Skip to main content

Role of Microorganisms in Pathogenesis and Management of Autoimmune Retinopathy (AIR)

  • Chapter
  • First Online:
Role of Microorganisms in Pathogenesis and Management of Autoimmune Diseases

Abstract

Autoimmune retinopathies (AIRs) are a group of autoantibody-mediated retinal degenerations characterized by progressive visual deterioration, visual field loss, abnormal electroretinography (ERG) with a normal looking retina or a minimally apparent structural changes in the retina. It is characterized by the presence of antiretinal antibodies (ARAs) causing photoreceptor dysfunction. AIR is an immunologic disorder whereby retinal antigens are recognized aberrantly as autoantigens, leading to retinal degeneration as evidenced by basic immunological studies. However, exact underlying pathomechanism remains elusive. Most of the evidences are from experimental animal models. The incidence as well as the severity of the disease decreases under a germ-free environment which further strengthens the hypothesis of microbiota being a trigger for the autoimmune diseases. Four mechanisms triggering the gut-eye axis for causing intraocular inflammation have been hypothesized including antigenic (molecular) mimicry, destruction of intestinal barrier, increased intestinal permeability, microbial metabolites, dysbiosis. No standardized protocol has yet been established for patients with AIR. Considering a pivotal role of gut microbiota in autoimmune uveitis, four main therapeutic approaches are developed. This includes antibiotics, probiotics, dietary modifications, and fecal microbiota transplantation (FMT). Methionine aminopeptidase 2 (MetAP2) inhibitors like lodamine have shown to have significantly reduced the inflammatory cell infiltration and granuloma formation. The intestinal microbiome thus represents a salient potential target for therapeutic modulation to treat these potentially blinding conditions. Prospective studies are required to analyze the proposed experimental therapeutic approaches for a clinical implication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamus G (2003) Autoantibody-induced apoptosis as a possible mechanism of autoimmune retinopathy. Autoimmun Rev 2(2):6368

    Article  Google Scholar 

  • Adamus G (2009) Autoantibody targets and their cancer relationship in the pathogenicity of paraneoplastic retinopathy. Autoimmun Rev 8(5):410–414

    Article  CAS  Google Scholar 

  • Adamus G, Ren G, Weleber RG (2004) Autoantibodies against retinal proteins in paraneoplastic and autoimmune retinopathy. BMC Ophthalmol 4:5

    Article  Google Scholar 

  • Adamus G, Webb S, Shiraga S, Duvoisin RM (2006) Anti-recoverin antibodies induce an increase in intracellular calcium, leading to apoptosis in retinal cells. J Autoimmun 26(2):146–153

    Article  CAS  Google Scholar 

  • Amadi-Obi A, Yu CR, Liu X, Mahdi RM, Clarke GL et al (2007) TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL27/STAT1. Nat Med 13:711–718

    Article  CAS  Google Scholar 

  • Anderson J, Fuglsang H (1976) Effects of diethylcarbamazine on ocular onchocerciasis. Trop Med Parasitol 27:263

    CAS  Google Scholar 

  • Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ et al (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298:1395–1401

    Article  CAS  Google Scholar 

  • Atarashi K, Tanoue T, Shima T et al (2011) Induction of colonic regulatory T cells by indigenous clostridium species. Science 331:337–341

    Article  CAS  Google Scholar 

  • Avni O, Koren O (2018) Molecular (me)micry? Cell Host Microbe 23(5):576–578

    Article  CAS  Google Scholar 

  • Beli E, Yan Y, Moldovan L, Vieira CP, Gao R, Duan Y et al (2018) Restructuring of the gut microbiome by intermittent fasting prevents retinopathy and prolongs survival in db/db mice. Diabetes 67(9):1867–1879

    Article  CAS  Google Scholar 

  • Benny O, Fainaru O, Adini A, Cassiola F, Bazinet L et al (2008) An orally delivered small-molecule formulation with antiangiogenic and anticancer activity. Nat Biotechnol 26:799–807

    Article  CAS  Google Scholar 

  • Benny O, Nakai K, Yoshimura T, Bazinet L, Akula JD et al (2010) Broad spectrum antiangiogenic treatment for ocular neovascular diseases. PLoS One 5:e12515

    Article  Google Scholar 

  • Bettelli E, Oukka M, Kuchroo VK (2007) T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 8:345–350

