have on microbial 

community profiles should be taken into account. It is usually possible to mitigate against potential 

confounders in the study design by housing animals individually to prevent the spread of microbes between 

cage mates (although this may introduce behavioural changes, potentially resulting in different biases), 

mixing animals derived from different experimental cohorts together within the same cage, or repeating 

experiments with mouse lines obtained from different vendors or with different genetic backgrounds 25. 

Finally, regardless of the type of sample being studied, it is crucial to collect detailed and accurate metadata. 

MiMARKS and MIxS standards were set out to provide guidance for required  metadata 26, but 

metagenomics is now applied on such disparate kinds of environments that it is difficult to choose 

parameters that are suitable and feasible to obtain for every sample type.  We recommend associating as 

much descriptive and detailed  metadata as possible with each sample, in order to make it more likely that 

comparisons between study cohorts or sample types can be correlated with a particular environmental 

variable 21. 

Sample collection and DNA extraction 

Sample collection and preservation protocols can affect both quality and accuracy of metagenomics data. 

Importantly, the effect size of these steps, in some circumstances, can be greater than the effect size of the 

biological variables of interest 27. Indeed variations in sample processing protocols can also be important 

confounders in meta-analyses of datasets from different studies (Supplementary Box 1). Collection and 

storage methods that have been validated for one type of sample type cannot be assumed to be optimal 



for different sample types. As such, careful preliminary work to optimize processing conditions for sample 

types is often necessary (Supplementary Figure 1).  

Enrichment technique Advantages Limitations 

Whole genome 
amplification  123 

 Highly sensitive - can generate sufficient DNA for sequencing from 
even tiny amounts of starting material. 

 Cost effective - can be applied directly to extracted environmental 
DNA, no need to isolate cells. 

 Non-specific and untargeted - can amplify DNA from the whole 
range of species present within a given sample. 

 Amplification step can introduce significant biases, which skew 
resulting metagenomics profiles. 

 Chimeric molecules can be formed during amplification, which 
can confound the assembly step. 

 Non-specific – unlikely to improve proportional abundance of 
DNA from a species of interest. 

Single-cell genomics 72  Can generate genomes from uncultured organisms. 

 Can be combined with targeting approaches such as fluorescence 
in situ hybridization to select specific taxa, including those that 
might be rare members of the microbial community. 

 Places genomic data within its correct phylogenetic context. 

 Reference genomes can aid metagenomics assemblies. 

 Can be expensive to isolate single cells, requires specialist 
equipment. 

 Requires whole genome amplification step – see limitations 
above. 

 Biases introduced during genome amplification mean that it is 
usually only possible to recover partial genomes. 

 Prone to contamination. 

Flow-sorting 124   High throughput means to sort cells of interest. 

 Targeted approach - can select specific taxa, including those that 
might be rare members of the microbial community. 

 

 Expensive equipment, requiring specialist operators. 

 Requires intact cells. 

 Any cells in the sample that are attached to surfaces or fixed in 
structures e.g. biofilms may not be recovered. 

 Flow rates and sort volumes limit the number of cells that can be 
collected. 

In situ enrichment 125  Simplifies microbial community structure - can make it easier to 
assemble genomes from metagenomics data. 

 Presence of particular taxa within enriched samples can give clues 
as to their functional roles within the microbial community. 

 Requires that cells of interest can be maintained stably in a 
microcosm over the entire enrichment period 

 Simplifies microbial community structure - biases results in 
favour of organisms that were able to thrive within the 
microcosm. 

Culture/microculture 
71 

 Cultured isolates can be extensively tested for phenotypic 
features. 

 Reference genomes can aid metagenomics assemblies. 

 Functional data can improve metagenomics annotations.  

 Places genomic data within its correct phylogenetic context. 

 Low throughput, can be highly labor intensive. 

 Extremely biased - many microbes are inherently difficult to 
culture in the laboratory. 

 Unlikely to recover rarer members of a microbial community, as 
cultured isolate collections will be dominated by the most 
abundant organisms. 

Sequence capture 
technologies 126 

 Oligonucleotide probes can be used to identify species of interest 
as recently demonstrated for culture-independent viral 
diagnostics 

 By focusing only on species of interest, higher sensitivity can be 
achieved particularly when large amounts of host contamination 
are present 

 Capture kits can be expensive 

 Like PCR, capture fails when target organisms vary compared to 
the reference sequences used to design the probes 

 Genome coverage of targeted organisms can be uneven, 
affecting assemblies 

Immunomagnetic 
separation  127 

 Targeted approach - can enrich specific taxa, including those that 
might be comparatively rare members of the microbial community 

 Far less expensive than many other targeted enrichment 
techniques such as single cell genomics or flow sorting. 

 Less technically challenging and time consuming than other 
targeted enrichment techniques. 

 Requires intact cells. 

 Requires a specific antibody for the target cells of interest. 

 If target cell numbers are low, whole genome amplification may 
be needed following cell separation – see limitations above. 

 

Background (e.g. 
human / eukaryotic) 
depletion techniques 
128 

 Particularly useful for samples where microbial cell numbers are 
much lower than eukaryotic cells (e.g. biopsies) 

 Improves sensitivity - enhanced detection of microbial genomic 
data. 

 Lower sequence depth required to obtain good coverage of 
microbial genomes, reduced sequencing costs. 

 Relatively inexpensive, not technically challenging. 

 Concomitant loss of bacterial DNA of interest can occur during 
processing steps, can bias subsequent microbiome profiling. 

 May introduce contamination. 

Table 1: Summary of the advantages and limitations of methods to enrich for microbial cells/DNA before sequencing. 

Key objectives are to collect sufficient microbial biomass for sequencing, and to minimize contamination of 

samples. Enrichment methods can be used for those environments in which microbes are scarce (see Table 

1). However, enrichment procedures can introduce bias into sequencing data 28. Since several studies have 

shown that factors such as length of time between sample collection and freezing 29 or the number of times 

samples go through freeze-thaw cycles can affect the microbial community profiles that are detected, both 

collection and storage protocols/conditions should be recorded  (Supplementary Box 1). 

The choice of DNA extraction method can affect the composition of downstream sequence data 30. The 

extraction method must be able to lyse diverse microbial taxa, otherwise sequencing results may be 

dominated by DNA derived from easy-to-lyse microbes. DNA extraction methods that include mechanical 



lysis (or bead-beating) are often considered superior to those that rely on chemical lysis 31. However, bead-

beating based approaches do vary in their efficiency 32. Vigorous extraction techniques  such as bead-

beating can result in shortened DNA fragments, which can contribute to DNA loss during library preparation 

methods that use fragment size selection techniques.  

Contamination can be during sample processing stages. Kit/laboratory reagents may contain variable 

amounts of microbial contaminants 33. Metagenomics datasets from low biomass samples (e.g. skin swabs) 

are particularly vulnerable to this problem, because there is less “real” signal to compete with low-levels of 

contamination 34. We advise those working with low biomass samples to use ultraclean reagents 35, and to 

incorporate “blank” sequencing controls, in which reagents are sequenced without adding sample template 
34. Other types of contamination are cross-over from previous sequencing runs, presence of PhiX control 

DNA that is typically used as part of Illumina-based sequencing protocols, and human or host DNA. 

Library preparation and sequencing 

Choosing a library preparation and sequencing method hinges on availability of materials and services, cost, 

ease of automation, and DNA sample quantification. The Illumina platform has become dominant as a 

choice for shotgun metagenomics due to its wide availability, very high outputs (up to 1.5 Tb per run) and 

high accuracy (with a typical error rate of between 0.1-1%), although the competing Ion Torrent S5/S5 XL 

instrument is an alternative choice. Recently, long read sequencing technologies such as the Oxford 

Nanopore MinION and Pacific Biosciences Sequel have scaled up output and can reliably generate up to 10 

gigabases per run and may therefore soon start to see adoption for metagenomics studies. 

Given the very high outputs achievable on a single instrument run, multiple metagenomic samples are 

usually sequenced on the same sequencing run, by multiplexing up to 96 or 384 samples typically using dual 

indexing barcode sets available for all library preparation protocols. The Illumina platforms are known to 

suffer from issues of carry-over (between runs) and carry-between (within runs) 36. Recently, concern has 

been raised that newer Illumina instruments using isothermal cluster generation (ExAmp) suffer from high 

rates of ‘index hopping’ where incorrect barcode identifiers are incorporated into growing clusters 37 

although the extent of this problem on typical metagenomics projects has not been evaluated and 

approaches to mitigate it have been suggested. To help evaluate the extent of such issues, randomly chosen 

control wells containing known spiked-in organisms as positive controls, and template negative controls 

should be used to assess the impact of these issues. Such controls are particularly critical for diagnostic 

metagenomics projects where small numbers of pathogen reads may be a signal of infection against a 

background of high host contamination. Although still uncommon in the field, performing technical 

replicates would be useful to assess variability, and even subjecting a subset of samples to replication may 

give enough information to disentangle technical from true variability.  

Multiple methods are available for the generation of Illumina sequencing libraries: these are usually 

distinguished by the method of fragmentation used. Transposase-based “tagmentation”, for example in the 

Illumina Nextera and Nextera XT products, are popular owing to their low cost (list prices of $25-40 per 

sample, with dilution methods potentially able to reduce these costs even further 38). Tagmentation 

approaches only require small DNA inputs (1 ng of DNA recommended, but lower amounts can be used). 

Such low inputs are achieved due to a subsequent PCR amplification step. However, as tagmentation targets 



specific sequence motifs it may introduce amplification biases along with the well-known GC content biases 

associated with PCR. One way of reducing these biases is to use a PCR-free method relying on physical 

fragmentation (e.g. PCR-free TruSeq) to produce a sequencing library that may be more representative of 

the underlying species composition in a sample 39.  

There are no published guidelines for the “correct” amount of coverage for a given environment or study 

type, and it is unlikely that such a figure exists. As a rule of thumb, we therefore often recommend choosing 

a system that maximizes output in order to retrieve sequences from as many low-abundance members of 

the microbiome as possible. Illumina HiSeq 2500/4000, NextSeq, and NovaSeq all produce high volumes of 

sequence data (between 120 gigabases and 1.5 terabases per run) and are well suited for metagenomics 

studies (with the caveat of index hopping). The throughput per run of these instruments is known and, by 

deciding the level of multiplexing, the investigator can set the desired per-sample sequencing depth. Typical 

experiments in 2017 aim to generate between 1 and 10 gigabases, but these depths may be either excessive 

or woefully little depending on the sensitivity required to detect rare members of a sample. 

The Illumina platforms mainly differ by their total output and maximum read length. The Illumina HiSeq 

2500, although now two generations old, is a popular choice for shotgun metagenomics as it is able to 

generate 2x250 nt in rapid run mode (generating up to 180 Gb per flowcell), or up to 1Tb in high output 

mode with 2x125 nt reads. The newer HiSeq 3000 and 4000 systems further increase the overall throughput 

of a run (up to 1.5 terabases for the 4000) but are limited to read lengths of 150 nt. The NextSeq benchtop 

instrument has similar output to the HiSeq 2500’s rapid run mode, but are limited to 150 nt reads. However 

the NextSeq is less than half the price of the HiSeq and so may be attractive to research groups wishing to 

operate their own instrument The recently released  NovaSeq platform promises up to 3 terabases per run 

in the near future. The Illumina MiSeq is limited by output (up to 15Gb in 2x300 mode) but remains the de 

facto standard for single marker gene microbiome studies. The MiSeq (or MiniSeq) may still be useful for 

metagenomics for sequencing a limited number of samples or to assess library concentrations and barcode 

pool balancing, providing confidence of good results, before running on the higher-throughput (and much 

more expensive) instruments where individual runs may cost >$10,000. 

Metagenome assembly 

Numerous approaches to computationally reconstruct the composition of the microbial community from 

the pool of sequence reads have been published. Choosing the “best” approach is a daunting task but largely 

depends on the aims of the study. 