    Article  CAS  Google Scholar 

  • Carabotti M, Scirocco A, Maselli MA, Severi C (2015) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28:203–209

    Google Scholar 

  • Caspi RR (2010) A look at autoimmunity and inflammation in the eye. J Clin Invest 120(9):3073–3083

    Article  CAS  Google Scholar 

  • Caspi RR, Roberge FG, McAllister CG, El-Saied M, Kuwabara T, Gery I, Hanna E, Nussenblatt RB (1986) T cell lines mediating experimental autoimmune uveoretinitis (EAU) in the rat. J Immunol 136:928

    CAS  Google Scholar 

  • Cavuoto KM, Banerjee S, Galor A (2019) Relationship between the microbiome and ocular health. Ocul Surf 17(3):384–392

    Article  Google Scholar 

  • Chen H, Cho KS, Vu THK, Shen CH, Kaur M, Chen G et al (2018) Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat Commun 9(1):3209

    Article  Google Scholar 

  • Cheng YW, Phelps E, Ganapini V, Khan N, Ouyang F, Xu H et al (2019) Fecal microbiota transplantation for the treatment of recurrent and severe clostridium difficile infection in solid organ transplant recipients: a multicenter experience. Am J Transplant 19(2):501–511

    Article  CAS  Google Scholar 

  • Chi W, Zhu X, Yang P, Liu X, Lin X et al (2008) Upregulated IL-23 and IL17 in Behcet patients with active uveitis. Invest Ophthalmol Vis Sci 49:3058–3064

    Article  Google Scholar 

  • Choi RY, Asquith M, Rosenbaum JT (2018) Fecal transplants in spondyloarthritis and uveitis: ready for a clinical trial? Curr Opin Rheumatol 30(4):303–309

    Article  Google Scholar 

  • Ciccia F, Guggino G, Rizzo A, Alessandro R, Luchetti MM, Milling S et al (2017) Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis. Ann Rheum Dis 76(6):1123–1132

    Article  CAS  Google Scholar 

  • Collison J (2018) Bacterial orthologues of Ro60 trigger disease. Nat Rev Rheumatol 14(6):322

    Article  Google Scholar 

  • Colpitts SL, Kasper EJ, Keever A, Liljenberg C, Kirby T, Magori K et al (2017) A bidirectional association between the gut microbiota and CNS disease in a biphasic murine model of multiple sclerosis. Gut Microbes 8:561–573. https://doi.org/10.1080/19490976.2017.1353843

    Article  CAS  Google Scholar 

  • Cree BA, Spencer CM, Varrin-Doyer M, Baranzini SE, Zamvil SS (2016) Gut microbiome analysis in neuromyelitis optica reveals overabundance of clostridium perfringens. Ann Neurol 80(3):443–447

    Article  CAS  Google Scholar 

  • Dalal MD, Morgans CW, Duvoisin RM et al (2013) Diagnosis of occult melanoma using transient receptor potential melastatin 1 (TRPM1) autoantibody testing: a novel approach. Ophthalmology 120(12):2560–2564

    Article  Google Scholar 

  • De Kozak Y, Sainte-Laudy J, Benveniste J, Faure JP (1981) Evidence for immediate hypersensitivity phenomena in experimental autoimmune uveoretinitis. Eur J Immunol 11:612

    Article  Google Scholar 

  • De Paiva CS, Jones DB, Stern ME et al (2016) Altered mucosal microbiome diversity and disease severity in sj€ogren syndrome. Sci Rep 6:23561

    Article  Google Scholar 

  • Dot C, Guigay J, Adamus G (2005) Anti-alpha-enolase antibodies in cancer-associated retinopathy with small cell carcinoma of the lung. Am J Ophthalmol 139:746–747

    Article  CAS  Google Scholar 

  • Doulberis M, Polyzos SA, Papaefthymiou A, Katsinelos P, Kountouras J (2019) Comments to the editor concerning the paper entitled “the microbiome and ophthalmic disease” by Baim et al. Exp Biol Med 244(6):430–432

    Article  CAS  Google Scholar 

  • Durrani OM, Tehrani NN, Marr JE, Moradi P, Stavrou P, Murray PI (2004) Degree, duration, and causes of visual loss in uveitis. Br J Ophthalmol 88(9):1159–1162