Metagenome de novo assembly, is conceptually similar to whole genome assembly 40(J.S.). The de Bruijn 

graph approach 41  is currently the most popular metagenome assembly method. For single draft genome 

assemblies a de Bruijn graph is constructed by breaking each sequencing read into overlapping 

subsequences of a fixed length k. This set of overlapping “k-mers” defines the vertices and edges of the de 

Bruijn graph. The assembler’s task is to find a path through the graph that reconstructs the genome(s). This 

task is complicated by sequencing errors, which generate non-genomic sequences that must be avoided, 

and repetitive sequence, which can cause misassemblies and fragmentation of the assembly. 

Metagenome assembly presents challenges not faced in single genome assembly. First, when assembling a 

single genome it is typically assumed that sequence coverage along the genome will be approximately 



uniform. An assembler can use sequence coverage to identify repeat copies, distinguish true sequence from 

sequencing errors 42 and identify allelic variation 43. Metagenome assembly is more difficult because the 

coverage of each constituent genome depends on the abundance of each genome in the community. Low 

abundance genomes may end up fragmented if overall sequencing depth is insufficient to form connections 

in the graph. Using a short k-mer size in graph formation can assist in recovering lower abundance genomes, 

but this comes at the expense of increasing the frequency of repetitive k-mers in the graph, obscuring the 

correct reconstruction of the genomes. The assembler must strike a balance between recovering low-

abundance genomes and obtaining long, accurate contigs for high abundance genomes. A second problem 

is that a sample can contain different strains of the same bacterial species. These closely related genomes 

can cause branches in the assembly graph where they differ by a single nucleotide variant, or by the 

presence/absence of an entire gene or operon. The assembler will often stop at these branch points, 

resulting in fragmented reconstructions. 

Metagenome-specific assemblers try to overcome these challenges. Meta-IDBA 44 uses a multiple k-mer 

approach to avoid the difficult task of choosing a k-mer length that works well for both low and high 

abundance species. Meta-IDBA has extensions to partition the de Bruijn graph (as does MetaVelvet 45) and 

the latest version, IDBA-UD, optimizes the reconstruction for uneven sequence depth distributions 46. The 

SPAdes assembler 47 has been extended for metagenome assembly and can be used for assembling libraries 

sequenced with different technologies (hybrid assembly).  

Dataset 
Metagenomi
c assembly 

method 

Assembly statistics for contigs longer than 1kb  
(values in parenthesis refers to perfect contigs1 only) 

# contigs Total assembly size Reconstruction % N502 % identity 

Env. Mock 
community 

55 

MetaSPAdes 
16.22k 

(11.26k) 
150.47M (108.39M) 80.93% (58.30%) 

26.46k 
(25.88k) 

99.86% 
(99.96%) 

MegaHIT 
21.82k 

(16.67k) 
146.72M (124.67M) 78.91% (67.05%) 

16.94k 
(17.94k) 

99.93% 
(99.98%) 

HMP Mock 
community 2 

MetaSPAdes 
0.72k 

(0.42k) 
62.67M (31.95M) 95.15% (48.50%) 

260.45k 
(178.28k) 

99.98% 
(99.99%) 

MegaHIT 
1.43k 

(1.14k) 
62.09M (54.56M) 94.27% (82.84%) 

124.02k 
(113.11k) 

99.99% 
(99.99%) 

Table 2: Comparative evaluation of metagenomic assembly on mock microbial communities with known composition.  

For complex samples that are likely to contain hundreds of strains, the sequencing depth must be increased 

as much as possible. Computational time and memory may be insufficient to complete such assemblies. 

Distributed assemblers 48 such as Ray, which spread memory load over a cluster of computers, have been 

used to assemble metagenomes from human faecal samples 49. To help assemble very complex samples Pell 

et al. developed a lightweight method to partition a metagenome assembly graph into connected 

components that can be assembled independently 50. Another method, named Latent Strain Analysis, 

partitions reads using k-mer abundance patterns which enables assemblies of individual low-abundance 

                                                
1 ‘perfect contigs’ are those contigs reconstructed by metagenomic assembly that have a match with >99% 
identity with the reference genome over the full length of the contig. Notably, ‘perfect contigs’ excludes 
chimeric contigs. 
2 The N50 value corresponds to the size of the contig for which longer contigs represent at least half of the 
total assembly 



genomes using a limited amount of memory 51. MegaHIT uses succinct data structures to reduce the 

memory requirements of assembling complex metagenomes and achieves very quick run times 52. 

There is little community consensus on how well different assemblers perform with respect to key metrics 

such as completeness, continuity and propensity to generate chimeric contigs. Despite metagenomic 

analysis “bake-offs” aimed at making concrete recommendations for analysis software, it is likely that 

software performance will depend on biological factors such as underlying microbial community structure, 

and technical factors, such as sequencing platform characteristics and coverage. This effect was observed 

at an Assemblathon 53, where no single assembler came out “best”.  

Sample3 Assembler #genes4 

#matches 
against nr 

(95% 
identity) 

# of 
species 

observed 
(nr at 95% 

identity)  

Median # 
of single 

core 
genes 

# of 
annotated 

COGs  

# of 
annotated 

KEGG 
orthologues 

 

Env Mock 
community 

55 

MetaSPAdes 164750 154403 103 49.5 100681 91376  

MegaHIT 164146 154185 105 49 97119 91035  

HMP Mock 
community 

2 

MetaSPAdes 62850 61362 30 20 44625 36082  

MegaHIT 63304 61617 38 20 44289 36394  

Gut 
sample 2 

 

MetaSPAdes 169399 111119 365 44.5 79414 76500  

MegaHIT 166289 109777 381 41.5 77666 75020  

Ocean 
sample 6 

MetaSPAdes 124251 7397 118 42 51138 68633  

MegaHIT 151627 7987 110 60.5 67979 87344  

Soil 
sample 129 

MetaSPAdes 34118 7411 86 4 10448 15312  

MegaHIT 44396 11008 132 11.5 17671 22524  

Table 3: Comparative evaluation of metagenomic assembly of a set of metagenomes from diverse environments. Functional 

annotations performed as previously described 61.  