    Article  CAS  Google Scholar 

  • Ferreyra HA, Jayasundera T, Khan NW, He S, Lu Y, Heckenlively JR (2009) Management of autoimmune retinopathies with immunosuppression. Arch Ophthalmol 127(4):390–397

    Article  CAS  Google Scholar 

  • Flint HJ, Duncan SH, Louis P (2017) The impact of nutrition on intestinal bacterial communities. Curr Opin Microbiol 38:59–65

    Article  CAS  Google Scholar 

  • Gareau MG (2016) Cognitive function and the microbiome. Int Rev Neurobiol 131:227–246. https://doi.org/10.1016/bs.irn.2016.08.001

    Article  CAS  Google Scholar 

  • Gianchecchi E, Fierabracci A (2019) Recent advances on microbiota involvement in the pathogenesis of autoimmunity. Int J Mol Sci 20(2):283

    Article  Google Scholar 

  • Gough E, Shaikh H, Manges AR (2011) Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis 53:994–1002

    Article  Google Scholar 

  • Gray DH, Gavanescu I, Benoist C, Mathis D (2007) Danger-free autoimmune disease in Aire-deficient mice. Proc Natl Acad Sci U S A 104:18193–18198. https://doi.org/10.1073/pnas.0709160104

    Article  Google Scholar 

  • Greiling TM, Dehner C, Chen X, Hughes K, Iñiguez AJ, Boccitto M et al (2018) Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Sci Transl Med 10(434):eaan2306

    Article  Google Scholar 

  • Griffith EC, Su Z, Niwayama S, Ramsay CA, Chang YH et al (1998) Molecular recognition of angiogenesis inhibitors fumagillin and ovalicin by methionine aminopeptidase 2. Proc Natl Acad Sci U S A 95:15183–15188

    Article  CAS  Google Scholar 

  • Gritz EC, Bhandari V (2015) The human neonatal gut microbiome: a brief review. Front Pediatr 3:17

    Google Scholar 

  • Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJ (2010) The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov 9:325–338

    Article  CAS  Google Scholar 

  • Heissigerova J, Seidler Stangova P, Klimova A, Svozilkova P, Hrncir T, Stepankova R et al (2016) The microbiota determines susceptibility to experimental autoimmune uveoretinitis. J Immunol Res 2016:5065703

    Article  Google Scholar 

  • Horai R, Caspi RR (2010) Retinal inflammation: uveitis/uveoretinitis. In: Pang I-H, Clark AF (eds) Animal models for retinal diseases, Neuromethods. Springer, Fort Worth, TX, pp 207–225. https://doi.org/10.1007/978-1-60761-541-5

    Chapter  Google Scholar 

  • Horai R, Caspi RR (2019) Microbiome and autoimmune uveitis. Front Immunol 10:232

    Article  CAS  Google Scholar 

  • Horai R, Zárate-Bladés CR, Dillenburg-Pilla P, Chen J, Kielczewski JL, Silver PB et al (2015) Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site. Immunity 43(2):343–353

    Article  CAS  Google Scholar 

  • Huang X, Ye Z, Cao Q, Su G, Wang Q, Deng J et al (2018) Gut microbiota composition and fecal metabolic phenotype in patients with acute anterior uveitis. Invest Ophthalmol Vis Sci 59(3):1523–1531

    Article  CAS  Google Scholar 

  • Ivanov II, Atarashi K, Manel N et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498

    Article  CAS  Google Scholar 

  • Janowitz C, Nakamura YK, Metea C, Gligor A, Yu W, Karstens L et al (2019) Disruption of intestinal homeostasis and intestinal microbiota during experimental autoimmune uveitis. Invest Ophthalmol Vis Sci 60(1):420–429

    Article  CAS  Google Scholar 

  • Kassam F, Gurry T, Aldarmaki A, Nguyen T, Kassam Z, Beck PL et al (2018) Sa1841: the impact of the gut microbiome in developing uveitis among inflammatory bowel disease patients: a case-control study. Gastroenterology 154(6):S–415

    Article  Google Scholar 

  • Kim J, Choi SH, Kim YJ, Jeong HJ, Ryu JS, Lee HJ et al (2017) Clinical effect of IRT-5 probiotics on immune modulation of autoimmunity or alloimmunity in the eye. Nutrients 9(11):1166

    Article  Google Scholar 

  • Knight R et al (2017) The microbiome and human biology. Annu Rev Genomics Hum Genet 18:6586

    Article  Google Scholar 

  • Kugadas A, Gadjeva M (2016) Impact of microbiome on ocular health. Ocular Surface 14(3):342–349

    Article  Google Scholar 

  • Kugadas A, Wright Q, Geddes-McAlister J, Gadjeva M (2017) Role of microbiota in strengthening ocular mucosal barrier function through secretory IgA. Invest Ophthalmol Vis Sci 58:4593–4600. https://doi.org/10.1167/iovs.17-22119

    Article  CAS  Google Scholar 

  • Larson TA, Gottlieb CC, Zein WM et al (2010) Autoimmune retinopathy: prognosis and treatment. Invest Ophthalmol Vis Sci 51:ARVO E-Abstract 6375

    Google Scholar 

  • Leccese P, Alpsoy E (2019) Behçet’s disease: an overview of etiopathogenesis. Front Immunol 10(MAY):1067

    Article  CAS  Google Scholar 

  • Lee YK, Menezes JS, Umesaki Y, Mazmanian SK (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 108(Suppl 1):4615–4622

    Article  CAS  Google Scholar 

  • Lei B, Bush RA, Milam AH, Sieving PA (2000) Human melanoma-associated retinopathy (MAR) antibodies alter the retinal ON response of the monkey ERG in vivo. Invest Ophthalmol Vis Sci 41(1):262–266

    CAS  Google Scholar 

  • Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E (2017) Dysbiosis and the immune system. Nat Rev Immunol 17(4):219–232

    Article  CAS  Google Scholar 

  • Lin P (2018) The role of the intestinal microbiome in ocular inflammatory disease. Curr Opin Ophthalmol 29(3):261–266

    Article  Google Scholar 

  • Lin P (2019) Importance of the intestinal microbiota in ocular inflammatory diseases: a review. Clin Exp Ophthalmol 47(3):418–422

    Article  Google Scholar 

  • Maes M, Kubera M, Mihaylova I, Geffard M, Galecki P, Leunis JC et al (2013) Increased autoimmune responses against auto-epitopes modified by oxidative and nitrosative damage in depression: implications for the pathways to chronic depression and neuroprogression. J Affect Disord 149(1–3):23–29

    Article  CAS  Google Scholar 

  • Magrys A, Anekonda T, Ren G, Adamus G (2007) The role of anti-alpha-enolase autoantibodies in pathogenicity of autoimmunemediated retinopathy. J ClinImmunol 27(2):181–192

    CAS  Google Scholar 

  • Marak GE Jr, Wacker WB, Rao NA, Jack R, Ward PA (1979) Effects of complement depletion on experimental allergic uveitis. Ophthalmic Res 11:97

    Article  Google Scholar 

  • Marchesi JR, Ravel J (2015) The vocabulary of microbiome research: a proposal. Microbiome. 3:31

    Article  Google Scholar 

  • Mauriz J, Gonzalez P, Duran M, Molpeceres V, Culebras J et al (2007) Cellcycle inhibition by TNP-470 in an in vivo model of hepatocarcinoma is mediated by a p53 and p21WAF1/CIP1 mechanism. Transl Res 149:46–53

    Article  CAS  Google Scholar 

  • McEwen BS, Biron CA, Brunson KW, Bulloch K, Chambers WH et al (1997) The role of adrenocorticoids as modulators of immune function in health and disease: neural, endocrine and immune interactions. Brain Res Brain Res Rev 23:79–133

    Article  CAS  Google Scholar 

  • Merryman CF, Donoso LA, Sery TW, Sciutto E, Bauer A, Shinohara T (1987) S-antigen: adoptive transfer of experimental autoimmune uveitis following immunization with a small synthetic peptide. Arch Ophthalmol 105:841

    Article  CAS  Google Scholar 

  • Miraglia F, Colla E (2019) Microbiome, parkinson’s disease and molecular mimicry. Cell 8(3):222

    Article  CAS  Google Scholar 

  • Miserocchi E, Fogliato G, Modorati G, Bandello F (2013) Review on the worldwide epidemiology of uveitis. Eur J Ophthalmol 23:705–717. https://doi.org/10.5301/ejo.5000278

    Article  Google Scholar 

  • Mochizuki M, Kuwabara T, McAllister CG, Nussenblatt RB, Gery I (1985) Adoptive transfer of experimental autoimmune uveoretinitis in rats: immunopathogenic mechanisms and histologic features. Invest Ophthalmol Vis Sci 26:1