We analysed assembly results from mock synthetic and real communities (Table 2 and Table 3). We 

evaluated two assemblers, MegaHIT 52 and MetaSPAdes 54 for their ability to reconstruct known genomes 

from the mock communities, and capture taxonomic and gene diversity in the real datasets. They both 

successfully reconstructed more than 75% of the mock communities (one comprising 20 organisms 2, the 

other 49 bacterial and 10 archaeal species 55). MetaSPAdes generated longer contigs, but these appeared 

to be less accurate. When restricted to contigs that exactly matched the references in the mock community 

then MegaHIT succeeded in reconstructing more of the true genomes. Choice of assembler in this case 

would therefore depend on the relative importance of contig size versus accuracy. Across the true datasets 

(Table 3), consistent patterns were hard to discern. However, examining median single-copy core gene 

number (which will estimate the number of genomes in the assembly) suggests that for the more complex 

soil and ocean communities, MegaHIT succeeded in assembling more genes that could then be functionally 

annotated. However, the key message here is that different state-of-the-art programs will be optimal on 

                                                
3 All samples have been subsampled to 50 million reads for inter sample comparability 
4 total number of genes identified from the assembled contigs using Prodigal 



different datasets while requiring similar run times (about 48 hours using 16 threads on the largest sample) 

and main memory usage (not exceeding 125GB). It is prudent, therefore, to attempt more than one 

assembly approach.  The CAMI challenge reported that MegaHIT was in the top three best metagenomics 

assemblers across their benchmark data sets 56 and together with MetaSPAdes (not evaluated in CAMI) 

these are probably the best current choices. Whatever assembler is used the result will not be genomes but 

rather potentially millions of contigs, and this motivates the need for binners that attempt to link those 

contigs back into the genomes they derived from. 

Binning contigs 

Metagenome assemblies are highly fragmented, comprising thousands of contigs (Table 2), and the 

challenge is that we do not know a priori which contig derives from which genome. We do not even know 

how many genomes are present. The aim of contig “binning” is to group contigs into species. Supervised 

binning methods use databases of already sequenced genomes to label contigs into taxonomic classes. 

Unsupervised methods, or clustering, look for natural groups in the data. 

Both supervised and unsupervised methods have two main elements: a metric to define the similarity 

between a given contig and a bin, and an algorithm to convert those similarities into assignments. For 

taxonomic classification, contig homology against known genomes is a potentially useful approach, but 

most microbial species have not been sequenced so a large fraction of reconstructed genomic fragments 

cannot be mapped to reference genomes. This has motivated the use of contig sequence composition for 

binning. Different microbial species’ genomes contain particular combinations of bases, and this results in 

different k-mer frequencies 57. Metrics based on these k-mer frequencies can be used to bin contigs, with 

tetramers considered the most informative for binning of metagenomics data 58. Many different software 

choices are available that are based on these frequencies such as Naïve Bayes classifiers 59 or support vector 

machines 60, but sequence composition often lacks the specificity necessary to resolve complex datasets to 

the species level in complex communities 58,61.  

Clustering of contigs is appealing because it does not require reference genomes. Until recently, most contig 

clustering algorithms such as MetaWatt 62 and SCIMM 63 used various species composition metrics, 

sometimes coupled with total coverage. Recently, as multi-sample metagenome datasets have been 

produced it has been realized that contig coverage across multiple samples provides a much more powerful 

signal to group contigs together 64,65. The principle is that contigs from the same genome will have similar 

coverage values within each metagenome, although intra genome GC content variation, and increased read 

depth around bacterial origins of replication, can challenge this assumption 66. The first algorithms, e.g. 

extended self-organising maps 64, required human input to perform the clustering, which is based on 

coverage information and composition that could be visualized in 2D 65. Completely automated approaches 

such as CONCOCT61, GroopM 67 and MetaBAT 68 are now available and they are convenient, particularly for 

large datasets, but better results may still be obtained when combined with human refinement, for instance 

using a visualization tool named Anvio 69.   



 

Figure 2. Assembly-based and assembly-free metagenome profiling. Starting from a metagenomic case-control design, we describe 

some of the steps needed to identify the organisms, the encoded functions and to try to links these samples’ characteristics with the 

case/control condition. Left panel: An assembly-based pipeline, which can be fully reproduced following the commands and the code 

provided as a GitHub repository at https://github.com/chrisquince/metag-rev-sup is shown on the left. A read-based pipeline (right 

panel) using MetaPhlAn2 88, HUMAnN2 94, and a recent strain-level extension of the MetaPhlAn2 approach 88 is shown on the right. 

The raw data is available at http://metagexample.s3.climb.ac.uk/Reads.tar.gz.  

Methods for reconstructing metagenomic assembled genomes (MAGs) are indispensable to uncover the 

hitherto inaccessible diversity of bacteria. The recovery of nearly a thousand MAGs from candidate phyla, 

with no cultured representatives, from acetate enriched and filtered groundwater samples showcased the 

potential of this approach8. Recovered genomes were all small, with minimal metabolism, and formed a 

monophyletic clade, separate from the previously cultured diversity of bacteria. These have been proposed 

as a new bacterial sub-division, the candidate phyla radiation, revealed through metagenomics 70. 

Completeness of MAGs is usually evaluated by examining single-copy core genes, which are found in most 

microbial genomes, for example tRNA synthetases or ribosomal proteins. A pure MAG will have all these 

genes present in single copies. Once constructed, the MAGs provide a rich dataset for comparative 

genomics, including the construction of phylogenetic trees, functional profiles and comparisons of MAG 

abundance across samples (see left panel in Figure 2 and the step-by-step tutorial we provide at 

https://github.com/chrisquince/metag-rev-sup). 

Assembly-free metagenomic profiling 

Taxonomic profiling of metagenomes identifies which microbial species are present in a metagenome, and 

estimates their abundance. This can be carried out without assembly using external sequence data 

resources, such as publicly available reference genomes. This approach can mitigate assembly problems, 

https://github.com/chrisquince/metag-rev-sup
http://metagexample.s3.climb.ac.uk/Reads.tar.gz
https://github.com/chrisquince/metag-rev-sup


speed up computation, and make it possible to profile low-abundance organisms that cannot be assembled 

de novo (Supplementary Box 1). The main limitation is that previously uncharacterized microbes are very 

difficult to profile (Supplementary Box 1). However, the number of reference genomes available is 

increasing rapidly, with thousands of genomes being produced each year, including some derived from 

difficult-to-grow species targeted by new cultivation methods 71, single-cell sequencing approaches 72, or 

metagenomic assembly itself. The diversity of reference genomes available for some sample types, such as 

from the human gut 73, is now extensive enough to make assembly-free taxonomic profiling efficient and 

successful, including for comparatively low abundance microbes that lack sufficient sequence coverage and 

depth to enable the assembly of their genome. Analysis of more diverse environments including soil and 

oceans is hampered by a lack of representative reference genomes. As a result, it is generally inadvisable to 

avoid assembly when analyzing metagenomes from these environments. 

Limitations of shotgun metagenomics 

“Entry-level access” issues. It is still expensive to sequence and analyze large numbers of metagenomes without access to sequencing and computational facilities. 
Improved sequencing platforms and cloud computing facilities should decrease these entry-level costs. 

Comprehensiveness of genome catalogs. The set of >50,000 microbial genomes available is biased toward model organisms, pathogens, and easily cultivable 
bacteria. All metagenomic computational tools, to some extent, rely on available genomes and they are thus affected by the biases in the reference sequence 
resources. 

Biases in functional profiling. Profiling of the functional classes present in a metagenome is hindered by the lack of validated annotations for most genes, an issue 
that can be mitigated only by expensive and low-throughput gene-specific functional studies. Moreover, intrinsic microbiome properties such as its average 
genome size can critically impact the quantitative profiling 130. 

Microbial dark matter. Several members of a microbiome might have not been characterized before with culture-based methods or with metagenomics. This is 
regarded as microbial dark matter, and assembly-based approaches can recover part of this unseen diversity. A fraction of reads may still remain unused after 
assembly, and the size of this fraction is highly dependent on community structure and complexity (e.g. see the analysis reported in Table 2 and 3). It is also 
impacted by features such as sequencing noise, contaminant DNA, and microbes and plasmids that remain taxonomically obscure even after assembling part of 
their genome. 

“Live or dead” dilemma. DNA persists in the environment after the death of the host cell, so the sequencing results may not be representative of the active 
microbial population. Compounds such as propidium monazide, which binds to free DNA, as well as DNA within dead or damaged cells, or techniques such as 
metatranscriptomics, may be used if the aim is to study the active microbes. 

“Curse of compositionality”. Quantitative metagenomic features are reported as fractional values without links to the real absolute concentration. Variations in 
the true concentration of organisms across samples can thus produce false correlations. For example, if a highly abundant organism doubles its concentration in 
two otherwise identical samples, all the other organisms in the sample will appear to be differentially abundant after normalization. 

Mucosa-associated microbiome sequencing. Human mucosal tissues are crucial interfaces between microbes and the immune system, but sequencing the 
mucosal microbiome with shotgun metagenomics is very challenging due the extremely high fraction of human DNA and the low microbial biomass. 

Challenges in shotgun metagenomics 

Integrative meta-omics. Complementing DNA sequencing with RNA, protein, and metabolomic high-throughput assays is possible with shotgun 
metatranscriptomics, mass-spectrometry-based metaproteomics and metabolomics 74. Despite the potential of these technologies, it is unclear how to integrate 
and analyze meta-omic data within a common framework. 

Virome shotgun sequencing. Viral organisms can be detected by shotgun metagenomics, but virome enrichment techniques are usually needed to access a 
broader set of viruses. Virome analysis is also computationally challenging because of limited availability of viral genomes and a lack of inter-family phylogenetic 
signals. 

Strain-level profiling. The genomic resolution of single isolate sequencing is still higher than what can be achieved for single organisms in a metagenomic context. 
Increasing the profiling resolution to the level of single strains would be crucial for in depth population genomics and microbial epidemiology. 

Longitudinal study designs. Many shotgun metagenomic studies are cross-sectional and thus unpowered for assessing inter versus intra subject variability and 
microbiome temporal evolution. Tools for longitudinal settings have been developed 61 but more methods and data are needed to investigate the temporal 
dimension 131. 

Disentangling cause from effect. Hypotheses from metagenomic studies should be followed up with experimental work to validate correlations and associations. 
Longitudinal and prospective settings can potentially provide direct insights into the causative dynamics of conditions of interest. 

Validation of microbiome biomarkers. Microbiome biomarkers of a given condition are often strongly study-dependent. It is thus crucial to validate biomarkers 
across technologies and cohorts to enhance reproducibility and minimize batch effects. 

Data sharing, open data, open source, and analysis reproducibility. Data and metadata sharing is strongly encouraged, raw data deposition is usually requested 
prior to publication, and open source software is desirable. However, metagenomics has still to reach the level of standardization that is characteristic of other 
more established high-throughput techniques. 

Box 1. Limitations and opportunities in metagenomics. 



Assembly-free taxonomic profilers with species-level resolution utilize information available in reference 

genomes 74 and in environment-specific assemblies 75, and have been used in the largest human-associated 

metagenomics investigations performed so far 2,5,75-80. The simple brute force mapping of reads to genomes 

can result in profiles with many false positives but, nonetheless, this approach has been proven to be 

effective when the output is post-processed based on lowest common ancestor (LCA) strategies 81 or 

coupled with compositional interpolated Markov models 82. However, the run times of these approaches 

do not improve on assembly-based methods. Kraken 83 also exploits LCA but dramatically speeds up the 

computation by substituting sequence mapping with k-mer matching.  