    CAS  Google Scholar 

  • Mochizuki M, Sugita S, Kamoi K (2013) Immunological homeostasis of the eye. Prog Retin Eye Res 33:10–27

    Article  CAS  Google Scholar 

  • Nakamura YK, Metea C, Karstens L, Asquith M, Gruner H, Moscibrocki C et al (2016) Gut microbial alterations associated with protection from autoimmune uveitis. Invest Ophthalmol Vis Sci 57(8):3747–3758

    Article  CAS  Google Scholar 

  • Nakamura YK, Janowitz C, Metea C, Asquith M, Karstens L, Rosenbaum JT et al (2017) Short chain fatty acids ameliorate immune-mediated uveitis partially by altering migration of lymphocytes from the intestine. Sci Rep 7(1):11745

    Article  Google Scholar 

  • Neumann E, Gunders E (1973) Pathogenesis of the posterior segment lesion of ocular onchocerciasis. Am J Ophthalmol 75:82

    Article  CAS  Google Scholar 

  • O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7(7):688–693

    Article  Google Scholar 

  • Ochoa-Reparaz J, Mielcarz DW, Ditrio LE et al (2010) Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide a expression. J Immunol 185:4101–4108

    Article  CAS  Google Scholar 

  • Ochoa-Reparaz J, Kirby TO, Kasper LH (2018) The gut microbiome and multiple sclerosis. Cold Spring Harb Perspect Med 8

    Google Scholar 

  • Okai S, Usui F, Yokota S et al (2016) High-affinity monoclonal IgA regulates gut microbiota and prevents colitis in mice. Nat Microbiol 1:16103

    Article  CAS  Google Scholar 

  • Okel BB, Thirkill CE, Anderson K (1995) An unusual case of melanoma-associated retinopathy. Ocul Immunol Inflamm 3:121–128

    Article  CAS  Google Scholar 

  • Patnaik G, Sobrin L, Biswas J (2020) Chapter 10, autoimmune retinopathy. In: Inflammation, 1st edn. ChanRe Publishers, Bengaluru, p 109

    Google Scholar 

  • Paul EV, Zimmerman LE (1970) Some observations on the ocular pathology of onchocerciasis. Hum Pathol 1:581

    Article  CAS  Google Scholar 

  • Picchianti-Diamanti A, Rosado MM, D’Amelio R (2017) Infectious agents and inflammation: the role of microbiota in autoimmune arthritis. Front Microbiol 8:2696

    Article  Google Scholar 

  • Proekt I, Miller CN, Jeanne M, Fasano KJ, Moon JJ, Lowell CA et al (2016) LYN- and AIRE-mediated tolerance checkpoint defects synergize to trigger organ-specific autoimmunity. J Clin Invest 126:3758–3771. https://doi.org/10.1172/JCI84440

    Article  Google Scholar 

  • Qiu Y, Zhu Y, Yu H et al (2018) Dynamic DNA methylation changes of Tbx21 and Rorc during experimental autoimmune uveitis in mice. Mediat Inflamm 2018:1–13

    Article  Google Scholar 

  • Reháková Z, Capková J, Stĕpánková R, Sinkora J, Louzecká A, Ivanyi P et al (2000) Germ-free mice do not develop ankylosing enthesopathy, a spontaneous joint disease. Hum Immunol 61(6):555–558

    Article  Google Scholar 

  • Rinninella E, Mele MC, Merendino N, Cintoni M, Anselmi G, Caporossi A et al (2018) The role of diet, micronutrients and the gut microbiota in age-related macular degeneration: new perspectives from the gut–retina axis. Nutrients 10(11):1677

    Article  Google Scholar 

  • Rinninella E, Raoul P, Cintoni M et al (2019) What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7(1):14

    Article  CAS  Google Scholar 

  • Riviere A, Selak M, Lantin D et al (2016) Bifidobacteria and butyrate- producing colon bacteria: importance and strategies for their stimulation in the human gut. Front Microbiol 7:979

    Article  Google Scholar 

  • Robles Alonso V, Guarner F (2013) Linking the gut microbiota to human health. Br J Nutr 109(Suppl 2):S21–S26

    Article  CAS  Google Scholar 

  • Rodger FC, Chir M (1960) The pathogenesis and pathology of ocular onchocerciasis. Am J Ophthalmol 49:327