Taxonomic profiling by selecting representative or discriminative genes (markers) from available reference 

sequences is another fast and accurate assembly-free approach that has been implemented with several 

variations. By looking at co-abundant markers from pre-assembled environment specific gene catalogs 84,85, 

for example, the MetaHIT consortium was able to characterize known and novel organisms in the human 

gut 5,75. Similarly, mOTU 86 focuses on universally conserved but phylogenetically informative markers (e.g. 

genes coding for ribosomal proteins), whereas MetaPhlAn 87,88 (right panel of Figure 2) adopts several 

thousands of clade-specific markers with high discriminatory power, and proved effective to quantitatively 

profile the microbiome from multiple body areas for the Human Microbiome Project 2 with a very low false 

positive discovery rate. These methods are scalable and can be used for large metagenomics meta-analyses 
89. Marker-based approaches can also be used for strain-level comparative microbial genomics using 

thousands of metagenomes 88,90,91. Importantly, the accuracy of these methods will improve as more 

reference genomes and high-quality metagenomic assemblies become available. For large datasets with 

hundreds of samples on which performing or interpreting metagenomics assembly is impractical, marker-

based approaches are currently the method of choice especially for environments with a substantial fraction 

of microbial diversity covered by well-characterized sequenced species.  

Genes and metabolic pathways from metagenomes 

With a fragmented but high-quality metagenome assembly, the gene repertoire of a microbial community 

can be identified using adaptations of single-genome characterization tools. These include a gene 

identification step, usually with a metagenomic-specific parameter setting 92, followed by homology-based 

annotation pipelines commonly used for characterizing pure isolate genome assemblies. Indeed, some of 

the largest shotgun sequencing efforts performed so far 5 used metagenomic assemblies to compile the 

microbial gene catalog of the human 93 and mouse 84 gut metagenomes, although this approach is often 

limited by the large fraction of uncharacterized genes in the reference database catalogs.  

Other large metagenomic datasets 2 were interpreted by translated sequence searches against functionally 

characterized protein families 94. Databases, that include combinations of manually annotated and 

computationally predicted proteins families such as KEGG 95 or UniProt 96, can be used for this task and 

enable characterization of the functional potential of the microbiome (Figure 2, right-hand panel). Single 

protein families are aggregated into higher-level metabolic pathways and functional modules providing 

either graphical reports 81 or comprehensive metabolic presence/absence and abundance tables, as in the 

HUMAnN pipeline 94. Regardless of whether an assembly-free or assembly-based approach is adopted, the 

main limiting factor in profiling the metabolic potential of a community is the lack of annotations for 

accessory genes in most microbial species (with the exception of selected model organisms, Box 1). This 



means that highly conserved pathways and housekeeping functions are more consistently detected and 

quantified in metagenomes, which might explain why functional traits are often reported to be surprisingly 

consistent across different samples and environments, even when taxonomic composition is highly variable 
2. Experimental characterization of microbial proteins, coding genes, and other genomic features (tRNAs, 

non-coding RNAs, CRISPRS) to more thoroughly assess functions of individual loci is a bottleneck that 

currently has a crucial impact on our ability to profile the functions of metagenomes 85. 

A complementary approach to metabolic function profiling of metagenomes is an in-depth characterization 

of specific functions of interest. For example, identifying genes involved in antibiotic resistance (the 

“resistome”) in a microbial community can inform on the spread of antibiotic resistance 97. Ad-hoc methods 
98 and manually curated databases of antibiotic resistance genes have been crucial to this approach; ARDB 
99 was the first widely adopted resistance database and is now complemented by additional resources such 

as Resfams 100. Comparably large efforts are also devoted to reporting the virulence repertoire of a 

metagenome; targeted analyses of metagenomes for specific gene families of interest can also be used to 

validate findings from single, cultivation-based isolate experiments. 

Post-processing analysis 

Regardless of the methods used for primary metagenomic sequence analyses, the outputs will comprise 

data matrices of samples versus microbial features (species, taxa, genes, pathways). Post-processing 

analysis uses statistical tools to interpret these matrices, and decipher how the findings correlate with the 

sample meta-data. Many of these statistical approaches are not specific for metagenomics. Specific  

challenges of metagenome-derived quantitative values include the proportional nature of the taxonomic 

and functional profiles, and the log-normal long-tailed distribution of abundances. These issues are also 

problematic in high-throughput 16S rRNA gene amplicon sequencing datasets, and several popular R 

packages such as DESeq2 101, vegan 102, and metagenomeSeq 103 that were originally developed for amplicon 

sequencing can be used for metagenomics. 

Post-processing tools include traditional multivariate statistics and machine learning. Unsupervised 

methods include simple clustering and correlation of samples, andvisualization techniques such as 

heatmaps, ordination (e.g. PCA and PCoA), or networks, which allow the patterns in the data to be revealed 

graphically. Some unsupervised statistical tools aim to specifically address the problems introduced by the 

proportional nature of metagenome profiles (compositionality issue 104, Box 1) and try to infer ecological 

relationships within the community 105. Supervised methods include both statistical methods such as 

multivariate analysis of variance ANOVAs for direct hypothesis testing of differences between groups, or 

machine learning classifiers that train models to label groups of samples, such as Random Forests or Support 

Vector Machines 106. A classic machine learning example would be to diagnose disease (e.g. for type 2 

diabetes 76) on the basis of community dysbiosis, although developing cross-study predictive signatures is 

challenging 106.  

Unsupervised and supervised methods consider the community as a whole. A complementary strategy is to 

ask which specific taxa or functional genes are statistically different between sample types or patient 

groups. Given the complexity of metagenomics datasets, and the huge numbers of comparisons that can 

typically be made, correction for multiple comparisons 107 or effect size estimation 108 are vital for this task.  



Robust statistical testing is key to determining the validity of results, but compact graphical representations 

can intuitively reveal patterns. In many cases visualization of post-processing results requires ad-hoc 

graphical tools 109,110, and carefully adopted general visualization approaches. 

Outlook  

Metagenomics still faces roadblocks to applicability, usefulness, and standardization (Box 1). The lack of 

reference genome sequence data for large portions of the microbial tree of life, or functional annotation 

for many microbial genes, substantially reduce the potential for success of the computational approaches 

used to analyze the vast amounts of sequences produced. Metagenomes from environments such as soil or 

water are particularly affected by this problem owing to both their high microbial diversity, and the 

proportion of uncharacterized taxa in these communities. Shotgun sequencing also fails to discriminate 

between live and dead organisms. However, the outlook is bright, because year on year a large community 

of wet-lab and computational researchers are finding solutions to these problems.  