    Article  CAS  Google Scholar 

  • Rojas M, Restrepo-Jiménez P, Monsalve DM, Pacheco Y, Acosta-Ampudia Y, Ramírez-Santana C et al (2018) Molecular mimicry and autoimmunity. J Autoimmun 95:100–123

    Article  CAS  Google Scholar 

  • Rosenbaum JT, Asquith M (2018) The microbiome and HLA-B27-associated acute anterior uveitis. Nat Rev Rheumatol 14(12):704–713

    Article  Google Scholar 

  • Round JL, Mazmanian SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A 107:12204–12209

    Article  CAS  Google Scholar 

  • Rowan S, Jiang S, Korem T, Szymanski J, Chang ML, Szelog J et al (2017) Involvement of a gut-retina axis in protection against dietary glycemia-induced age-related macular degeneration. Proc Natl Acad Sci U S A 114(22):E4472–E4481

    Article  CAS  Google Scholar 

  • Sampson TR, Mazmanian SK (2015) Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 17:565–576. https://doi.org/10.1016/j.chom.2015.04.011

    Article  CAS  Google Scholar 

  • Shimizu J, Kubota T, Takada E, Takai K, Fujiwara N, Arimitsu N et al (2016) Bifidobacteria abundance-featured gut microbiota compositional change in patients with Behcet’s disease. PLoS One 11(4):e0153746

    Article  Google Scholar 

  • Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Nutrients 5(4):1417–1435

    Article  CAS  Google Scholar 

  • Smith PM, Howitt MR, Panikov N et al (2013) The microbial metabolites, short chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573

    Article  CAS  Google Scholar 

  • Szablewski L (2018) Human gut microbiota in health and Alzheimer’s disease. J Alzheimers Dis 62(2):549–560

    Article  Google Scholar 

  • Tan TG, Sefik E, Geva-Zatorsky N et al (2016) Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc Natl Acad Sci U S A 113:E8141–E8150

    Article  CAS  Google Scholar 

  • Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474(11):1823–1836

    Article  CAS  Google Scholar 

  • Tomura M, Yoshida N, Tanaka J, Karasawa S, Miwa Y, Miyawaki A et al (2008) Monitoring cellular movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice. Proc Natl Acad Sci USA 105:10871–10876. https://doi.org/10.1073/pnas.0802278105

    Article  Google Scholar 

  • Trujillo-Vargas CM, Schaefer L, Alam J, Pflugfelder SC, Britton RA, de Paiva CS (2019) The gut-eyelacrimal gland-microbiome axis in Sjogren syndrome. Ocul Surf 18(2):335–344

    Article  Google Scholar 

  • Tsunoda I (2017) Lymphatic system and gut microbiota affect immunopathology of neuroinflammatory diseases, including multiple sclerosis, neuromyelitis optica and Alzheimer’s disease. Clin Exp Neuroimmunol 8(3):177–179

    Article  Google Scholar 

  • Ueda Y, Kawakami Y, Kunii D, Okada H, Azuma M, Le DS et al (2008) Elevated concentrations of linoleic acid in erythrocyte membrane phospholipids in patients with inflammatory bowel disease. Nutr Res 28(4):239–244

    Article  CAS  Google Scholar 

  • Van der Lelij A, Rothova A, Stilma JS, Hoekzema R, Kijlstra A (1990) Cell-mediated immunity against human retinal extract, S-antigen, and Interphotoreceptor retinoid binding protein in Onchocercal Chorioretinopathy. Invest Ophthalmol Vis Sci 31(10):2031–2036

    Google Scholar 

  • Varrin-Doyer M, Spencer CM, Schulze-Topphoff U, Nelson PA, Stroud RM, Cree BA et al (2012) Aquaporin 4-specific T cells in neuromyelitis optica exhibit a Th17 bias and recognize clostridium ABC transporter. Ann Neurol 72(1):53–64

    Article  CAS  Google Scholar 

  • Verhagen FH et al (2018) A disease-associated microRNA cluster links inflammatory pathways and an altered composition of leukocyte subsets to noninfectious uveitis. Investig Ophthalmol Vis Sci 59(2):878–888

    Article  CAS  Google Scholar 

  • Vieira SM, Pagovich OE, Kriegel MA (2014) Diet, microbiota and autoimmune diseases. Lupus 23(6):518–526

    Article  CAS  Google Scholar 

  • Vrancken G, Gregory AC, Huys GRB et al (2019) Synthetic ecology of the human gut microbiota. Nat Rev Microbiol 17(12):754–763

    Article  CAS  Google Scholar 

  • Watters GA, Turnbull PR, Swift S et al (2017) Ocular surface microbiome in meibomian gland dysfunction. Clin Exp Ophthalmol 45(2):105–111

    Article  Google Scholar 

  • Wekerle H (2016) The gut-brain connection: triggering of brain autoimmune disease by commensal gut bacteria. Rheumatology 55:ii68–ii75. https://doi.org/10.1093/rheumatology/kew353

    Article  Google Scholar 

  • Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC et al (2008) Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455(7216):1109–1113

    Article  CAS  Google Scholar 

  • Wen C, Zheng Z, Shao T, Liu L, Xie Z, Le Chatelier E et al (2017) Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis. Genome Biol 18(1):142

    Article  Google Scholar 

  • Wen X, Hu X, Miao L et al (2018) Epigenetics, microbiota, and intraocular inflammation: new paradigms of immune regulation in the eye. Prog Retin Eye Res 64:84–95

    Article  CAS  Google Scholar 

  • Whiteside SA, Razvi H, Dave S, Reid G, Burton JP (2015) The microbiome of the urinary tract: a role beyond infection. Nat Rev Urol 12(2):81–90

    Article  Google Scholar 

  • Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y et al (2010) Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32(6):815–827

    Article  CAS  Google Scholar 

  • Xiangyu F, Chen Y, Chen D (2021) The role of gut microbiome in autoimmune uveitis. Ophthalmic Res 64:168–177. https://doi.org/10.1159/000510212

    Article  CAS  Google Scholar 

  • Xiong WH, Duvoisin RM, Adamus G, Jeffrey BG, Gellman C, Morgans CW (2013) Serum TRPM1 autoantibodies from melanoma associated retinopathy patients enter retinal on-bipolar cells and attenuate the electroretinogram in mice. PLoS One 8(8):e69506

    Article  CAS  Google Scholar 

  • Ye Z, Zhang N, Wu C, Zhang X, Wang Q, Huang X et al (2018) A metagenomic study of the gut microbiome in Behcet’s disease. Microbiome 6(1):135

    Article  Google Scholar 

  • Ye Z, Wu C, Zhang N, Du L, Cao Q, Huang X et al (2020) Altered gut microbiome composition in patients with Vogt-Koyanagi-Harada disease. Gut Microbes 11(3):539–517

    Article  Google Scholar 

  • Zaheer M et al (2018) Protective role of commensal bacteria in Sjögren syndrome. J Autoimmun 93:45–56

    Article  CAS  Google Scholar 

  • Zarate-Blades CR, Horai R, Mattapallil MJ, Ajami NJ, Wong M, Petrosino JF et al (2017) Gut microbiota as a source of a surrogate antigen that triggers autoimmunity in an immune privileged site. Gut Microbes 8:59–66. https://doi.org/10.1080/19490976.2016.1273996

    Article  CAS  Google Scholar 

  • Zeng Q, Junli Gong G, Liu X, Chen C, Sun X, Li H et al (2019) Gut dysbiosis and lack of short chain fatty acids in a Chinese cohort of patients with multiple sclerosis. Neurochem Int 129:104468

    Article  CAS  Google Scholar 

  • Zhang Y, Griffith E, Sage J, Jacks T, Liu J (2000) Cell cycle inhibition by the anti-angiogenic agent TNP-470 is mediated by p53 and p21WAF1/CIP1. Proc Natl Acad Sci U S A 97:6427–6432

    Article  CAS  Google Scholar 

  • Zhuang Z, Wang Y, Zhu G, Gu Y, Mao L, Hong M et al (2017) Imbalance of Th17/Treg cells in pathogenesis of patients with human leukocyte antigen B27 associated acute anterior uveitis. Sci Rep 7:40414

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patnaik, G., Biswas, J. (2022). Role of Microorganisms in Pathogenesis and Management of Autoimmune Retinopathy (AIR). In: Dwivedi, M.K., Sankaranarayanan, A., Kemp, E.H., Shoenfeld, Y. (eds) Role of Microorganisms in Pathogenesis and Management of Autoimmune Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-19-4800-8_21

Download citation

Publish with us

Policies and ethics