 Assembly-based analysis Read-based analysis (“Mapping”) 

Comprehensiveness Can construct multiple whole genomes 
but only for organisms with enough 
coverage to be assembled and binned 

Can provide an aggregate picture of community function 
or structure, but is only based upon the fraction of reads 
that map effectively to reference databases 

Community 
complexity 

In complex communities only a fraction of 
the genomes can be resolved by assembly 

Can deal with communities of arbitrary complexity given 
sufficient sequencing depth and satisfactory reference 
database coverage 

Novelty Can resolve genomes of entirely novel 
organisms with no sequenced relatives 

Cannot resolve organisms for which genomes of close 
relatives are unknown 

Computational 
burden 

Assembly, mapping and binning are all 
computationally costly steps 

Can be performed efficiently, enabling large meta-
analyses 

Genome resolved 
metabolism 

Can link metabolism to phylogeny 
through completely assembled genomes, 
even for novel diversity 

Can only typically resolve the aggregate metabolism of 
the community, links with phylogeny are only possible in 
the context of known reference genomes 

Expert manual 
supervision 

Manual curation required for accurate 
binning/scaffolding, and for misassembly 
detection 

Manual curation usually not needed, although the 
selection of reference genomes to use could involve 
human supervision. 

Integration with 
microbial genomics 

Assemblies can be  fed into microbial 
genomic pipelines designed for analysis of 
genomes from pure cultured isolates 

Obtained profiles cannot be directly put into the context 
of genomes derived from pure cultured isolates 

Table 4. Strengths and weaknesses of assembly-based and read-based analyses for primary analysis of metagenomics data. 

Metagenome bioinformatics tools, especially for translating raw reads into meaningful microbial features 

(genomes, species abundances, functional potential profiles) (Figure 1), are continually improving. For 

example, strain-level analyses are now possible 111-113. There remains an active debate about which 

sequence analysis approach is best (see Table 4). Metagenomic assembly is the preferred theoretical 

solution if there is sufficient genome coverage (i.e. >20x), but this level of coverage is difficult to obtain for 

most of the members of the microbiome (Table 4) and assembly-free methods have other advantages 



including the possibility to perform large-scale strain-level analyses. The success of either approach depends 

on the microbial community composition and complexity, sequencing depth, size of the dataset, and 

available computational resources (Table 4). We recommend that researchers use both approaches for 

sequence analysis whenever possible, as they complement and validate each other. 

As for the technological improvements in the sequencing of community DNA, long-read sequencing 

platforms have matured and are likely to become useful for metagenomics assembly strategies, although 

publications are few at present. The Pacific Biosciences instruments can deliver complete or nearly 

complete isolated microbial genomes with low base error rates if sufficient coverage is achieved (typically 

30-100X). The Oxford Nanopore MinION single molecule, long read instrument holds appeal because of its 

size and portability (smartphone size) and early analysis of reads from this platform indicates it has an error 

rate akin to Pacific Biosciences reads 114. Assembly of isolate genomes is possible into single contigs 115 so 

the portability of the MinION raises the tantalizing possibility of performing metagenomic sequencing in the 

field. 

An alternative experimental approach to improve genome reconstruction from metagenomes couples 

Illumina sequencing chemistry with a multiplexed pooling library preparation protocol. This so-called  

Synthetic Long Reads technology relies on the dilution of genomic DNA into fragmented and barcoded pools 

consisting of hundreds to thousands of individual molecules. These pools are sequenced and assembled de 

novo to produce synthetic long reads. One benefit of synthetic long reads is that because they are built from 

a consensus of Illumina sequences, the base error rate is extremely low. However, the  protocol is rather 

laborious and requires high DNA input (between 1 and 10 µg of DNA), plus, problems persist with local 

repetitive sequences. Reports suggest that this approach is useful for metagenomics, especially when 

coupled with standard shotgun sequencing, as it can reconstruct genomes from closely related strains, as 

well as those from rare microorganisms 116,117.  

Another outstanding problem in shotgun metagenomics is the accurate reconstruction of strain-level 

variation from mixtures of genetically related organisms 118, with several solutions proposed 14,90,111-113,119,120 

that are based on assembly, mapping, or a combination of the two. Mapping to genes that are unique to a 

species 88 can resolve the dominant haplotype in a sample, and this method has been applied to thousands 

of unrelated metagenomes, providing strain-level phylogenies that enable microbial population genomics 

for hundreds of largely uncharacterized species 111. Mixtures of strains from the same species in a single 

sample cannot be resolved by consensus approaches, but if the same strains are present in multiple samples 

there will be characteristic signatures in single nucleotide variations. These nucleotide variations can be 

linked together to deduce haplotypes and their frequencies 90,113,119. This methodology was initially only 

applied after mapping to reference genes 90, and optionally with simultaneous strain phylogeny 

reconstruction 119, but it has now been applied directly to contig bins with inference of strain gene 

complement in an entirely reference free method 113. One limitation of this approach is that  in some 

environments, including the human gut, it has been shown that one strain usually dominates over other 

strains from the same species 111. It is therefore challenging to detect non dominant strains of low-

abundance species, and the user has to weight the increased robustness of profiling only the dominant 

strains 111 with the potential additional information that can be garnered from characterizing mixtures of 

strains 113. Strain-level metagenomics is an active area of research 118 and has the potential to empower 

metagenomics with similar resolution to that which can be derived from sequencing of pure culture single 



isolates. Although long read technologies can aid these efforts in the future, solving the computational 

challenges of strain-level profiling from metagenomics is arguably the biggest challenge in the field at the 

moment.   

Conclusions 

Since the pioneering application of whole DNA sequencing to environmental samples by teams led by Jillian 

Banfield 121 and Craig Venter 7 in 2004, shotgun metagenomics has become an important tool for the study 

of microbial communities. Widespread adoption of metagenomics has been enabled by the falling cost of 

sequencing and the development of tractable computational methods. The main limitations facing 

researchers now are the costs of training computational scientists for analyzing the complex metagenomic 

datasets, and of sequencing enough samples for properly powered study designs. Initiatives such as the 

Critical Assessment of Metagenomic Interpretation 56 are vital for an unbiased assessment of computational 

tools to improve reproducibility and standardization.  

Shotgun metagenomics will play an increasingly important part in diverse biomedical and environmental 

investigations and applications. We hope that this Review will provide an understanding of the basic 

concepts of shotgun metagenomics including both its limitations and its immense potential.  
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Supplementary Figure 1. Example workflow for planning a metagenomics study. The advice presented here is targeted towards 

entry-level researchers in this area, with a particular focus on hypothesis-driven experiments, which of course may be designed 

very differently compared to exploratory/hypothesis-generating studies. Key considerations for study design (blue box), sample 

collection (green box) and experimental procedures (yellow box) are highlighted. Understanding the potential for confounding 

factors, and optimization of design, can substantially improve the quality of both metagenomic sequence data, and interpretation. 

Supplementary Table 1 contains further specific recommendations. 

 

 

 

  



 

Supplementary Box 1. Common difficulties in Study design: problems and some recommended solutions.  

Powering the study / Read depth requirements. The number of samples and sequencing depth required to be able to detect significant 
differences will depend on factors such as consistency of microbiome composition between different samples, the inherent microbial diversity 
of the samples, and effect size of the phenomenon being studied. Solution: These decisions can often be guided by results from previous 
studies in the same type of environment. In cases where this information is lacking it may be prudent to carry out preliminary marker gene-
based studies to gauge the relative impact of each of the factors listed opposite. 

Confounding variables and control groups. It is often very difficult to select a control group to compare against the samples of interest that 
is free from other confounding variables. An example of this is rodent microbiome research, where cage and animal batch effects can result 
in dramatic differences in microbiome composition, independent of the variable being studied 25. Another example is the cross-sectional study 
of the microbiome associated with a disease for cases in which the patients cannot be sampled in the absence of active treatment. Solution: 
Current best practice is to collect as much metadata about each of the study groups as possible and factor these into the subsequent analyses 
when comparing groups. For clinical samples this typically includes features such as gender, age, antibiotic/medication use, location, dietary 
habits, and Bristol stool chart scores. For environmental samples this commonly includes associated parameters such as geographic location, 
season, pH, temperature etc. Further extensive advice for planning rodent microbiome studies is available 25. Longitudinal sampling from the 
same patient/location can also act as an additional control, especially when longitudinal changes can be correlated with associated metadata. 

Sample collection/preservation. It may be difficult to process and store all samples in exactly the same way (for example when samples are 
provided from a number of locations by different research groups). With longitudinal studies, samples collected at the final time point may 
spend less time in frozen storage prior to DNA extraction than samples collected at other time points. Such changes in sampling and 
preservation procedures may introduce systematic biases. Solution: Where possible, collection and preservation methodologies should be 
standardized throughout for all samples within a given study. All procedures used should also be recorded and included as pertinent metadata 
when carrying out subsequent data analyses. This should ideally include factors such as time between collection and DNA extraction, length 
of time in frozen storage, and number of freeze-thaw cycles. For mammalian gut samples there is some evidence that storage in glycerol may 
result in more representative compositional results following long term frozen storage 132. Similarly, freeze drying prior to long-term frozen 
storage may be a prudent approach 133. 

Biomass/Contamination. Modern sequence based technologies are highly sensitive, meaning very small amounts of DNA are sufficient for 
sequencing. However, common laboratory kits and reagents are not sterile, meaning that any contamination that is present in these can 
potentially overwhelm the “real” signal in samples containing only a very low microbial biomass 34. Solution. It is prudent to gauge the level 
of biomass present in samples before sequencing using a quantitative approach such as qPCR. Samples containing fewer than 105 microbial 
cells appear to be most impacted by background contamination 34. Table 1 offers some approaches that may be tried in order to enrich cell 
numbers/DNA yields from samples prior to sequencing. Negative control samples, that have been processed using the same kits/reagents as 
the actual samples, should be sequenced in order to determine the types of contaminating microbes present. Sequence data derived from 
these contaminants might then be removed bioinformatically from the final sequence datasets. Note that the sensitivity of these negative 
controls can be enhanced by the use of carrier DNA 134. 

Choice of DNA extraction methodology. This step can hugely impact the results of a metagenomics study. If the approach selected is not 
stringent enough to extract DNA from some cell types they will not be represented accurately in the subsequent sequence data. 
Fundamentally, the optimal type of DNA extraction approach will depend on the underlying composition of the cell types that are present 
within a given sample. Unfortunately this can vary greatly, even within the same type of sample (e.g. the faeces of some humans are 
dominated by Gram negative species with cell walls that are relatively easy to disrupt, while those of others are dominated by relatively 
recalcitrant Gram positive species). As a result, no one DNA extraction approach will work optimally for all sample types. Solution: The use of 
defined mock community controls 2 consisting of cultures derived from a mixture of the types of species that are common within a given 
environment can be a useful starting point to test the efficiency and accuracy of different DNA extraction methods. Mock communities can 
be optimized by including a phylogenetically diverse collection of species that are known to be commonly abundant in the sample type being 
studied. However, it is difficult to mimic the complexity of real microbial communities using simplified mocks, and impossible to test for the 
efficiency of the extraction step for unknown/uncultured organisms. Much evidence suggests that incorporating a bead-beating step into the 
DNA extraction process improves yield and representativeness of resulting species profiles compared to chemical-only lysis 31,135(ref#133 
C.Q.,N.J.L.). However, this type of approach does typically result in more sheared DNA, potentially limiting the power of burgeoning long read 
sequencing technologies. DNA extraction methodology should also be included as crucial metadata when uploading sequence data to public 
repositories. This allows variance in methodology choices to be factored into subsequent meta-analyses that incorporate metagenomic 
datasets from different laboratories. 
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